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Abstract: Cloud and cloud shadow segmentation is one of the most critical challenges in remote
sensing image processing. Because of susceptibility to factors such as disturbance from terrain
features and noise, as well as a poor capacity to generalize, conventional deep learning networks,
when directly used to cloud and cloud shade detection and division, have a tendency to lose fine
features and spatial data, leading to coarse segmentation of cloud and cloud shadow borders, false
detections, and omissions of targets. To address the aforementioned issues, a multi-scale strip feature
attention network (MSFANet) is proposed. This approach uses Resnet18 as the backbone for obtaining
semantic data at multiple levels. It incorporates a particular attention module that we name the
deep-layer multi-scale pooling attention module (DMPA), aimed at extracting multi-scale contextual
semantic data, deep channel feature information, and deep spatial feature information. Furthermore,
a skip connection module named the boundary detail feature perception module (BDFP) is introduced
to promote information interaction and fusion between adjacent layers of the backbone network. This
module performs feature exploration on both the height and width dimensions of the characteristic
pattern to enhance the recovery of boundary detail intelligence of the detection targets. Finally,
during the decoding phase, a self-attention module named the cross-layer self-attention feature
fusion module (CSFF) is employed to direct the aggregation of deeplayer semantic feature and
shallow detail feature. This approach facilitates the extraction of feature information to the maximum
extent while conducting image restoration. The experimental outcomes unequivocally prove the
efficacy of our network in effectively addressing complex cloud-covered scenes, showcasing good
performance across the cloud and cloud shadow datasets, the HRC_WHU dataset, and the SPARCS
dataset. Our model outperforms existing methods in terms of segmentation accuracy, underscoring
its paramount importance in the field of cloud recognition research.

Keywords: cloud; cloud shadow; attention; image segmentation

1. Introduction

With the advancement of remote sensing technology, remote sensing images have been
widely utilized in various fields such as agriculture, meteorology, and military applications.
However, as approximately 67% of the Earth’s surface is covered by clouds [1], many
regions in remote sensing images are frequently obscured by cloud cover. This leads to
the degradation or even loss of valuable ground information. Consequently, the accurate
identification of cloud and cloud shadow holds significant importance for the successful
application of optical remote sensing images.

A substantial amount of work has been carried out in the detection and segmentation
of clouds and cloud shadows in multispectral satellite images [2,3]. Existing methods can
generally be categorized into rule-based methods and machine learning methods. Most
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rule-based methods use reflectance changes in the visible, short-infrared, and thermal
bands, and combine thresholds [4] or functions [5] in multiple spectral bands to distinguish
between cloud and clear-sky pixels. Cloud shadow detection poses a greater challenge
compared to clouds as their spectral characteristics overlap with those of other dark surface
materials [6], especially when water bodies are present, leading to false positives in shadow
segmentation. Consequently, methods incorporating spatial context information have been
developed to estimate the occurrence of cloud shadows relative to cloud positions [7]. The
Fmask [8] method has shown an overall improvement in cloud detection accuracy, but its
performance in detecting thin clouds remains unsatisfactory. With the rapid rise of deep
learning, artificial neural networks have been widely applied in cloud detection research
due to their superior generalization capabilities. This approach largely overcomes the
spatiotemporal limitations of threshold-based methods by training on large datasets. The
advantage of using deep learning for cloud detection lies in its ability to automatically
extract features from images and perform end-to-end training [9,10]. Long et al. proposed
fully convolutional networks (FCN) [11] in 2015, which use convolutional layers instead
of fully connected layers for pixel-level classification, making them highly effective for
semantic segmentation tasks. Ronneberger et al. introduced the UNet [12], which captures
multi-scale semantic information through the repeated downsampling and upsampling
of deep networks. However, due to the irregular geometric structures of clouds, it is
easy to overlook the boundary information of blurred objects, such as thin clouds. The
experimental results have shown certain limitations of existing deep learning models on
cloud image datasets. Zhao et al. (2017) proposed a pyramid scene parsing network
(PSPNet) [13], which can aggregate context information in different regions. The network
outputs feature information of different sizes through the pyramid pool module and then
unifies the resolution through upsampling, paving the way for the further subdivision
of new experimental tasks. Then, Chen et al.proposed the DeepLabV3plus [14], which
uses ASPP to extract multi-scale image information in the encoding part and combines
shallow information in the decoding part to capture clear target boundaries. In the semantic
segmentation task, the attention mechanism can help the model understand the semantic
information in the image more accurately and improve the accuracy and generalization
ability of segmentation. For example, Zhang et al. [15] proposed a multistage deformable
attention aggregation network for remote sensing image change detection.

Classical deep learning methods have to some extent improved the accuracy of cloud
detection and segmentation. However, for high-resolution remote sensing images with rich
details and complex scenes, the detection and segmentation results are not ideal. Secondly,
the classical deep learning method is easily interfered with by factors such as noise in
the image, and the detection effect of thin clouds and scattered small-sized clouds and
cloud shadows is not ideal. The boundaries and junctions between clouds and cloud
shadows are often characterized by intricate and irregular shapes, making them highly
complex. Existing deep learning methods fall short in effectively extracting information
from these regions, resulting in the coarse segmentation of the details at these boundaries
and junctions, for both clouds and cloud shadows. To address the aforementioned issues,
we propose a multi-scale strip feature attention network, utilizing ResNet18 [16] as the
backbone of our network. ResNet introduces residual structures to mitigate the problem of
vanishing gradients when increasing the depth of the network, making it more efficient in
feature extraction compared to regular convolution. In the feature extraction process, we
employ a deep-layer multi-scale pooling attention module (DMPA) to extract multi-scale
contextual semantic information, deep channel features, and deep spatial features. This
enhances the detection capability of scattered small-sized clouds and cloud shadows while
improving the segmentation accuracy at the junctions between clouds and cloud shadows.
The boundary detail feature perception module (BDFP) facilitates the mutual guidance
of adjacent layers in the backbone network for feature exploration. This module captures
edge, texture, and line information from both horizontal and vertical directions, enabling
the model to understand object shapes, boundaries, and structures, effectively improving
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the detection and segmentation accuracy of boundary details for clouds and cloud shadows.
The cross-layer self-attention feature fusion module (CSFF) guides the fusion of deep
semantic information and shallow detail information. The semantic information from
deep features enriches the understanding of shallow features, while the shallow features
compensate for the lack of detail information in the deep features. Our network obtains
93.70% MIoU on the cloud and cloud shadow datasets when the backbone is not turned
on for pre-training, and 94.65% MIoU on the cloud and cloud shadow datasets when the
backbone is turned on for pre-training, and our network has the highest performance.
In order to verify the generalization performance of the network, we also conducted
experiments on the public HRC_WHU dataset and the SPARCS dataset. The experimental
results show that our network outperforms the existing CNN network and achieves the
best performance for both the HRC_WHU dataset and SPARCS dataset. In summary, our
main contributions are as follows: (1) the deep-layer multi-scale pooling attention module
(DMPA) is designed to enhance the detail segmentation of the irregular junction of cloud
and cloud shadow and improve the network ’s attention to scattered small-sized clouds
and cloud shadows, reducing the probability of missed detection and false detection of
detection targets, (2) the boundary detail feature perception module (BDFP) is designed
to improve the accuracy of the network segmentation of the complex boundary details of
clouds and cloud shadows, and (3) the cross-layer self-attention feature fusion module
(CSFF) is designed to improve the detection ability of the network with regard to thin
clouds and the anti-interference ability of the network.

2. Methodology

Some previous studies have resulted in poor segmentation results due to the insuf-
ficient feature information extraction of clouds and cloud shadows, and the neglect of
sufficient attention to the details of clouds and cloud shadow boundaries, in view of the
above problems in cloud detection, such as false detection, missed detection, and the rough
segmentation boundaries of clouds and cloud shadows.

The benefits of the attention method include assisting the model in actively focusing
on the important data in the feature map during the cloud detection task and helping
the model to reduce the amount of calculation in areas that do not need attention and
increase the model’s ability to compute efficiently. By improving and innovating a variety
of attention mechanisms, we combine them organically to maximize the advantages of
attention mechanisms, and propose a MSFANet, which has the ability to quickly and
precisely predicte cloud and cloud shade. Figure 1 displays our network’s specific structure.
It is composed of a backbone network, DMPA module, BDFP module, and CSFF module.
For this section, we begin by outlining the structure of the MSFANet and then describe in
detail the four parts of it.

2.1. Network Architecture

The accuracy of the feature extraction of cloud and cloud shadow directly affects the
accuracy of the final classification. In order to ensure the performance of the model, we
reduce the image size in the encoding stage, increase the number of channels, and increase
the dimension of information. In the decoding stage, the image size is enlarged and restored,
and the number of channels is reduced to the same as the number of channels that begin to
enter, to ensure that the loss of image information is minimized and the performance of
the model is ensured. In this work, we use ResNet18 as the backbone network to extract
information and then propose the DMPA module to extract deep semantic information
and channel spatial information at the deepest layer of the network to help classify clouds
and cloud shadows and accurately capture them. Secondly, the BDFP module is proposed
between the encoder branch and the decoder branch to perform jump connection between
the two branches. The BDFP module not only promotes the two adjacent layers of the
backbone network to guide each other for feature mining but also fully fuses the feature
information and inputs it into the decoder branch in order to provide more useful features
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for the decoding stage and better restore the detail information. In the decoding stage, the
CSFF module is proposed to fuse deep semantic information and shallow detail information.
After sufficient feature information fusion and extraction, it makes up for the loss of some
feature information when recovering the size on the picture in the decoding stage. The CSFF
module gradually fuses features from deep to shallow to restore high-resolution details,
which greatly improves the performance of the network. Finally, double upsampling is
performed to restore the image to the original size output.

Layer-1Layer-1Layer-1 Layer-2Layer-2Layer-2 Layer-3Layer-3Layer-3 Layer-4Layer-4Layer-4 Layer-5Layer-5Layer-5

DMPABDFP BDFPBDFP

112×112×64 56×56×64 28×28×12828×28×128 14×14×25614×14×256 7×7×5127×7×512112×112×64 56×56×64 28×28×128 14×14×256 7×7×512

CSFFCSFFCSFFCSFFUpUpUp

7×7×5127×7×51214×14×25614×14×25628×28×12828×28×12856×56×64112×112×64

Layer-1Layer-1 Layer-2Layer-2 Layer-3Layer-3 Layer-4Layer-4 Layer-5Layer-5

DMPABDFP BDFPBDFP

112×112×64 56×56×64 28×28×128 14×14×256 7×7×512

CSFFCSFFCSFFCSFFUpUp

7×7×51214×14×25628×28×12856×56×64112×112×64

Figure 1. MSFANet structure diagram.

2.2. Backbone

As the network gets deeper, we can obtain more information and richer features.
However, deep networks may suffer from the exploding or vanishing gradients problem.
ResNet18 effectively addresses these issues, allowing the network to be deeper and thereby
leveraging more information. In our approach, we employ ResNet18 as the backbone to
extract features at different levels. The expression for the residual unit within the residual
block is as follows: Resnet18 residual structure is shown in Figure 2.

yi+1 = yi + C2Di+1(δ(C2Di(yi))), (1)

C2Di+1 and C2Di represent convolution, yi is initial input matrix, yi+1 is the output matrix,
and δ represents the activation function Relu.

Weight layer

Weight layerWeight layer
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X

relu

XF(x)

F(x)+X
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X

relu

XF(x)
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Figure 2. Resnet18 residual structure.
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2.3. Deep-Layer Multi-Scale Pooling Attention Module (DMPA)

For deep neural networks, capturing long-range dependencies is crucial. However,
convolutional operations are limited to processing local regions with a restricted receptive
field, making it challenging to capture long-range feature correlations. Using large square-
kernel pooling operations can increase the sharing of global information, which is effective
at detecting large-scale cloud regions. However, for scattered small-sized cloud clusters,
this approach performs poorly. The large square-kernel pooling operation extracts excessive
information from irrelevant areas, leading to interference in the model’s final predictions
and reducing segmentation accuracy. Additionally, when dealing with the segmentation of
closely connected and irregularly shaped junctions between clouds and cloud shadows,
typical square-kernel pooling operations cover more pixels, potentially containing more
irrelevant information, thereby blurring the edge details of the junctions. In response to the
above problems, Hou et al. [17] proposed strip pooling, which can capture long-distance
relationships while reducing interference from unrelated areas. Inspired by the above ideas,
we propose a deep multi-scale pooling attention module (DMPA), the specific structure of
which is shown in Figure 3. After feature extraction by the ResNet18 backbone network,
deep features contain higher-level semantic information. The DMPA module further
extracts multi-scale contextual semantic information, which is useful for distinguishing
different cloud and cloud shadow regions, enabling the model to better differentiate clouds
and cloud shadows from the background while identifying fine edges and textures, refining
the segmentation of irregular junctions between clouds and cloud shadows. The module
simultaneously extracts multi-scale deep spatial information and multi-scale deep channel
information, better focusing on the category and positional features of clouds and cloud
shadows, thereby enhancing the network’s ability to detect and predict scattered small-
sized targets and further improve the segmentation results.
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Figure 3. Deep-layer multi-scale pooling attention module structure diagram.

The DMPA module first takes the original feature map and inputs it into a multi-scale
strip pooling block. This block consists of four groups of pooling layers: one group of global
pooling layers and three groups of strip pooling layers. The global pooling layer includes
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one branch for global max pooling and one branch for global average pooling. The three
groups of strip pooling layers include average pooling branches with pooling kernels of
N × 1 and 1×N (N = 3, 5, 7), and max pooling branches with pooling kernels of 1×N and
N × 1 (N = 3, 5, 7). The strip max pooling emphasizes significant features while ignoring
minor information, while the strip average pooling smooths features and retains detailed
information. By combining both approaches, their respective strengths are fully utilized,
enhancing the segmentation performance.The N × 1 strip pooling tends to learn vertical
details in cloud and cloud shadow images, while the 1 × N strip pooling is more inclined
to learn horizontal details. This allows for the extraction of both vertical and horizontal
edge features in the image. Since the edges of clouds and cloud shadows are often closely
connected, these operations can effectively capture the edge feature information at the
junctions between clouds and cloud shadows, thus improving the segmentation accuracy at
these junctions. Each pooling branch parallelly extracts and adds input features, resulting
in multi-scale feature maps. The feature maps are then resized back to the input size
and concatenated along the channel dimension, completing the multi-scale strip feature
extraction process. Details related to the extraction of the above strip features are shown
in Figure 4.

1×N

Avg Pool

N×1 

Avg Pool

1×N

Avg Pool

N×1 

Avg Pool

Figure 4. Strip feature diagram. Where N = 3, 5, and 7.

After multi-scale strip pooling block feature extraction, the deep feature map is input
into the channel attention mechanism to enhance the model ’s attention and selection of
different channel features, so that the model pays more attention to learning useful feature
information. The weights obtained by the channel attention branch are processed by 1 × 1
convolution, batch normalization, and Relu nonlinear activation function and then added
to the original feature map for residual connection so that the network can learn residual
information, so that it is easier to train the deep network, effectively solve the problem
of gradient disappearance, and optimize the network. Finally, the weight after feature
fusion is input into the spatial attention mechanism to enhance the feature relevance and
importance of the model to different spatial positions so that the model pays more attention
to the regions related to clouds and cloud shadows in the image, which can effectively
help the model to accurately locate the detection target and strengthen the prediction and
segmentation of scattered small-sized cloud and cloud shadow.

The core content of the designed channel attention module is to use two types of global
pooling to extract advanced features. Global pooling is global average pooling and global
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maximum pooling, respectively. Using different global pooling means that the extracted
advanced features are more abundant. After that, the channel is compressed to 1/8 by a two-
dimensional depthwise separable convolution with a convolution kernel of 1. After being
weighted by the Relu activation function, the channel is restored by a two-dimensional
depthwise separable convolution with a convolution kernel of 1. Since two-dimensional
depthwise separable convolution can effectively reduce the number of parameters and
improve computational efficiency while maintaining strong feature expression ability and
helping the network better focus on details and local information, we use two-dimensional
depthwise separable convolution as an extractor of information between channels, focusing
on the importance of features in different channels. The above process is expressed by
Formulas (2) and (3):

ϕmax = DWC2D1×1(δ(DWC2D1×1(Relu(Gmax(x))))), (2)

ϕavg = DWC2D1×1(δ(DWC2D1×1(Relu(Gavg(x))))), (3)

The weights of the two pooling branches are added and re-weighted by the sigmoid
function. Finally, the output is multiplied by the initial weight of the input channel
attention. Formula (4) can be used to express this.

CA(x) = x · σ(ϕmax + ϕavg) (4)

where σ denotes the Sigmoid function.
The core content of the designed spatial attention module is to use average pooling

and maximum pooling to extract feature information. Unlike the channel attention module,
these two aggregation methods in the spatial attention module are carried out along
the channel dimension. After connecting the feature map results generated by average
pooling and maximum pooling in the channel dimension, a convolution operation with
a convolution kernel of 3 × 3 is performed to reduce the number of channels from 2 to 1.
Considering that the size of the deepest feature map of the network is the smallest, the
convolution with a convolution kernel of 3 × 3 can better preserve the details and capture
the local features. Then, the feature map is re-weighted by the nonlinear activation function
Sigmoid and multiplied by the weight of the initial input spatial attention to generate the
final feature map. The above process is shown in Formula (5):

SA(x) = x · σ(C2D3×3(CAT1(Mp(x), Ap(x)))) (5)

where σ denotes the Sigmoid function. CAT1represents splicing in the channel dimension,
Max pooling is represented by Mp, and average pooling is represented by Ap.

2.4. Boundary Detail Feature Perception Module (BDFP)

Due to the arbitrary and irregular sizes and shapes of clouds and their shadows,
detecting boundary information is challenging, and existing methods [18] often produce
coarse segmentation boundaries with insufficient details. To address this issue, we propose
the boundary detail feature perception module (BDFP) between the encoder and decoder
branches; the specific structure is shown in Figure 5. The BDFP module serves as a skip
connection, guiding the fusion of features between adjacent shallow and deep feature
maps from the backbone network and then inputting them into the decoder branch. By
fusing with high-level decoder features, it helps the decoder to better restore fine details
during image pixel restoration. The module consists of two branches: the high dimensional
feature branch and the width dimensional feature branch. They, respectively, extract spatial
dimension information from the adjacent two layers’ output feature maps of the backbone
network, guiding the network to focus on features at different positions in the image. This
enhances the model’s ability to model the boundaries, details, and spatial structures of
the detected objects, thus refining the boundary segmentation details of clouds and cloud
shadows and improving segmentation accuracy.
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Figure 5. Boundary detail feature perception module structure diagram.

In the high-dimensional feature branch, the first step is to use two spatial ranges of the
pooling kernel (H, 1) or (1, W) to encode along the horizontal and vertical coordinates of the
input large-sized feature map x, respectively, preserving the height and width information
of the input image. The encoded 1 ×W pixel-sized feature map xW ∈ RC×1×W is reshaped
into an H × 1 pixel-sized feature map xW_H ∈ RC×H×1. Then, it is concatenated along
the high dimension with another encoded H × 1 pixel-sized feature map xH ∈ RC×H×1

to increase the height of the feature map to twice the original height. At this point, it
contains richer feature information in the vertical direction. The process is represented
by Formula (6):

x1 = CAT2(xH ,xW_H) (6)

In Formula (6), CAT2 represents the concatenation operation along the high dimension.
x1 ∈ RC×2H×1 is the feature map obtained after concatenation along the height dimension.
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Then, a 2D convolution with a kernel size of 5 × 1 is applied, performing convolutional
operations along the vertical direction for each position’s pixel to capture features along the
height dimension comprehensively. Subsequently, the resulting feature map is processed
through batch normalization and then ReLU activation function to reweight the features. It
is then element-wise multiplied with the weight obtained from the vertical strip convolution
of the high-dimensional features. This process is illustrated by Formulas (7) and (8):

x2 = BN(C2D5×1(x1)) (7)

x3 = x2 · δ(x2) (8)

where BN denotes batch normalization. C2D5×1 denotes a two-dimensional convolution
with a convolution kernel of 5× 1. δ represents the nonlinear activation function Relu. Then,
we decompose x3 into two independent tensors x3

H ∈ RC×H×1 and x3
W ∈ RC×1×W ; the

two-dimensional convolution with the convolution kernel of 5× 1 and the two-dimensional
convolution with convolution kernel of 1 × 5 are used to extract the height dimension and
width dimension features of the decomposed two tensors, respectively. The two tensors
are weighted by the Sigmoid function after feature extraction and multiplied by the most
original input tensor. We finally obtain that the output of the high-dimensional feature
branch can be shown in Formula (9):

xout = x · σ(C2D5×1(x3
H)) · σ(C2D1×5(x3

W)) (9)

where σ denotes the Sigmoid function. C2D1×5 denotes a two-dimensional convolution
with a convolution kernel of 1 × 5.

In the width dimension, the feature branch similarly utilizes pooling kernels with
two spatial ranges (h, 1) or (1, w) to encode the input small-sized feature map y along the
horizontal and vertical coordinate directions separately. This process preserves both the
height and width information of the input image. The encoded h × 1 pixel feature map
yh ∈ Rc×h×1 is then transformed through a reshape operation into a 1 × w pixel feature
map yh_w ∈ Rc×1×w. This 1 × w pixel feature map is concatenated with another branch’s
encoded 1 × w pixel feature map yw ∈ Rc×1×w along the width dimension, resulting in the
width of the feature map being doubled compared to the input. This process is represented
by Formula (10):

y1 = CAT3(yw,yh_w) (10)

where CAT3 denotes concatenation operation in the width dimension. y1 ∈ Rc×1×2w is the
feature map after splicing the width dimension. After that, through the two-dimensional
convolution with a convolution kernel of 1 × 3, the pixels at each position are convoluted
along the horizontal direction to fully capture the feature information on the width di-
mension. After that, the same process is first processed by batch normalization and then
re-weighted by Relu activation function. The width dimension feature weight after the bar
convolution is multiplied by the element by element to perform feature fusion. The process
is shown by the Formulas (11) and (12):

y2 = BN(C2D1×3(y1)) (11)

y3 = y2 · δ(y2) (12)

where C2D1×3 denotes a two-dimensional convolution with a convolution kernel of 1 × 3;
then, we decompose y3 into two independent tensors, y3

w ∈ Rc×1×w and y3
h ∈ Rc×h×1,

and use the two-dimensional convolution with a convolution kernel of 1 × 3 and the
two-dimensional convolution with a convolution kernel of 3 × 1 to extract the width
dimension and height dimension features of the decomposed two tensors, respectively. The
two tensors are weighted by the Sigmoid function after feature extraction and multiplied
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by the most original input tensor element by element. We finally obtain that the output of
the width dimension feature branch can be shown in Formula (13):

yout = y · σ(C2D1×3(x3
w)) · σ(C2D3×1(x3

h)) (13)

where σ denotes the Sigmoid function. C2D3×1 denotes a two-dimensional convolution
with a convolution kernel of 3 × 1.

Because the feature image pixel sizes output by the high-dimensional feature branch
and the width-dimensional feature branch are different, the size of the feature map out-
put by the high-dimensional feature branch is twice that of the width-dimensional fea-
ture branch. Therefore, before we fuse the features output by the two branches, a two-
dimensional convolution with a convolution kernel of 3× 3 is used to transform the number
of channels, and the height and width of the feature map output by the high-dimensional
feature branch into the same one as the width-dimensional feature branch. Finally, the
feature map after the fusion of the two branches is input into the dropout function. In the
prediction stage, the neurons in the probability network of 0.1 can be discarded, which
can improve the accuracy of segmentation to a certain extent, obtain a prediction map
with good segmentation effect, and prevent network overfitting. The process is shown
in Formula (14):

z = Drop(C2D3×3(xout) + yout) (14)

where z ∈ Rc×h×w is the output result feature map, Drop is the dropout function, and
C2D3×3 is the two-dimensional convolution with a convolution kernel of 3 × 3.

2.5. Cross-Layer Self-Attention Feature Fusion Module (CSFF)

In the task of cloud and cloud shadow segmentation, the thin cloud layer is easy to
ignore by the network because its own characteristics are not obvious enough, resulting in
missed detection during prediction, and various interferences in the original image will
also interfere with the network in predicting the detection target, affecting the segmentation
effect. In order to solve this problem, we propose a cross-layer self-attention feature fusion
module in the decoding stage, which is used to fuse shallow detail information and deep
semantic information, fully extract features, improve the anti-interference ability of the
network, improve the attention to thin clouds, reduce the probability of missed detection
and false detection, and further realize the accurate prediction and segmentation of cloud
and cloud shadow.

A thin cloud is an object that is easily misdetected during the detection process.
Therefore, in the detection of thin clouds, the network often needs to provide a larger
receptive field [19], and the function of the self-attention mechanism is to extend the
receptive field to the entire world. In theory, the self-attention mechanism can establish the
spatial location information covering all pixels of the feature map [20]. However, an obvious
drawback of the self-attention mechanism is that the amount of computation is large and
there is a certain amount of computational redundancy. When we design a cross-layer
self-attention feature fusion module, the module is mainly composed of three branches,
which are two convolution branches for local feature information extraction through a
depthwise separable convolution with a convolution kernel of 3 × 3, and our improved
self-attention branch in the middle. We assume that the feature maps from the deep and
shallow layers of the network are X1 and X2, respectively, where the width and height of
X2 are twice that of X1. In the self-attention branch of the CSFF module, we first double
upsample the deep small-size feature map X1, then concatenate the operation with the
shallow large-size feature map X2 in the channel dimension, and lastly generate X3 through
the layer normalization operation. At the same time, we use the feature information in X3
to generate the query vector (Q), key vector (K), and value vector (V) and use local context
information to enrich it. It aggregates pixel-level cross-channel context information by
using 1 × 1 convolution. Then, 3 × 3 depthwise separable convolution is used to encode
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channel-level spatial context information. Our module generates Q, K, and V, as shown in
Formulas (15)–(17):

Q = DWC2DQ
3×3(C2DQ

1×1(X3)), (15)

K = DWC2DK
3×3(C2DK

1×1(X3)), (16)

V = DWC2DV
3×3(C2DV

1×1(X3)), (17)

the query vector and key vector are then reshaped to interact with each other so that their
dot products can produce a transposed attention graph with RC×C size. The procedure
described above is as below:

X4 = C2D1×1(R(V′ · τ(K′ ·Q′/β))), (18)

where X4 is the feature map of the self-attention branch output. Q′, K′, and V′ are obtained
from the original size RH×W×C remodeling tensor. Before the Softmax function, the point
product size of K′ and Q′ is controlled by the learning scaling parameter β in this instance. τ
is a Softmax function. R is a symbol for the rearrange operation. For the convolution branch of
the CSFF module, the feature map of X1 after upsampling and X2 are input into the depthwise
separable convolution with the 3× 3 convolution, batch normalization, and Relu, respectively,
and output as X1

′ and X2
′, respectively. The procedure described above is as follows:

X1
′ = δ(BN(DWC2D3×3(Up(X1)))), (19)

X2
′ = δ(BN(DWC2D3×3(X2))), (20)

where BN represents batch normalization and Up represents double upsampling. Finally,
we fuse the feature weights output by the three branches of the CSFF module to further
extract the feature information for the decoding stage and promote the image information
recovery. The following is its formula:

Y = C2D1×1(X1
′ · X4 + X2

′ · X4), (21)

where Y is the final output feature diagram. Figure 6 shows the CSFF module.
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Figure 6. Cross-layer self-attention feature fusion module structure diagram.
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3. Experiment
3.1. Dataset
3.1.1. Cloud and Cloud Shadow Datasets

The cloud and cloud shadow datasets used in this study are obtained from Google
Earth, a virtual globe software developed by Google that integrates satellite imagery,
aerial photography, and geographic information systems onto a 3D model of the Earth.
The global topographic images on Google Earth have an effective resolution of at least
100 m and are typically 30 m in resolution for regions like mainland China, with an
observation altitude (Eyealt) of 15 km. The dataset consists of high-resolution remote
sensing images randomly collected by professional meteorological experts in various
regions, including the Yunnan Plateau, Qinghai Plateau, Tibetan Plateau, and the Yangtze
River Delta. To comprehensively evaluate the model’s performance, we selected several
sets of high-resolution cloud images captured from different shooting angles and altitudes.
The longitude and latitude coordinates of the data collection areas are provided in Table 1.

Table 1. The location’s latitude and longitude are collected in the data set.

Background South to North West to East

Water 30°53′4.48′′N to 31°35′46.19′′N 119°47′34.52′′E to 120°49′43.81′′E
Water, City 31°20′1.32′′N to 31°46′25.27′′N 117°27′46.75′′E to 117°58′1.24′′E

City 32°19′56.28′′N to 33°26′13.11′′N 120°28′46.49′′E to 121°38′22.05′′E
Vegetation 26°47′38.87′′N to 27°58′2.12′′N 107°19′35.11′′E to 109°32′55.19′′E
Wasteland 29°52′53.25′′N to 30°45′46.22′′N 88°10′12.45′′E to 89°18′10.76′′E
Wasteland 41°2′27.26′′N to 41°52′47.26′′N 91°54′25.23′′E to 92°3′53.14′′E

Due to the limitation of GPU video storage capacity, we cut the original high-definition
cloud remote sensing image with a resolution of 4800 × 2692 into a size of 224 × 224. After
screening (we cleaned the data set and deleted the cloud-free images and cloud-only
images), we obtained a total of 12,280 images. We divided the data set into a training set
and a validation set according to 8/2. Deep neural networks require a lot of training data,
but it is difficult to obtain these learning samples. Therefore, it is necessary to use data
augmentation to avoid overfitting when there are few training samples. Therefore, this
article used translation, flip, and rotation for data augmentation. After data augmentation,
the dataset was expanded to 39,296 training set images and 9824 validation set images,
and the ratio of training set and validation set was still 8/2. As shown in Figure 7, the
high-resolution cloud and cloud shadow images obtained from Google Earth are roughly
divided into five types, which have different backgrounds, namely, waters, forests, fields,
towns, and deserts. These tags are manually labeled, and there are three types: cloud (red),
cloud shadow (green), and background (black).

:Cloud :Shadow:Shadow :Background:Background:Cloud :Shadow :Background:Cloud :Shadow :Background

Figure 7. Part of cloud and cloud shadow datasets display.
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3.1.2. HRC_WHU Dataset

In order to further verify the generalization performance of the proposed algorithm,
we use the high-resolution cloud dataset HRC_WHU [21] for verification. Images of
this dataset were collected from Google Earth. Experts in the field of remote sensing
image interpretation of Wuhan University have digitized the relevant reference cloud
masks. The dataset contains 150 high-resolution remote sensing images of large scenes.
Each image contains three channels of RGB information, distributed in various regions
of the world, including deserts, snow, urban, forest, and water. There are five different
backgrounds. The image resolution is mainly between 0.5 m and 15 m. The original size of
the image is 1280 × 720. Due to the memory limitations of the GPU, we cut the original
image into 256 × 256 small-size images for training. After screening, we obtained a total of
5200 images, which were divided into training sets and verification sets according to 8/2. In
order to enhance the generalization ability of the model, we performed data augmentation
operations through translation, flipping, and rotation. After data augmentation, the data
set was expanded to 16,640 training set images and 4160 verification set images. The
ratio of the training set and the verification set is still 8/2. Figure 8 shows some images
in the HRC_WHU dataset. There are two types of dataset labels: cloud (white) and
background (black).

:Cloud :Background:Background:Cloud :Background:Cloud :Background

Figure 8. Part of HRC_WHU dataset display.

3.1.3. SPARCS Dataset

We use the public dataset SPARCS [22,23] to verify the performance of the proposed
method in multi-spectral scenarios. The dataset was originally created by M. Joseph Hughes
of Oregon State University and was manually exported from pre-collected Landsat-8 scenes.
The dataset contains 80 images of 1000 × 1000 pixels, that is, a subset of pre-collected
Landsat-8 scenes, including clouds, cloud shadows, snow/ice, water, and background
categories. Due to the limitation of GPU memory, we cut the original data set into small
images of 256 × 256 pixels. After screening, we obtained a total of 2000 images, which were
divided into a training set and a verification set according to 8/2. In order to enhance the
generalization ability of the model, we performed data augmentation operations through
translation, flipping, and rotation. After data augmentation, the data set was expanded
to 6400 training set images and 1600 verification set images. The ratio of training set and
verification set is still 8/2. Figure 9 shows some images in the SPARCS dataset. There are
five types of dataset labels: cloud (white), cloud shadow (black), snow/ice (light blue),
water (dark blue), and background (gray).
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:Cloud:Cloud :Snow/Ice:Snow/Ice :Cloudshadow:Cloudshadow :Water:Water :Background:Background:Cloud :Snow/Ice :Cloudshadow :Water :Background:Cloud :Snow/Ice :Cloudshadow :Water :Background

Figure 9. Part of SPARCS dataset display.

3.2. Experimental Details

Our experimental implementations are based on the public platform PyTorch (Paszke
et al., 2017) [24]. In this work, we use the "Steplr" learning rate strategy, that is,

lrnew = lrinitial ×γ
epoch

stepsize . The baseline learning rate is set to 0.001, the adjustment multiple is
set to 0.98, and the adjustment interval is set to 3. The number of training times is set to 300,
and the cross entropy is used as the maximum loss function. Since the Adam optimizer [25]
converges quickly and stably, in the experiments involved in this paper, we use Adam as the
optimizer, where β11 is set to 0.9 and β2 is set to 0.999. NVIDIA GeForce RTX 3070 with an
8G storage capacity powers our training system. We set the batch size to 24 for training the
cloud and cloud shadow datasets due to the physical memory restriction of a single GPU,
and we set the batch size to 18 when training the HRC_WHU dataset and SPARCS dataset.
To assess how well our network performs using the cloud shadow dataset, HRC_WHU
data, and SPARCS dataset, we selected the following metrics as our assessing indices: mean
PA (MPA), pixel accuracy (PA), F1 score, mean intersection over union (MIoU), frequency
weighted intersection over union (FWIoU), and the time of training a picture (Time).

3.3. Ablation Experiment

In this section, we first use ResNet18 without opening pre-training as the backbone,
and we replace the proposed module with an auxiliary module composed of ordinary
convolution and upsampling when the overall network structure remains unchanged and
then connect them for output. Next, we gradually add the designed modules’ (BDFP, CSFF,
and DMPA) replacement auxiliary modules to the network to verify the feasibility of each
module and the entire network. Table 2 details the increase in network prediction accuracy
for each module.

Table 2. Gradual use of the designed modules to compare the performance of the network.

Methods MIoU (%)

ResNet18 92.34
Resnet18 + BDFP 92.55
Resnet18 + BDFP + CSFF 93.20
Resnet18 + BDFP + CSFF + DMPA 93.70

BDFP ablation: The BDFP module separates and combines the spatial dimension data
from the feature diagrams produced by the backbone network’s top two layers; this guides
our network to focus on the information of different positions in the picture and enhances
the modeling ability of the MSFANet to detect the boundary, detail, and spatial structure of
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the target. According to Table 2, the BDFP module increases MIoU by 0.21%. Through the
thermal visualization effect of Figure 10d, we can find that after adding this module, the
network focus on the boundary details of the cloud shade, cloud, and the overall prediction
effect is significantly improved.

CSFF ablation: The CSFF module utilizes a combination of self-attention mechanism
and convolution to effectively integrate a shallow-layer detail feature and deep-layer
semantic feature, enabling comprehensive information extraction. According to Table 2,
the CSFF module increases the MIoU of the network by 0.65%. Through the thermal
visualization effect of the first cloud image under the background of farmland in Figure 10e,
it is clear that the addition of the CSFF module helps the network increase its attention to
thin clouds. Through the second cloud image of the urban background with interference in
Figure 10, we compare the thermal visualization effect before and after adding the CSFF
module. Our network now obviously focuses on the predictive information that is most
useful, and its anti-interference capability is enhanced as a result of the addition of the
CSFF module. As a result, the likelihood of a prediction target being incorrectly detected
is decreased. The capacity to identify the image’s interfering objects (such as white house
buildings and black building reflections) is also improved.

DMPA ablation: The DMPA module fully extracts the multi-scale strip semantic fea-
tures and channel spatial features of the deep network and improves MSFANet’s attention
to the details of the combination of cloud–cloud shade and the prediction ability of small
detection targets. According to Table 2, the DMPA module increases the MIoU of the
network by 0.5%. Through the thermal visualization effect of the first cloud image in the
farmland background in Figure 10f, we can find that the border connections of cloud–cloud
shade can be distinguished significantly more clearly with the help of the DMPA mod-
ule. The thermal visualization effect of the second cloud image in the urban background
with interference in Figure 10f shows that the DMPA module helps MSFANet to catch the
scattered small-sized cloud–cloud shade and achieves a more accurate positioning of such
small detection targets.
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Figure 10. Display of heat map. (a) Image; (b) label; (c) Resnet18; (d) Resnet18+BDFP; (e) Resnet18 +
BDFP + CSFF; and (f) Resnet18 + BDFP + CSFF + DMPA. The 1st row is the attention to the cloud,
and the 2nd row is the attention to the cloud shade.

3.4. Comparative Testing of Cloud and Cloud Shadow Datasets

In this section, we compare the proposed method with other semantic segmentation
networks, where SP_CSANet [26], PADANet [27], LCDNet [28], and CloudNet [29] are
other networks specifically designed for cloud and cloud shadow semantic segmentation
tasks. We chose pixel accuracy (PA), mean PA (MPA), F1 score, frequency weighted
intersection over union (FWIoU), mean intersection over union (MIoU), and time of training
a picture (Time) as evaluating indexes. Table 3 shows the quantitative results of the above
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indicators. Among all the comparison methods, our network works best. When comparing
with other backbone networks without pre-trained semantic segmentation networks, the
backbone network of our network does not load pre-trained models, and when comparing
with other backbone networks with pre-trained semantic segmentation networks, we load
pre-trained models on the backbone network. For the two comparison methods, our
network is ahead of other networks in all indicators, which shows the effectiveness of
our proposed method. By comparing the time required to train a picture, it can be found
that our network takes less time than most other networks, and our network computing
performance has certain advantages.

Table 3. The comparison results of different network evaluation indexes of cloud and cloud shadow
datasets. “+” is used to indicate the pre-trained network (bold indicates the highest outcome)).

Methods PA(%) MPA(%) F1(%) FWIoU(%) MIoU(%) Time(ms)

Swin_Transformer [30] 96.10 95.33 92.97 92.53 90.93 16.98
UNet [12] 96.13 95.53 92.92 92.57 90.96 3.26
DenseAspp [31] 96.22 95.13 93.37 92.76 91.21 15.03
DeepLabv3plus [14] 96.32 95.65 93.33 92.92 91.41 9.50
SGBNet [32] 96.39 95.44 93.53 93.06 91.51 7.93
PADANet [27] 96.44 95.55 93.63 93.16 91.66 9.45
FCN8s [11] 96.46 95.51 93.71 93.21 91.71 2.97
SP_CSANet [26] 96.48 95.61 93.70 93.24 91.76 16.45
BiseNetv2 [33] 96.55 96.07 93.66 93.34 91.92 7.29
PVT [34] 96.60 95.64 93.49 93.46 92.00 12.83
LCDNet [28] 96.67 96.04 93.96 93.58 92.19 6.35
CloudNet [29] 96.69 96.11 93.99 93.61 92.24 5.21
ENet [35] 96.74 95.84 94.05 93.72 92.33 1.69
PSPNet [13] 96.80 96.45 94.06 93.80 92.47 7.96
MSFANet 97.34 96.84 95.15 94.83 93.70 2.55

FCN8s+ 97.04 96.46 94.67 94.28 93.07 2.97
PSPNet+ 97.12 96.55 94.79 94.42 93.22 7.96
MSFANet+ 97.74 97.34 95.88 95.59 94.65 2.55

In Figure 11, some illustrations of representative scenarios have been chosen. In the
comparison of the effect of the prediction graph, we selected several excellent networks
(such as PSPNet, ENet, BiseNetV2, DeepLabV3plus, and Swin_Transformer) with distinct
characteristics for comparison to prove the feasibility of our network. In the selected
example diagram, we used white frames to mark the different network segmentation
results at the same position, so that the segmentation effect of each network is clear at a
glance. For example, in the second row of forest background, PSPNet, ENet, BiSeNetV2,
DeepLabV3plus, and Swin_Transformer misidentified and failed to detect sporadic, small-
scale cloud cover, while our network can accurately predict almost all cloud and cloud
shadow in the image. In the third line of desert background, only our network achieves
accurate detection of thin clouds in the lower right corner, and other comparison networks
have missed detection, indicating that our network focuses on thin clouds and has better
performance. In the images displayed in the first line of farmland background and the
third line of the fifth line of desert background, in the erratic intersection of cloud–cloud
shade, our network significantly outperforms previous comparison networks because of its
superior detail segmentation. Through the images displayed in the fourth row of water
background and the fifth row of desert background, we can discover that our method
is better than other comparison methods in predicting the complex boundary details of
cloud–cloud shade. By combining the aforementioned findings, in the presence of diverse
environmental background, the BDFP module retrieves and combines the spatial dimension
information of the feature maps produced by the backbone’s neighbouer two layers, guiding
the network to focus on the position information of different pixels in the picture, and helps
the network to enhance the target’s detection’s target’s border detail feature extraction. At
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the same time, the DMPA module fully extracts the multi-scale strip semantic features and
channel spatial features of the deep network and improves MSFANet’s attention to the
junction of cloud and cloud shadow and the detection ability of small detection targets.
Through the CSFF module, the deeplayer semantic feature and shallow detail feature
are combined, the features are fully extracted, the network’s interference prevention is
enhanced, and the thin cloud layer is given more consideration. The advantages of our
network are further demonstrated by comparison with other traditional networks for
picture segmentation in various environmental settings.

(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. Comparing the segmentation outcomes of several networks in various environmental
contexts using the cloud–cloud shade dataset. (a) Images; (b) labels; (c) MSFANet; (d) PSPNet;
(e) ENet; (f) BiseNetV2; (g) DeepLabV3plus; and (h) Swin_Transformer.

Figure 12 displays the prediction effects of several networks when noise is present. We
selected five typical images, and we also used white frames in the prediction images to mark
different network segmentation results in the same location, which better demonstrated
the superiority of our network. As shown in the first row, the results show that when there
is an interfering object in the original image, except when our network does not have that
interfering object (black land) mistakenly detected as a cloud shadow, other comparison
networks have produced false detection, reflecting the fact that our CSFF module promotes
the full interaction of information at different layers, thereby improving the network’s
resistance to interfering objects and achieving the accurate judgment and prediction of
detection targets. As seen in the 2nd line and the 3rd row of the segmentation results, we
intuitively find that the PSPNet, ENet, BiseNetV2, DeepLabV3plus, and Swin_Transformer
deal with the cloud border features, and the irregular cloud–cloud shade junction is visible
when there is a lot of interference caused by noise, the effect of which is unsatisfactory.
However, our network is very effective in detail processing in this respect. The prediction
effect diagram shown in the 3rd, 4th, and 5th lines indicates that when the original picture
has much noise interference, except when our network achieves the accurate prediction of
scattered distribution of small size clouds and cloud shade, other networks of comparison
have more or less missed detection, which proves the good prediction performance of
our network for such difficult-to-detect targets. The above comparison results show that
despite the fact that the cloud layer of the image has a lot of noise interference and there
are also interferences that share similarities in pigmentation and shape on the ground, with
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the help of the DMPA module, our network can acquire a deep multi-scale feature, channel
space information, the accurate prediction of scattered small-scale detection targets, and
the detailed segmentation of the complex combination of cloud and cloud shadow. With
the BDFP module, the network extracts and fuses the spatial dimension information to
acquire the boundary detail features of the detection target and can create a more precise
categorisation when segmenting the edge details of cloud and cloud shadow. Based on
the above analysis, when there are noise and other interferences in the original image, our
network can still maintain good performance.

(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 12. Comparison of multiple network segmentation effects on the cloud and cloud shadow
datasets under noise. (a) Images; (b) Labels; (c) MSFANet; (d) PSPNet; (e) ENet; (f) BiseNetV2;
(g) DeepLabV3plus; and (h) Swin_Transformer.

3.5. Generalization Experiment of HRC_WHU Dataset

In order to further prove the effectiveness of our proposed method, we also conducted
generalization experiments on the HRC_WHU dataset. We chose pixel accuracy (PA),
mean PA (MPA), F1 score, frequency weighted intersection over union (FWIoU), and mean
intersection over union (MIoU) as evaluating indexes. The experimental results are shown
in Table 4. Among all the comparison methods, the prediction of cloud segmentation in our
network works best. When compared with other backbone networks without pre-trained
semantic segmentation networks, the backbone network of our network does not load
pre-trained models, and when compared with other backbone networks with pre-trained
semantic segmentation networks, we load pre-trained models on the backbone network.
Regarding the HRC_WHU dataset, our network is ahead of other networks in all indicators,
which shows the effectiveness of our proposed method.

Figure 13 depicts the prediction effect of different methods on clouds under various
conditions. The background of the image is deserts, snow, urban, forest, and water from top
to bottom. Through the first line of the display map, we can find that when predicting and
segmenting the shape of large thick clouds, the BDFP module extracts and fuses the spatial
dimension information of the feature diagram, guides MSFANet to catch the features of
different positions in the image, and helps our network. The boundary details of the cloud
are fully preserved, and the segmentation is detailed. Other networks have the issue of
blurred boundary detail prediction and rough segmentation. The second line of the display
map is to select the segmentation of the thin cloud layer under the snow background. The
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snow has similar color and shape features to the cloud, which can easily cause interference
when the network predicts the cloud. In view of the interference problem, our CSFF
module promotes the full interaction of information in different layers, thereby improving
the network’s capability to prevent interference, and can achieve accurate judgment and
prediction of detection targets. While avoiding false detection, the prediction of thin cloud
shape is also the best. PSPNet introduces PPM, captures context information at different
scales, and enhances the perception of clouds; to a certain extent, it improves its anti-
interference ability, but the segmentation of cloud boundary details is still worse than
our network. The bilateral guided aggregation layer used by BiSeNetV2 also promotes
information fusion and improves its anti-interference ability to a certain extent; however,
due to insufficient semantic feature extraction, the shape of the cloud cannot be fully
restored. The third line predicts the cloud shape and boundary details. It is evident that our
network has the advantages of cloud shape and boundary detail segmentation. Regarding
the fourth and fifth lines’ results of the forecast, in addition to the comparison, we find that
our network has the best effect on the cloud’s shape; it is also clear that MSFANet accurately
predicts the scattered small-sized clouds, which is attributed to the DMPA module. Fully
extracting deep multi-scale context information helps the network to distinguish the subtle
edges and textures of the cloud from the background, and extracting channel spatial
information better focuses on the category features and location features of the cloud,
which enhances the network’s capture and prediction of scattered small-sized detection
targets. All of the other networks have the problems of the missing detection of clouds and
the rough shape prediction of clouds. The results of the comparisons mentioned above
demonstrate that our network performs very well in cloud prediction and segmentation,
and its accuracy effect is superior to that of other comparison networks.

Table 4. The comparison results of different network evaluation indexes of HRC_WHU data set. “+”
is used to indicate the pre-trained network. (Bold indicates the highest outcome))).

Methods PA(%) MPA(%) F1(%) FWIoU(%) MIoU(%)

FCN8s 93.30 93.03 89.98 87.48 87.06
Swin_Transformer 93.64 93.06 90.55 88.11 87.59
UNet 93.95 93.85 90.89 88.60 88.27
PVT 94.23 93.96 91.32 89.11 88.73
DeepLabv3plus 94.33 94.05 91.48 89.23 88.92
SGBNet 94.32 94.30 91.41 89.25 88.96
LCDNet 94.51 94.36 91.71 89.59 89.27
DenseAspp 94.53 94.44 91.74 89.64 89.33
CloudNet 94.61 94.40 91.88 89.79 89.45
BiseNetv2 94.64 94.60 91.88 89.82 89.53
ENet 94.66 94.63 91.91 89.86 89.57
SP_CSANet 94.72 94.53 92.03 89.98 89.65
PADANet 94.73 94.56 92.05 90.01 89.69
PSPNet 94.74 94.66 92.02 89.99 89.70
MSFANet 95.35 95.25 92.95 91.12 90.85
ine FCN8s + 93.93 93.90 90.85 88.56 88.24
PSPNet + 95.09 94.83 92.45 90.54 90.29
MSFANet + 95.75 95.52 93.70 91.87 91.55
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Figure 13. Effects of various networks’ segmentation on the HRC_WHU dataset in comparison with
various environments. (a) Images; (b) labels; (c) MSFANet; (d) PSPNet; (e) ENet; (f) BiseNetV2;
(g) DeepLabV3plus; and (h) Swin_Transformer.

3.6. Generalization Experiment of SPARCS Dataset

In order to further prove the segmentation performance of our method for multispec-
tral remote sensing images, generalization experiments are performed using the SPARCS
dataset. We chose pixel accuracy (PA), mean PA (MPA), F1 score, frequency weighted
intersection over union (FWIoU), and mean intersection over union (MIoU) as evaluating
indexes. Table 5 shows the evaluation results of different networks of the data set. It can
be seen from the table that after adding other categories, our method can still maintain
the highest accuracy, and the detection ability of cloud and cloud shadow is far more than
other methods.

Table 5. The comparison results of the SPARCS dataset’s various network evaluation indices. “+” is
used to indicate the pre-trained network (bold indicates the highest outcome)).

Methods PA(%) MPA(%) F1(%) FWIoU(%) MIoU(%)

SGBNet 89.50 82.15 78.89 81.92 73.42
DenseAspp 90.22 81.42 80.74 83.61 74.69
BiseNetv2 90.44 83.98 80.64 83.30 75.49
ENet 91.36 86.22 81.87 84.74 77.46
DeepLabv3plus 91.30 86.09 82.39 84.56 77.75
Swin_Transformer 91.63 87.23 82.07 85.00 77.79
PSPNet 91.67 85.90 82.93 85.21 77.96
PADANet 91.57 85.55 82.95 85.15 78.02
PVT 92.02 88.02 83.76 85.74 79.65
CloudNet 92.42 86.90 84.43 86.41 79.67
LCDNet 92.29 88.18 83.94 86.14 79.86

FCN8s 92.33 87.48 84.31 86.32 79.95
SP_CSANet 92.74 87.27 84.67 86.98 80.10
UNet 92.59 88.04 84.77 86.73 80.51
MSFANet 92.84 88.94 85.62 87.07 81.66

PSPNet + 91.91 86.06 83.50 85.58 78.48
FCN8s + 92.50 87.58 84.59 86.63 80.29
MSFANet + 93.17 89.35 86.07 87.57 82.18
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Figure 14 displays the SPARCS dataset’s segmentation results using several ap-
proaches. The images displayed contain rich categories, including scattered small clouds,
cloud shadow, ice and snow, rivers, and large clouds. Since the background is complicated
and contains many categories, identifying small targets and predicting the complex bound-
ary details of detected targets are great challenges. For example, in the renderings shown
in the first, second, and fourth rows, we can find that when segmenting the boundary of
clouds, rivers, cloud shade, and snow, compared with other networks such as PSPNet and
Swin_Transformer, our network can predict the shape boundary details of the detected
target to the greatest extent and has the best performance. The third line and the fifth line
show the effect diagram. Through comparison, we find that our network has the best effect
when predicting scattered small detection targets, which can achieve accurate positioning
and retain the shape boundary details of small size detection targets to a large extent. With
the extraction of muilti-scale context information, PSPNet enhances its ability to capture
small scattered detection targets. In other comparison networks, PSPNet has the least
missed detection errors when predicting small detection targets, but it predicts the shape
and boundary details of the detection targets. Roughly speaking, the accuracy is lower
than our network. Other comparison networks largely have more missed detection and
false detection when predicting small detection targets with scattered distribution, and the
shape prediction of small detection targets is very rough. The aforementioned comparison
findings demonstrate that our network also has benefits and provides the best results for
jobs involving multi-classification multi-spectral remote sensing picture segmentation.

(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)(a) (b) (c) (d) (e) (f) (g) (h)

Figure 14. Segmentation impacts of various networks on the SPARCS dataset are compared. (a) Test
images; (b) labels; (c) MSFANet; (d) PSPNet; (e) Swin_Transformer; (f) DeepLabV3plus; and (g) ENet;
(h) BiseNetV2.

4. Discussion

In this part, we compare PSPNet, ENet, BiSeNetV2, DeepLabV3plus, and
Swin_Transformer with our network. PSPNet can better understand the global and local
relationships in the image by using the pyramid pooling module to capture context infor-
mation at different scales. This is very important for cloud and cloud shadow semantic
segmentation because the shape and size of the cloud can vary greatly in the image, but
PSPNet is rough in the segmentation of the target boundary, which needs post-processing
to solve, especially in the case of fuzzy boundaries. Our DMPA module further extracts
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multi-scale contextual semantic information to help the model better distinguish clouds
and cloud shadows, distinguish subtle edges and textures from the background, and refine
the segmentation of the irregular junction of clouds and cloud shadows. And our network
requires less computing time than PSPNet, which has better performance than PSPNet.
The design of ENet aims to keep the model lightweight and reduce the computational
and memory requirements. However, some performance is sacrificed on the segmenta-
tion accuracy details. Missing detection and false detection may occur when predicting
small detection targets, and the segmentation boundary details are not clear enough. Our
network almost achieves zero error detection and zero leakage detection when detecting
scattered small detection targets, and the BDFP module improves the modeling ability of
the network to detect the boundary, detail, and spatial structure of the target and helps
the network to refine the boundary segmentation details of the cloud and cloud shadow
and improve the segmentation accuracy. BiSeNetV2 uses the bilateral guided aggregation
layer to extract and fuse details and semantic information, which can effectively capture
the context information of different scales and help to better understand the scene of cloud
and cloud shadow. However, BiSeNetV2 still has high computational complexity to a
certain extent, which requires more computing resources and time to train and reason.
Our network designs a cross-layer self-attention feature fusion module (CSFF) to fuse
shallow detail information and deep semantic information, fully extract features, improve
the anti-interference ability of the network, improve the attention to thin clouds, reduce the
probability of missed detection and false detection, and further realize accurate prediction
and segmentation of clouds and cloud shadows. And our network has advantages in
computing time. DeepLabV3plus uses an ASPP module composed of atrous convolutions
with different atrous rates to capture context information of different receptive fields. This
helps the model to better understand the scene of clouds and cloud shadows, especially
for large-scale cloud semantic segmentation tasks, but DeepLabV3plus is usually a rela-
tively large model that requires more computing resources and memory. This may pose
challenges in a resource-constrained environment. Our network also has an advantage
over DeepLabV3plus in computing time. Swin_Transformer proposes shifted windows; the
shifted windowing scheme brings greater efficiency by limiting self-attention computation
to non-overlapping local windows while also allowing for cross-window connection. How-
ever, through our experiments, it is proved that Swin_Transformer has a poor detection
effect on the detection target when there is interference in the original image, and there
are problems such as false detection and rough edge detection. Our network uses the
cross-layer self-attention feature fusion module (CSFF) to guide the fusion of deep semantic
information and shallow detail information. The graph of deep features can provide seman-
tic information for the graph of shallow features. The graph of shallow features will make
up for the lack of detail information in the graph of deep features, which improves the
anti-interference ability of the network, and our network is superior to Swin_Transformer
in calculation time. In summary, compared with these existing networks, my proposed
MSFANet has better prediction accuracy and computational efficiency and is in a leading
position compared with other similar studies.

Artificial intelligence is playing an increasingly important role in remote sensing. The
application of artificial intelligence, especially machine learning algorithms, from initial
image processing to high-level data is facilitating understanding and knowledge discovery.
Artificial intelligence technology has become a powerful strategy for analyzing remote
sensing data and has made significant breakthroughs in all remote sensing fields [36]. The
application of artificial intelligence technology in the design of image processing system
will promote the automation of image analysis process. Remote sensing applications such as
intelligent spaceborne processing, advanced database queries, and the automatic analysis
of multispectral images demonstrate the potential of the successful implementation of
artificial intelligence technology [37].
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5. Conclusions

In this paper, we propose a multi-scale strip feature attention network to achieve end-
to-end cloud and cloud shadow detection in high-resolution images of visible spectrum.
This method uses ResNet18 as the backbone to mine different levels of semantic information.
Then, the deep-layer multi-scale pooling attention module (DMPA) is used to further extract
the multi-scale context semantic information, deep channel feature information, and deep
spatial feature information. Strip maximum pooling can emphasize salient features and
ignore secondary information, strip average pooling can smooth features and retain detailed
information, and the combination of the two can give full play to their advantages and
improve their segmentation effect. At the same time, a boundary detail feature perception
module (BDFP) is proposed between the encoder branch and the decoder branch to play the
role of skipconnection. The features of the shallow and deep feature maps adjacent to the
backbone network are guided and fused with each other and input into the decoder branch,
which is fused with the high-level features of the decoder. The BDFP module extracts the
spatial dimension information of the feature map output from the adjacent two layers of
the backbone network; guides the network to focus on the features of different positions in
the image; improves the modeling ability of the model to detect the boundary, details, and
spatial structure of the target; and helps the network refine the boundary segmentation
details of clouds and cloud shadows to improve the segmentation accuracy. Finally, in the
decoding stage, a cross-layer self-attention feature fusion module (CSFF) is proposed, which
fuses shallow detail information and deep semantic information for feature extraction while
performing pixel restoration on the image. The CSFF module mainly uses the self-attention
mechanism to establish spatial location information that covers all of the pixels of the feature
map, providing a larger receptive field for our network. The experimental results show
that compared with other networks, our network significantly improves the accuracy of the
network, can cope with various complex scenes, and has strong resistance to interference
in the image. Our network obtains 93.70% MIoU on the cloud and cloud shadow datasets
when backbone does not turn on pre-training, 90.85% MIoU on the HRC_WHU dataset,
and 81.66% MIoU on the SPARCS dataset. When backbone turns on pre-training, it obtains
94.65% MIoU on the cloud and cloud shadow datasets, 91.55% MIoU on the HRC_WHU
dataset, and 82.18% MIoU the on SPARCS dataset. The data show that our network has
good practical application prospects. Although our method has the highest detection
accuracy, there is still much room regarding the optimization of our model parameters. Our
future research work will focus on reducing the parameters of the model while ensuring
the accuracy of the model and minimizing the weight of the model.
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