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Abstract: The air temperature changes in the Palu MW7.5 earthquake in Indonesia on 28 September
2018 were analyzed, based on the additive tectonic stress caused by celestial tidal-generating forces
(ATSCTF) and air temperature data from the National Center for Environmental Prediction (NCEP).
This paper explored the variation characteristics of three-dimensional stratified of air temperature
caused by seismic activity and the coupling relationship between air temperature changes and the
tidal force. The background information for air temperature calculation was obtained from the
tidal force changes, and the air temperature increment method was used to study the temperature
evolution process of different periods in the study area. The results found that the tidal force acting
on the critical state earthquake faults may be an important external factor inducing earthquakes, and
there was indeed a significant air temperature increase anomaly during the Palu MW7.5 earthquake.
The paper also summarized the abnormal characteristics of air temperature caused by seismic activity:
the air temperature closer to the land’s surface has greater anomaly amplitude and a wider anomaly
area than that of the upper air.

Keywords: celestial tidal force; air temperature; Indonesia; earthquake; anomaly area

1. Introduction

The relationship between thermal anomaly distribution on the land’s surface and
the seismicity was explored from multiple physical parameters (Long wave radiation,
Brightness temperature, and Microwave) and multiple satellite data sources (TIR, NOAA,
FY, MODIS, and MR) [1–11]. In addition to these physical parameters, good research results
have been achieved on the relationship between land surface temperature (LST), atmo-
spheric temperature, and earthquakes. Among them, research on the relationship between
land surface temperature and earthquakes has been carried out earlier in China, such as
the 1969 Bohai earthquake, the 1975 Haicheng earthquake, the 1976 Tangshan earthquake,
the 1990 Qinghai Gonghe earthquake, and the 2008 Wenchuan earthquake [12–15], and
found that there was indeed a significant warming of land surface temperature before these
major earthquakes. In recent years, a series of wireless geothermal telemetry networks have
been established near the Xianshuihe fault zone. The 2013 Lushan strong earthquake has a
good correspondence with the geothermal changes in surrounding stations [16], which the
high-frequency components of the LST of three bedrock LST observation networks near
the Xianshuihe fault zone changed synchronously 80 days before the Lushan earthquake.
Scholars used MODIS (Moderate Resolution Imaging Spectroradiometer) satellite remote
sensing data to calculate the land surface temperature change before the Algiers earthquake
in Algeria on 21 May 2003, and the calculation results were analyzed in combination with
the data of three neighboring Algerian national meteorological stations. The result showed
that there were indeed anomalies of temperature before the earthquake and the reliability
of the RST (Robust Satellite Technique) algorithm [17–19] as an anomaly extraction and
recognition technique [20]. In the study of the relationship between air temperature and
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earthquakes, Pulinets revealed the specific repetitive patterns of humidity and air tempera-
ture changes before strong earthquakes by analyzing meteorological data of several strong
earthquakes around the world [21]. In addition, through the calculation of air temperature
data from National Center for Environmental Prediction (NCEP) [22,23], the results showed
that earthquakes may be the source of air temperature changes rather than a simple weather
change [24,25]. And, the descriptive statistic of air temperature showed significant changes
prior to earthquakes [26,27]. Recently, some Machine Learning techniques were used
for detecting earthquake anomalies to support the Lithosphere–Atmosphere-Ionosphere
(LAIC) mechanism [28,29].

There are many reasons for thermal anomalies, but the essence of thermal anomalies
is mainly due to the LAIC mechanism [30–32]. There are many important parameters
related to thermal in LAIC that can indicate that the lithosphere is the initial reason of the
LAIC process. Similar to before earthquakes, rock pressure mainly triggers a temperature
increase on the land’s surface, then thermal infrared waves are emitted due to the stress
accumulation arising from this rock pressure [33]. In addition, some gases are also released
during the compression movement of the lithosphere. The radon released is an important
source of ionization in the surface area. The new ions condense with water molecules to
form the ion hydration process, which enhances ion clusters and reduces relative humidity.
This process leads to an increase in air temperature and changes in air conductivity while
also changing ionospheric potential and resulting in vertical thermal convection.

At present, some ionospheric, Surface Latent Heat Flux (SLHF), Longwave Radiation
(OLR), and other anomalies have been detected before earthquakes [34–39]. The perturba-
tions in ionosphere do exist, especially related to earthquakes when M ≥ 5, and generally
appear several days or a few hours before the earthquake [40–46]. The spatiotemporal
variations in SLHF of the earthquakes in Kathmandu, Nepal, Kumamoto, and Japan were
studied, and significant enhancements of SLHF anomalies occurred near the epicenters
before the earthquakes [33]. A significant amount of terminator time shifts were observed
during the earthquake in Nepal in 2015, and, furthermore, the electron density decreased
before the earthquake [47]. In addition, data recorded from Global Navigation Satellite
System (GNSS) receivers have been used to observe ionospheric total electron content (TEC)
disturbances triggered by seismic waves [48–52]. The TEC derived from records of five
ground-based GNSS receivers was employed to detect tsunami travelling ionospheric dis-
turbances [30]. The TEC research of the 2018 Palu earthquake also confirmed the scaling law
with the relationship between normalized TEC and earthquake moment magnitude [53].

Previous studies on air temperature changes before and after earthquakes have mostly
focused on the onshore earthquakes, whereas this study conducted an analysis of an
earthquake in a sea area based on a change in celestial tidal force. In addition, although tidal
force is relatively small compared to tectonic stress, which is not sufficient to cause a rupture
of the oceanic crust, this mechanical difference may lead to differences in the effectiveness
of tectonic movement. Especially, it may trigger and induce an earthquake when tectonic
stress reaches a critical state. This is a worthwhile research direction. Numerous studies
concluded that there was a correlation between earthquake events and tides [54,55]. The
results of the earthquake–tidal potential relation in the region of Palu, Indonesia, showed a
correlation between the earthquake and tidal force, and the aftershock sequence of 2018
Palu earthquake was highly correlated with tidal components [56]. In order to identify the
changes in air temperature before and after earthquakes more accurately, this article used
the ATSCTF model to calculate the Mw7.5 Palu earthquake in Indonesia on 28 September
2018. The period of celestial tidal force change was used as the time background for the air
temperature calculation, and the temperature change characteristics before and after the
Palu earthquake were analyzed using air temperature data at different heights from NCEP.
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2. Material and Methods
2.1. Earthquake and NCEP Data

On 28 September 2018 at 10:02 am (UTC), an Mw7.5 earthquake occurred in the
northern of Palu City in the western part of Sulawesi Island, one of the five major islands
in Indonesia. The epicenter was located at 0.26◦S, 119.85◦E, and the focal depth was 20 km
(http://earthquake.usgs.gov/earthquakes, accessed on 10 July 2023). The earthquake
occurred at the intersection of the Australian Plate, Sunda Plate, and Philippine Plate.
According to the report by the China News Agency on 11 October 2018, 2072 people died,
10,679 people were injured, and 680 people were missing in the Palu earthquake (China
Radio International. http://news.cri.cn/2018-10-11/e07f7bf2-99e1-91ca-1ff4-7674c43ac2
0d.html, accessed on 30 September 2023). The main cause of death was the huge tsunami
caused by the earthquake. From 1 September to 15 October, a total of 39 earthquakes with
Mw ≥ 5.0 occurred in the study area (Figure 1). Among them, 20 earthquakes occurred on
28 and 29 September, indicating that the underground tectonic activity was very strong at
that time.
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Figure 1. The MW ≥ 5.0 earthquakes from 1 September to 15 October in the study area.

The air temperature data were from NCEP in this paper, which were the reanalysis
data assimilated and synthesized from all observable data of land, ocean, and sky and were
a cooperative product of the National Center for Environmental Prediction (NCEP) and
the National Center for Atmospheric Research (NCAR) in the United States [22]. Various
observational data (from land surface, ships, sounding instruments, balloons, aircraft,
satellites, etc.) were assimilated and stored on 1◦ × 1◦ grid points in standard binary format
(GRIB), providing data four times a day. The advantages of NCEP data were spatiotemporal
continuity and standardization, and air temperature data at different altitudes could analyze
the spatiotemporal evolution of temperature before and after earthquakes more accurately.
In this study, we chose the NCEP data from 1 September to 16 October 2018, and the study
area was selected as 105◦E–125◦E, 10◦S–10◦N.

2.2. The Tidal Force and Air Temperature Calculation

The change in tidal force was a continuous process with evident periodicity, usu-
ally a wave crest and a wave trough formed a cycle. This periodic change could also
reflect the influence of tidal force on tectonics: enhancement–attenuation–enhancement–
attenuation. The earliest discovery was that there was a certain correlation between lunar
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earthquakes and Earth’s position [57], and then studies were conducted on the relationship
between tides and earthquakes. The relationship between the change rate in tidal stress
and the tectonic stress was studied by Heaton [58], and there was a possibility of triggering
earthquakes by adding the tidal force when tectonic stress was in a critical state from a
mechanical perspective. Many large earthquakes have significant correlations with the
times and orientations of daily/semi-daily tidal stresses, whereas the lunar for nightly term
is associated with the ocean tides along the southern Californian coast [54]. Furthermore,
earthquakes also have a certain clustering and regionality at a certain phase of the tide [59].
In all, large earthquakes are more likely to be triggered than small ones [60,61]. Through
our experimental studies on a large number of earthquakes, the tidal forces of celestial bod-
ies have relatively good triggering effects on earthquakes with magnitudes of 7 or above.
According to the Kelvin calculation method, daily and monthly tidal forces were calculated,
and the variations in tidal forces of the Palu earthquake in Indonesia from 1 September to
23 October were calculated by the focal mechanism solution (provided by the USGS in the
United States) (Figure 2) [62]. In addition, according to the focal mechanism solution from
the GCMT (Global Centroid Moment Tensors), it is known that the Palu earthquake was
mainly characterized by strike slip rupture [63].
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The tidal force generated by any celestial body at any point P inside the Earth was
Wi(P) [64]:

Wi(P) = k
M
rm
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n=2
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r

rm

)n
Pn(cos Zm), (1)

k is the constant of universal gravitation; M is the mass of the sun or moon; rm
represents the distance between the centroid of a star and the center of the earth; r represents
the radial vector of the position of point P within the Earth’s interior; Pn(cos Zm) was the
Legendre polynomial of (cos Zm); and Zm represents the zenith distance of a star.

In order to study the air temperature changes in the Mw7.5 earthquake in Indonesia
on 28 September 2018, the study area was selected as 105◦E–125◦E, 10◦S–10◦N. The method
of temperature calculation, which subtracted the background value to obtain the air tem-
perature results on the specific data, was used to obtain the numerical field distribution of
grid points in the radiation enhancement area. This process could reduce the “anomaly” of
static temperature caused by the difference of terrain and ground object emissivity.

∆Ti(x, y) = Ti(x, y)− Tb(x, y), (2)

In Formula (2), ∆Ti(x, y) represents the air temperature increment of each grid point;
Ti(x, y) represents the air temperature value of each grid point; Tb(x, y) was the background
value of air temperature; x represents latitude; y represents longitude; and i represents the
grid coordinate.
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3. Results and Analysis

The celestial tidal force that triggers earthquakes is mainly the gravitational pull of
the sun and moon tides. Not only the gravity of the moon but also the gravity of the
sun, so it is not possible to classify the period of tidal force solely based on lunar phases
of the moon. According to previous studies, the starting stage of each period was the
previous turning point of the seismic stage, and the phase of the tidal force was related
to the type of earthquake generally. The normal fault and strike-slip type earthquake
mostly occurred near the peak of the tidal force position. Usually, the first low-value phase
moment before them was selected as the background moment, and then the moment was
subtracted daily [65–67]. The Palu earthquake was a strike-slip earthquake with a normal
fault. So, we selected the low points of tidal force as the beginning of the periods.

The celestial tidal force underwent three consecutive periods of changes from trough to
peak to trough (A, B, and C) since 1 September 2018; Period A represented 7–19 September,
Period B represented 20 September–3 October, and Period C represented 4–18 October. In
the results of the tidal force, the Palu earthquake (as shown by the arrow in Figure 2) did
not occur in Period A but in the peak stage of the tidal force in Period B, indicating that the
accelerate action of the additive tectonic stress may successively promote the fault sliding,
and the instantaneous change in the additive tectonic stress did not trigger violent shock at
once but when the tectonic stress reached its critical broken point [68]. However, it was
not that the additional tectonic stress in Period A had no effect on the earthquake, but
rather had also played a cumulative role. In all, the tidal force might be one of the effects to
trigger the earthquake, and it could provide background information for air temperature
change research.

The Palu earthquake occurred during Period B, taking the air temperature data of
20 September (the low turning point of the tidal force in the figure) as the background of
Period B. As celestial tidal force is the largest known periodic force acting on the Earth,
it was considered possible to trigger an earthquake when the tectonic stress generated
by the earthquake reached the critical stage [24,69]. In addition, Period A and Period C,
respectively, selected 7 September and 4 October, which were adjacent to the trough as the
background. The air temperature values at the same time each day were subtracted from
the background air temperature values to obtain continuous daily changes.

Figure 3 shows the temperature changes during different periods at different heights
from 975 hPa (near the land surface) to 875 hPa (high altitude) in the study area. The Palu
earthquake occurred on 28 September in Period B, and the high temperature anomaly began
to appear in the southwest of Kalimantan Island on 21 September. On 22 September, the
anomaly gradually migrated towards the southeast of Kalimantan Island, with the highest
temperature anomaly near the land surface and the smaller the intensity of the temperature
anomaly in a higher altitude. This was the thermal anomaly caused by underground
tectonic activity. The high temperature anomaly on 26 September was very evidently in the
southeast of the island, and the earthquake occurred on 28 September; then, the anomaly
almost disappeared on 3 October. An earthquake is a sudden change from deformation
to rupture of the crustal media, which is nonlinear and has been confirmed in physical
monitoring of deformation and rupture of the media, such as GPS observations [70], Load
Unload Response Ratio (LURR) [71], and Remote Sensing Rock Mechanics [72] experiments.
Especially, the “intermittent criticality” of the medium at the critical point of rupture [73]
and other results indicate that earthquakes are still a nonlinear process in nature. Therefore,
after a significant high temperature anomaly appeared on 22 September in Period B, it
weakened and became apparent again on 26 September, which may be related to the
“nonlinear” deformation and fracture process of the underground medium. However, the
air temperature anomaly in Period B remained consistent with the tidal force changes.
The anomaly on the 22 September was in the southwest of the island, then the anomaly
gradually migrated towards the southeast of the island, which was closer to the epicenter.
The addition of tidal force and tectonic stress triggered or induced tectonic activity, which
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may lead to an increase emission of greenhouse gases (CO2, CH4, etc.) [74], resulting in air
temperature increases.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 3. Cont.



Remote Sens. 2023, 15, 4852 7 of 15Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. Cont.



Remote Sens. 2023, 15, 4852 8 of 15Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 3. Air temperature changes in the Periods of A, B, and C. (a) Period A; (b) Period B; (c) Period 

C. 

The relatively evident air temperature anomalies appeared on 16 September in Period 

A; at the same time, there were air temperature anomalies both on 12 and 15 October in 

Period C. However, the air temperature anomalies on September 16 showed that the 

Figure 3. Air temperature changes in the Periods of A, B, and C. (a) Period A; (b) Period B; (c) Period C.

The relatively evident air temperature anomalies appeared on 16 September in Period
A; at the same time, there were air temperature anomalies both on 12 and 15 October
in Period C. However, the air temperature anomalies on September 16 showed that the
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increase intensity near land surface temperature was weaker than the upper air temperature,
whereas the air temperature anomalies on 12 and 15 October just only appeared in the
upper layer, with no anomalies near the land surface. So, they were not air temperature
increase anomalies caused by underground tectonic activities and had little relationship
with seismicity.

4. Discussion

The air temperature is indeed easily affected by the weather conditions of cloud coverage,
etc. Due to Indonesia being located in the equatorial region, the study region was covered with
thick clouds for years (National Meteorological Satellite Center, http://www.nsmc.org.cn,
accessed on 15 July 2023), so it is not practical to remove the clouds alone. Furthermore,
although there were many clouds over the study area accompanied by rapid flow, the
results of our research still showed that the anomaly areas of air temperature were relatively
fixed and concentrated in the Sunda Continental, with a high surface heat flux, which was
caused by radioactive granite and its erosion [75].

However, this study conducted a stratified study of the air temperature in the study
area and found that air temperature anomalies related to earthquakes had the following
characteristics: The air temperature closer to the land’s surface had a greater anomaly
amplitude and a wider anomaly range. As the altitude increases, the air temperature
gradually decreases, and the range of anomalies gradually reduces until it disappears. The
anomalies in our research results belong to this type. If the surface temperature anomaly is
weaker than the upper air temperature, or only the upper air temperature anomaly appears,
it may be caused by weather conditions and not as an anomaly caused by seismic activity.

Indonesia does not have spring, summer, fall, or winter, but only the rainy and
dry seasons. The main variable of climate is rainfall, with a lot of precipitation every
month. Figure 4 shows the monthly precipitation of Palu in Indonesia from January 1961
to December 2018 [76,77]. It can be seen that the smoothing data of precipitation in Palu
region has been fluctuating near the average value since 2001, indicating that there have
been no extreme weather events in the region.
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Solar geomagnetism also can influence the air temperature especially in the equatorial
region. In order to eliminate the effects of solar geomagnetism during the observation, the
solar geomagnetic Kp index during the observation period was studied. Figure 5 shows
the variation in Kp index from 23–30 September 2018, which is also the period with most
significant atmospheric temperature anomalies. The value of Kp index was always less
than 5, which can be treated as geomagnetically quiet [34].
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23–30 September is the period of significant concentration and enhancement of air tem-
perature, with all Kp values below 3. The Kp values slightly exceed 3 only on 23–29 September.
So, this area was relatively less contaminated by solar geomagnetism.

Figure 6 shows the variation in Kp index of 7 September, 20 September and 4 October
2018, which are the background dates for tidal calculation. Meanwhile, there were no
earthquakes in those days, so the background dates chosen by this research were all
during the non-seismic and geomagnetic quiet period. In all, the background data and the
observation data of the Palu earthquake used in this paper were in a quiet period.



Remote Sens. 2023, 15, 4852 11 of 15Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 6. Variation in solar geomagnetic Kp index of 7 September, 20 September and 4 October 2018, 
which are the background dates for tidal calculation. 

This study mainly applied air temperature data of NCEP combined with background 
information of celestial tidal forces to study the stratification of air temperature near the 
Palu earthquake. In Ghamry’s work [78], they jointly analyzed magnetic, MODIS, and 
MERRA-2 data in space and time around the epicenter before the Palu, Indonesia, earth-
quake. Precursory anomalies were observed using these methods, including the magnetic 
variation detected on 2 August 2018 at Swarm A. Due to the detection of electromagnetic 
anomalies on 2 August, the average temperature of MODIS on 2 August and the surface 
atmospheric temperature changes in NERRA-2 were studied. The results showed that 
both had significant warming anomalies in the southwest of the epicenter on 2 August. At 
the same time, the article also displayed the MODIS average temperature distribution on 
26 and 27 September before the earthquake, and the results showed that there was indeed 
an abnormal phenomenon of significant warming in the study area, which was consistent 
with the air temperature anomaly near the moment of earthquake occurrence in this 
study. The more evident anomaly appeared on 24 September, and the maximum ampli-
tude of the anomaly occurred on 26 September. 

From the results of the study, the main area of the high-temperature anomaly on the 
26 September was between 113°E–118°E, and the nearest distance from the epicenter to 
this anomalous area was approximately 205 km. Assuming that the zone of effective man-
ifestation of the precursor deformations is a circle with the center in the epicenter of the 
preparing earthquake, the impact of a specific earthquake can be identified in this area, 
which is called the Earthquake Preparedness Zone (EPZ) [79]. The anomaly region of this 
study was inside the Dobovolsky’s area. 

5. Conclusions 
This paper proved that there was indeed abnormal of air temperature increase before 

and after the Palu earthquake in Indonesia. Some conclusions as follows: 
The additional structural stress of the celestial tidal force acting on the critical seismic 

fault zone may be an important external factor inducing earthquakes. Although this earth-
quake occurred during the period when the additional structural stress of the celestial 
tidal force reached its peak, it did not occur every time when the tidal force reached its 
maximum. The earthquake occurred during the peak period, indicating that the effect of 
the additional structural stress of the celestial tidal force on the faults was of a pressurized 
type. Increasing the normal pressure and shear stress on the fault plane, the stress of the 
fault was enhanced and reached the strength condition of fracture sliding, and then the 
earthquake occurred.  

According to the changes in the celestial tidal force, the Indonesian earthquake oc-
curred during Period B of the three periods. The air temperatures during these three pe-
riods were calculated separately, and the results showed that there were occasional high 
air temperature anomalies in Periods A and C. However, the high air temperature anom-
alies only appeared in the upper atmosphere, or the warming intensity in the upper at-
mosphere was greater than the land surface. The warming anomaly that appeared in Pe-
riod B was relatively significant, and the warming anomaly conformed to the law that the 
warming intensity of the land surface atmosphere was the highest. As the height in-
creased, the warming intensity gradually weakened. As the thermal anomaly of the 

Figure 6. Variation in solar geomagnetic Kp index of 7 September, 20 September and 4 October 2018,
which are the background dates for tidal calculation.

This study mainly applied air temperature data of NCEP combined with background
information of celestial tidal forces to study the stratification of air temperature near the
Palu earthquake. In Ghamry’s work [78], they jointly analyzed magnetic, MODIS, and
MERRA-2 data in space and time around the epicenter before the Palu, Indonesia, earth-
quake. Precursory anomalies were observed using these methods, including the magnetic
variation detected on 2 August 2018 at Swarm A. Due to the detection of electromagnetic
anomalies on 2 August, the average temperature of MODIS on 2 August and the surface
atmospheric temperature changes in NERRA-2 were studied. The results showed that
both had significant warming anomalies in the southwest of the epicenter on 2 August. At
the same time, the article also displayed the MODIS average temperature distribution on
26 and 27 September before the earthquake, and the results showed that there was indeed
an abnormal phenomenon of significant warming in the study area, which was consistent
with the air temperature anomaly near the moment of earthquake occurrence in this study.
The more evident anomaly appeared on 24 September, and the maximum amplitude of the
anomaly occurred on 26 September.

From the results of the study, the main area of the high-temperature anomaly on
the 26 September was between 113◦E–118◦E, and the nearest distance from the epicenter
to this anomalous area was approximately 205 km. Assuming that the zone of effective
manifestation of the precursor deformations is a circle with the center in the epicenter of
the preparing earthquake, the impact of a specific earthquake can be identified in this area,
which is called the Earthquake Preparedness Zone (EPZ) [79]. The anomaly region of this
study was inside the Dobovolsky’s area.

5. Conclusions

This paper proved that there was indeed abnormal of air temperature increase before
and after the Palu earthquake in Indonesia. Some conclusions as follows:

The additional structural stress of the celestial tidal force acting on the critical seismic
fault zone may be an important external factor inducing earthquakes. Although this
earthquake occurred during the period when the additional structural stress of the celestial
tidal force reached its peak, it did not occur every time when the tidal force reached its
maximum. The earthquake occurred during the peak period, indicating that the effect of
the additional structural stress of the celestial tidal force on the faults was of a pressurized
type. Increasing the normal pressure and shear stress on the fault plane, the stress of the
fault was enhanced and reached the strength condition of fracture sliding, and then the
earthquake occurred.

According to the changes in the celestial tidal force, the Indonesian earthquake oc-
curred during Period B of the three periods. The air temperatures during these three
periods were calculated separately, and the results showed that there were occasional
high air temperature anomalies in Periods A and C. However, the high air temperature
anomalies only appeared in the upper atmosphere, or the warming intensity in the upper
atmosphere was greater than the land surface. The warming anomaly that appeared in
Period B was relatively significant, and the warming anomaly conformed to the law that
the warming intensity of the land surface atmosphere was the highest. As the height
increased, the warming intensity gradually weakened. As the thermal anomaly of the
seismic activity caused by tectonic movement mainly came from the interiors of the faults,
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as the atmospheric movement rose, the spatial distribution of the air warming showed a
close correlation with the local structure or underground structure. In terms of motion
characteristics, it showed a process of weakening from bottom to top and disappeared at a
certain height, which was significantly different from the temperature warming formed by
atmospheric advection at high altitude and no significant warming in low altitude.

The air temperature warming anomaly area of the Indonesia earthquake was mainly
distributed in Kalimantan Island. The initial warming anomaly appeared in the south-
west of Kalimantan Island. Afterwards, the anomaly area gradually spread and migrated
towards the southeast of Kalimantan Island near the epicenter of the earthquake. The signif-
icant anomaly area of latent heat flux of the 2004 Indonesian magnitude 9.0 earthquake was
not appeared in the epicenter area either but in the central part of the Myanmar small plate,
which was also related to local geological conditions and structural deformation [80]. It has
been mentioned that the important force sources of Geodynamics may include the twisting
upwelling of soft matter of heat flow in the deep earth [81], and there is a high surface heat
flux in the Sunda Continental, which was caused by radioactive granite and its erosion [75]
and was easier to show the temperature increase anomaly when the underground tectonic
activity was intense. Therefore, the migration of the high temperature anomaly from the
southwest to the southeast of the island may be the result of the combination of the celestial
tide force and the soft matter surge of the heat flow in the deep earth.
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