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Abstract: With the rapid development of modern military countermeasure technology, deep dis-
tinguish hostile radar is essential in electronic warfare. However, traditional radio frequency (RF)
feature extraction methods can easily be interfered by signal information and fail due to the lack of
research on RF feature extraction techniques for complex situations. Therefore, in this paper, first,
the generation mechanism of RF structure information is discussed, and the influence of different
signal information introduced by different operating parameters on RF structure feature extraction
is analyzed. Then, an autoencoder (AE) network and an autoencoder metric (AEM) network are
designed, introducing metric learning ideas, so that the extracted deep RF structure features have
good stability and divisibility. Finally, radar emitter structure (RES) inversion is realized using the
centroid-matching method. The experimental results demonstrate that this method exhibits good
inversion performance under variable operating parameters (modulation type, frequency, bandwidth,
input power). RES inversion including unknown operating parameters is realized for the first time,
and it is shown that metric learning has the advantage of separability of RF feature extraction, which
can provide an idea in emitter and RF feature extraction.

Keywords: radar emitter structure; autoencoder; metric learning; deep learning; radio frequency

1. Introduction

A radar emitter is the core component of a radar system. It produces a radio frequency
(RF) signal with sufficient power and transmits it through an antenna. To avoid being
intercepted by electronic reconnaissance equipment, hostile radar emitter structures (RES)
have become increasingly diverse. In this paper, the RES can contain many different radar
emitter individuals (REI), and they are considered as a class of structures. Thus, in com-
plex electronic reconnaissance situations, the hostile radar cannot be deeply recognized,
through only the radar modulation type identification [1,2] and REI identification [3–11].
Therefore, this paper studies methods for inverting RES from RF signals emitted by radar
emitters to provide more information at a new level on electronic reconnaissance systems.
There are essential differences between REI identification and RES inversion. REI identifi-
cation is the identification of differences between individuals in different radar emitters,
while RES inversion focuses on the differences in radar emitter structures. Thus, REI
identification and RES inversion are studies of radar emitters at different levels, and they
have essential differences. At this moment, we are only interested in RES and not REI.
Simultaneously, if the same class of RES contains different REIs, it will introduce certain
challenges to RES inversion.

The non-ideal characteristics generated by each REI as “RF individual information”
and the overall non-ideal characteristics generated by each class of RES are called “RF
structure information” in this paper. In addition, each class of RES has unique inherent
characteristics. Different classes of RES have different physical mechanisms and different RF
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structure information. At the same time, the radar-emitted RF signal will carry these unique
RF structure features; therefore, RES inversion can be achieved using RF structure features.

Meanwhile, with the emergence of multifunctional radars, radar-emitted RF signals
are becoming increasingly complex. Signals with different modulation types and operating
parameters are used when performing different tasks. Therefore, different operating
parameters can cause signal differences between RF signals, which are called “signal
information” in this paper. Therefore, RF signals are mainly influenced by two factors:
signal information and RF information. The complex situation is that the parameters’
change randomly introduces great challenges to the electronic reconnaissance system.

The performance of RES inversion depends on the stability and separability of ex-
tracted features. At present, feature extraction methods are mainly divided into the
time domain [12], frequency domain [13], time–frequency domain [14], and transform
domain [15–21]. The shortcoming of these methods is their reliance on professional knowl-
edge and experience for manual feature extraction and design. In recent years, deep
learning technology [22,23] has been widely used in various fields, including speech [24]
and image [25] processing. It has also been widely used in radar emitter identifica-
tion fields [26–31], integrating artificial intelligence technology with radar identification.
Specially in the study of REI identification [26,29,32], in general, various neural networks
can effectively carry out corresponding tasks under the condition of having good training
data and corresponding labels (i.e., closed-set problem). Meanwhile, as an unsupervised
network, the autoencoder (AE) [33] has been proven to have excellent performance in
feature representation. Different improvements have been made for different situations,
such as sparse autoencoders (SAE) [34–36], stacked sparse autoencoders (sSAE) [37,38], de-
noising autoencoders (DAE) [39,40], and compression autoencoders (CAE) [41]. However,
unsupervised learning does not always produce the desired results in the case of unknown
operating parameters (i.e., open set problem). If labels are used to enhance the separability
of features, combining supervised and unsupervised training can improve the performance
of the neural network.

However, whether using traditional feature extraction methods or neural networks,
these methods mainly focus on the homo-mode operating parameters (constant operating
parameters), in which conditions are too ideal. What needs to be further discussed is
whether these methods have good generalization performance under the hetero-mode
operating parameters (variable operating parameters). Thus, the main problem of these
methods involves the extraction of the RF features of the RF signal directly. However,
these methods do not pay attention to the interference introduced by signal information.
Does the extracted RF feature contain a large amount of signal information?

Therefore, the problem to be solved in this paper is as follows: how can we reduce the
interference of signal information in complex situations so that the extracted RF structure
features have good stability and separability? Moreover, how can these RF structure
features be used to achieve RES inversion while retaining the RES inversion algorithm’s
good robustness and generalization performance under unknown operating parameters?
As far as we know, there are no relevant papers that have examined this issue. It is worth
noting that this complexity includes the complexity of RES modeling (we invert the twelve
radar emitters into three classes of structures) and the complexity of the variable operating
parameters (modulation type, frequency, bandwidth, and input power).

In summary, it is challenging to realize RES inversion in complex situations, and the
traditional method can easily fail due the to interference of signal information due to the lack
of influence of signal information under variable parameters on extraction of RF features.
In the field of radar signal recognition, the closed-set problem of signal modulation type
recognition refers to the recognition of known modulation type signals, while the open-set
problem refers to the recognition of unknown modulation type signals [42], and its open-set
problem is more challenging. Researchers have introduced metric learning into signal
modulation type recognition and demonstrated the advantages of triplet loss functions in
feature extraction [28]. This paper conducts an RES inversion study on closed-set (known
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operating parameters) and open-set (unknown operating parameters) problems using
hetero-mode operating parameters, which combines metric learning and deep learning
techniques to study how effectively to reduce the interference caused by signal information.
We attempt to find methods that can render the neural network more attentive toward
the common RF structure information of RF signals among these hetero-mode operating
parameters in the learning process; we also attempt to render the neural network insensitive
to changes in terms of operating parameters, and we provide good stability and separability
for extracted RF structure features, which is the key to RES inversion. Figure 1 shows
the overall flowchart of the method proposed. First, RF signals are obtained using RES
modeling. Then, the AEM network is constrained in the feature domain using the deep
signal features extracted from the AE network in the data domain, and the RF signal is
reconstructed as unsupervised to weaken the signal information in the feature domain
of the RF signal under hetero-mode operating parameters; RF structure information is
highlighted. Distinct from traditional algorithms, the RF structure features automatically
extracted via deep learning are called “deep RF structure features”, and the signal features
are called “deep signal features” in this paper.

Figure 1. Framework of the RES inversion method.

The main contributions of this paper are summarized as follows:

1. Stability: A dual neural network (AE and AEM network) is designed based on the
idea of unsupervised learning. The use of deep learning techniques to reduce the
interference caused by signal information is essential for extracting RF features that are
not sensitive to parameter variations. This idea is instructive for RF feature extraction
techniques under variable operating parameters.

2. Separability: Based on the idea of supervised learning, a metric scorer is designed
in the AEM network using the metric learning approach; using this, the network
shortens the distance of RF signals in the feature domain between the hetero-mode
operating parameters of the same class of RES during the learning process, while
widening the distance between RF signals in different classes of RES to improve the
separability of the deep RF structure features learned from RF signals.

3. Unsupervised and supervised joint optimization methods are designed to optimize
the objective function of AEM networks.

4. Different from the traditional REI method used with constant operating parame-
ters, the RES inversion method using variable operating parameters (modulation
type, frequency, bandwidth, and input power) is proposed for the first time, and
centroid-matching method is used for RES inversion from radar-transmitted RF sig-
nals in the test stage. Moreover, the proposed method maintains good generalization
performance under unknown operating parameters.

The remainder of this paper is organized as follows. Section 2 introduces the problem’s
definition. Section 3 presents and verifies RES modeling. Section 4 presents the proposed
RES inversion method. Section 5 details the experimental results and analysis of the
proposed method. Finally, the conclusions are drawn in Section 6.



Remote Sens. 2023, 15, 4844 4 of 25

2. Problem Definition

A radar emitter is the core component of a radar system. Radar emitters are typically
classified as pulse-modulated emitters and continuous wave emitters. Pulse-modulated
emitters are usually categorized into single-stage oscillating emitters and main vibration
amplification emitters. Most radars, particularly those that are highly stable and those
with high-performance tracking, telemetry, and control (TT&C), as well as phased array
radars, have adopted a main vibration amplification radar emitter. Recently, with the
rapid development of gallium arsenide (GaAs) and gallium nitride (GaN), studies on
all-solid-state radar emitters in the C-band and X-band have approached the practical stage.
All all-solid-state radar emitters are generally classified into two categories: a high-power
solid-state emitter with a centralized synthesis output structure and a distributed synthetic
phased radar emitter. Therefore, there is a variety of RES due to these different structure
design parameters.

Generally, the radar emitter source is mainly composed of a signal source and an RF
link module [43,44]. The signal source generates a source signal of the desired frequency.
The RF mixer and RF amplifier are the core modules of the RF link. The RF mixer is
responsible for moving the intermediate frequency signal spectrum to the RF area, and the
RF amplifier is responsible for amplifying the input RF signal. Due to the defects of the
underlying physical components, the signal source has phase truncation errors, which
makes RF signals appear as “burrs” (spurious information). RF modules, such as RF mixers
and RF amplifiers, have nonlinear distortion and phase noise, which will produce high
harmonics and intermodulation distortion. The phase noise level of the RF mixer can
introduce significant differences to the RF signal in both time and time–frequency domains.
The different third-order intercept points (IP3) of the RF amplifier will cause different
amplitudes in the RF signal.

Because different classes of RES are composed of different structure design parameters,
such as RES1 having only one stage of amplification while RES2 is designed for two-stage
amplification, there are structure differences between different classes of RES. At the same
time, under the same class of RES, different individuals have the same structure design
parameters and use the same components, but because there are subtle differences between
each component; this subtle difference is called “RF individual information” in this paper,
and it is also called an “RF fingerprint” [45]. This results in individual differences among
different individuals under the same RES. Therefore, there are essential differences between
REI identification and RES inversion in this paper.

As shown in Figure 2, red, yellow, and green represent three classes of RES, and num-
bers 1, 2, and 3 correspond to three different operating parameters, while the number 4
corresponds to unknown operating parameters. The RF structure information carried by
RF signals and transmitted by radar emitters with different structures is noticeably different
under ideal conditions. All types of neural networks can be used for classification and
recognition if using the homo-mode operating parameter—that is, 1, 2, and 3 are the same
operating parameters—and the training data and corresponding labels are good.

(a) (b)

Figure 2. Influence of changes in the operating parameters of RES inversion. (a) Influence of hetero-
mode operating parameters. (b) Influence of unknown operating parameter.
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With the emergence of multi-functional and phased array radars, operating param-
eters in relation to different tasks can be changed. For instance, multi-functional radars
support various modes, such as tracking and searching, single-target tracking, multi-target
tracking, and others. The performance of the neural network will be seriously affected
either by RES inversion or by REI identification under hetero-mode operating parameters.
Next, the influence of the change in operating parameters upon RES inversion is analyzed.

Question 1: Training data question: Although a large amount of training data can
be obtained under certain known operating parameters (e.g., the frequency is 25 MHz
and 26 MHz), it is not possible to collect all training data within all changing ranges of
operating parameters (e.g., the frequency is 27 MHz). Additionally, samples with different
operating parameters are often imbalanced (for example, there are more samples at 25 MHz
than at 26 MHz) due to the limitations of the working scene, parameter selection and data
collection conditions, and other factors. Therefore, a complete database cannot be easily
established using electronic reconnaissance systems.

Question 2: The influence of hetero-mode operating parameters: With the improve-
ment in the circuit integration process, the difference in nonlinear characteristics between
components is decreasing, but radar operating parameters are constantly changing, and the
difference gradually increases. As a result, if the same class of RES transmits RF signals
with different operating parameters, the signal information carried by the RES may cover
the RF structure information, or it may completely exceed the RF structure information.
If different classes of RES transmit RF signals with different operating parameters, the signal
information carried by the different classes of RES may exceed the RF structure information
that is carried. As a result, the neural network might pay more attention to each signal
information, which results in the performance of the neural network being significantly
affected by the change in operating parameters. When there are different REIs under
the same class of RES, difficulties in classification greatly increases under hetero-mode
operating parameters.

Question 3: The influence of unknown operating parameters: When receiving an
RF signal with unknown operating parameters transmitted by a known RES, the neural
network maps the training data domain to the feature domain completely according to
the known operating parameters and determines the classification boundary. When the
operating parameters of the received RF signal are not within the operating parameters
range of the training data, can this neural network be used to map the RF signal with
unknown operating parameters to the feature domain of known operating parameters?
Will the neural network make false judgments?

Question 4: The influence of noise: When noise levels are high in the real environment,
both the RF signal and structure information may be covered at the same time. It is
unknown whether noise will cause the neural network to be unable to extract meaningful
features, thereby making the performance of the neural network more sensitive to noise
and less robust.

Therefore, the problem to be solved in this paper is to extract the good stability and
separability of features that represent RF structure information under this hetero-mode
operating parameter; then, this feature is used to invert the RES and make the neural
network insensitive to changes in the operating parameters.

3. RES Modeling

The importance of RES modeling lies in the construction of a dataset that corresponds
to the actual situation and the generation of the required RF signal using the structure
feature level modeling method. This is a forward modeling process that provides a basis
for subsequent inversion methods. Having a high-quality dataset is the premise and basis
for training neural networks. However, due to the confidentiality of military systems,
it is very difficult to obtain RF signals under such hetero-mode operating parameters.
Therefore, simulation data [46,47] are mostly used to conduct experiments on electronic
reconnaissance systems. Hence, RES modeling is the premise of obtaining a simulation
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dataset, which is of great importance. Large amounts of data can be obtained via the
modeled RES.

The current methods for constructing simulation data are mainly classified into two
categories: single-device modeling and mathematical modeling. In single-device modeling,
power amplifiers are mostly studied [48–51], and behavioral modeling, like Saleh [49],
polynomial [50], and Volterra series [51] models, is usually used to simulate nonlinear
features and memory effect. In mathematical modeling, there are mainly two types of
models: a time-domain envelope model that can reflect the transient and steady-state
features of the radar emitter [52], and the phase noise model [53] with the frequency shift
mode [54] relative to frequency stability that can reflect the spectrum purity of the radar-
emitted signal. Their main shortcomings are that they can only reflect the features of a
certain module in the RES model but cannot fully reflect its overall features.

Therefore, to provide basic conditions for theoretical analyses and the practical veri-
fication of this study, this paper builds three classes of RES models by selecting different
structure design parameters and using a simulation platform with measured parameters
according to the working principle of radars. The S2P file is used for simulation, and
the S2P file can be approximately considered as the reflection of a field measurement
component in software. Therefore, the simulation data are closer to real data. In addition,
under the same RES model, four REI models are built by slightly adjusting the parameters
of each module. As a result, there are structural differences among the RES models of
different classes and individual differences among different REI models of the same class
when building RES in complex situations.

3.1. RES Model

As shown in Figure 3, a signal source model and three RF link models (PA1, PA2,
and PA3 models) are built. Three RES models (RES1, RES2, and RES3) of different classes
are developed by combining the signal source and RF link models. Each RES model
includes two parts, the signal source model and RF link model, which are introduced in
detail in the following sections.

Figure 3. Different RES models.

3.1.1. Signal Source Model

Considering that direct digital synthesizer (DDS) technology has become the main-
stream of signal sources in modern radar emitters, in the actual circuit, the DDS model
increases the number of phase accumulator bits in order to improve frequency resolutions.
In order to reduce the ROM’s storage capacity, the higher A bits of the N bits are selected
to address the amplitude information in the ROM, and the B = N − A bits are truncated,
which introduces a phase truncation error [55].

Therefore, the DDS model [55], widely used in the radar application field, was selected
as the signal source to generate continuous wave (CW), linear frequency modulation (LFM),
binary phase shift keying (BPSK), and quadrature phase shift keying (QPSK) signals using
spurious information from the four DDS models of different modulation types, which were
built according to the principle of phase truncation error: DDS_LFM model, DDS_BPSK
model, and DDS_QPSK model.
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DDS_CW model: According to the CW signal simulation principle, the frequency of
the DDS_CW signal generated by the DDS_CW model is as follows:

fCW = (KCW/2N) fc, (1)

where N represents the bits number of the phase accumulator, fc denotes the frequency of
the reference clock source, and KCW is the frequency control word.

DDS_ LFM model: According to the LFM signal modulation principle, the DDS_LFM
model is developed to generate the DDS_LFM signal. To perform the function of linear
frequency modulation, the result of the frequency accumulator exhibits a linearly increasing
characteristic, while the result of the phase accumulator exhibits the characteristic of a
quadratic function. The initial frequency fLFM and bandwidth BLFM of the DDS_LFM signal
are expressed as follows:

fLFM = (KLFM/2N) fc (2)

BLFM = (K1LFM/2N) f 2
c T, (3)

where KLFM represents the frequency control word, K1LFM denotes the chirp rate control
word (i.e., frequency step word), and T denotes the pulse width.

DDS_BPSK model: The DDS_BPSK model is developed according to the BPSK signal
modulation principle. The DDS_CW signal is used as a carrier signal, and the DDS_BPSK
signal is generated using a 7-bit Barker code (0001101).

DDS_QPSK model: The DDS_QPSK model is developed according to the QPSK signal
modulation principle. The DDS_CW signal is used as a carrier signal, and the DDS_QPSK
signal is generated using the phase encoding (0213030303120).

3.1.2. RF Link Model

Practically, the signal generated by the signal source should undergo multi-stage
amplification to achieve the transmission power required for the transmission distance.
The parameter simulation of each component is performed using the S2P file. The latter is
composed of the S parameter (S11, S12, S21, S22) matrix, and the value of the S parameter is
obtained by the manufacturer’s field measurement of the component. Therefore, an S2P
file can be approximately considered as the reflection of a field measurement component in
the software.

The RF link model is built using different amplification stages and module parameters.
The RF mixer module is set as a linear device, and the RF amplifier module is set as a
nonlinear device, which includes the following: the PA1 model is a first-stage amplifier,
which uses the simulation amplifier; the PA2 model is a two-stage amplifier, which uses
the HMC637ALP5E GaAs power amplifier and simulation amplifier; and the PA3 model
is a three-stage amplifier, which uses the HMC637ALP5E GaAs power amplifier, the
HMC8500PM5E GaN power amplifier, and the simulation amplifier.

The individual differences of each class of RES models are simulated by slightly
adjusting the phase noise level and frequency offset of the RF mixer and the IP3 value of the
RF amplifier. The specific parameters of each module are shown in Table 1. The reference
impedance is 50 ohms, the noise figure is 8 dB, and the operating frequency of these devices
is 2.1 GHz.

3.2. RF Signal

Based on the above modeling, different operating parameters, namely, the modulation
type (MT), frequency (F), bandwidth (B), and input power (P), are selected to generate
source signals with four DDS signal source models, and complex signals are obtained using
Hilbert transformations as input signals to the RF link model. They are then amplified by
PA1, PA2, and PA3 models and output as RF signals of three classes of RES models.
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Table 1. Design parameter values of different modules

Module Design Parameter PA1 PA2 PA3

Mixer (Phase Noise)

Frequency Offset (Hz) FO1 = [100 5000 30,000 50,000] FO2 = [100 1000 10,000 100,000]

Phase Noise Leve (dBc/Hz) PNL1 = [−70 −93 −107 −132] PNL2 = [−70 −120 −140 −150]

S Parameter [0, 0, 1, 0] [0, 0, 1, 0] [0, 0, 1, 0]

One-Stage Amplifier
S Parameter [0, 0, sqrt (10,000), 0] [0, 0, sqrt (1000) 0] [0, 0, sqrt (100), 0]

IP3 (dBm) 47∼50 36∼39 42∼45

Two-Stage Amplifier
S Parameter — HMC637ALP5E HMC637ALP5E

IP3 (dBm) — 44 44

Three-Stage Amplifier
S Parameter — — HMC8500PM5E

IP3 (dBm) — — 42

As a result, RF signals generated by modeling are composed of different structure
design parameters and different operating parameters. Different operating parameters
cause differences in signal information between RF signals, and different structure design
parameters cause differences in RF structure information between RF signals, as shown in
Figure 4. The modeling dataset for complex situations is generated. This includes three
classes of RES models and four REI models under the same class of RES model, i.e., a total
of twelve radar emitters.

Figure 4. RF signal under hetero-mode operating parameters.

4. Res Inversion Method

As observed in the above modeling, different structure design parameters and operat-
ing parameters can produce various RF signals that carry different RF structure information
and signal information, or they map the parameter domain to the data domain. If the data
domain can be mapped to the feature domain so that the neural network can learn the
relevant features representing the RF structure information and signal information, it will
be conducive to the RES inversion.

Then, by comparing the channel system [56], the RES can be regarded as an RF
structure system, RFS(·), which carries RF structure information. Different classes of
RES correspond to different RF structure systems because they are composed of different
structure design parameters and carry different RF structure information. This is a complex
nonlinear and unknown system; the specific parameters of the system cannot be obtained
via simple calculations.

The ideal RF signal x without RF structure information, that is, RFS(x) = x, can be
considered as the baseband signal s with different operating parameters after passing
through the modulation system MT(·):

x = MT(s). (4)
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Therefore, the RF signal y carrying RF structure information can be considered as the
ideal RF signal obtained via the RF structure system:

y = RFS(x) = RFS(MT(s)). (5)

Based on the above analysis, a dual neural network is designed in this section. An AE
network aims to train a feature encoder that is capable of extracting deep signal features
in an unsupervised manner using ideal RF signals. As for the AEM network, the feature
encoder of the AE network is used to extract the deep signal features, constrain the AEM
network in the feature domain, and reconstruct the RF signal in an unsupervised manner
in order to learn the potential RF structure features that can stably characterize the RES
from the data domain. The purpose of this step is to map the data domain to the feature
domain and back to the data domain via the powerful nonlinear processing ability of the
neural network, thereby mapping the RF structure information to the deep RF structure
features one by one. Then, a metric scorer is designed using metric learning, and the AEM
network’s structure and objective function are optimized end-to-end, resulting in deep RF
structure features for each class of RES that are close to the centroid of the deep RF structure
features of the same class of RES and far from the centroid of the deep RF structure features
of other classes of RES. During the learning process, the network shortens the distance
between the RF signals of hetero-mode operating parameters in the same class of RES in
the feature domain and widens the distance between RF signals in the feature domain
of different classes of RES. This dual neural network is described in detail in the sequel.
To illustrate the RES inversion method in the simplest form, consider a deep neural network
as an example, where each module contains two hidden layers. In specific cases, one can
choose more complex neural networks, such as convolutional neural network (CNN) or
long short-term memory (LSTM) [57].

4.1. AE Network

As shown in Figure 5, network 1 is an AE network composed of a feature encoder fe
and a reconstruction decoder fd.

Figure 5. AE network.

First, the input to the AE network is an ideal RF signal without RF structure informa-
tion x.

Then, the hidden layer dimension is set to be smaller than the input dimension.
The feature encoder automatically learns the compression feature of the RF signal, which
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is hsig—the deep signal feature. The RF signal x̂ is then reconstructed from this feature
unsupervised via the reconstruction decoder, thereby realizing the mapping from the data
domain to the feature domain and then back to the data domain.

The coding and decoding process of the AE network can be described as follows:

hsig = fe(x, θe) (6)

x̂ = fd(hsig, θd), (7)

where θe represents the feature encoder parameters, and θd represents the reconstruction
decoder parameters.

This reconstruction method can ensure that the loss of learned feature information is
minimal. To train the AE network, it is necessary to define an objective function; that is,
the reconstruction error:

JAE({θe, θd}) =
1
I

I

∑
i=1

L(x, x̂), (8)

where I is the number of input signal samples, and L(x, x̂) represents the loss function.
Common forms such as the mean square error (MSE) and cross entropy (CE) can be selected.
This paper adopts MSE:

L(x, x̂) = ||x− x̂||2. (9)

Therefore, the reconstruction objective function based on the MSE loss function is
expressed as follows:

JAE({θe, θd}) =
1
I

I

∑
i=1
||x− fd( fe(x, θe), θd)||2. (10)

The exact solution of the input RF signal obtained via the AE network is as follows:

x̂ = fd( fe(x, θe), θd). (11)

Finally, the optimization method is used to train the AE network continuously, and the
trained feature encoder is saved.

4.2. AEM Network

As shown in Figure 6, the AEM network is composed of a feature encoder ge, a re-
construction decoder gd, and a metric scorer gs. In the following sections, this network is
described in detail, including the input signal, network structure, and objective function.

Figure 6. AEM network.
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4.2.1. Feature Encoder

First, the feature encoder of the AEM network has the same design as the feature
encoder of AE, but the input is an RF signal y carrying RF structure information.

Then, ge automatically learns the deep RF structure feature hstr of the RF signal.
The mapping between the data domain and feature domain is realized:

hstr = ge(y, ϑe), (12)

where ϑe represents the feature encoder parameter.
After this steap, hstr is fed into the two branches of the reconstruction decoder and the

metric scorer. The RF signal is reconstructed in the feature domain unsupervised, aiming at
obtaining stable extracted deep RF structure features. In addition, the similarity score is
computed using the supervised metric method in the feature domain, aiming at obtaining
the good separability of the extracted deep RF structure features.

4.2.2. Reconstruction Decoder

The RF signal y is input into the feature encoder of the AEM network and the feature
encoder of the trained AE network to obtain deep RF structure features and deep signal
features. In the reconstruction decoder, hstr and hsig are spliced in parallel as the input of
the reconstruction decoder:

hrd = [hstr; hsig]. (13)

The reconstruction decoder reconstructs the RF signal ŷ from hrd in an unsupervised
manner, thereby realizing the mapping between the feature domain and data domain.
The decoding process can be described as follows:

ŷ = gd(hrd, ϑd), (14)

where ϑd represents the reconstruction decoder parameter.
In addition, the reconstruction objective function is designed based on the MSE

loss function:

Jrd({ϑe, ϑd}) =
1
I

I

∑
i=1

L(y, ŷ) =
1
I

I

∑
i=1
||y− gd(ge(y, ϑe), ϑd)||2. (15)

4.2.3. Metric Scorer

Metric learning is one of the core problems of pattern recognition. To measure the
similarity between samples, metric learning can also be considered as similarity. Its purpose
is to minimize the distance between the same class of samples and increase the distance
between different classes of samples. Therefore, the metric learning method selected
in this paper aims to improve the feature domain separability of the extracted deep RF
structure features.

Drawing on the design concept of the generalized end-to-end loss function [58],
the input of the metric scorer is designed as samples of a batch, including N different
classes of RES and M samples under each class, as shown in Figure 7.

First, (N ×M) RF signals yji (1 6 j 6 N, 1 6 i 6 M) are acquired to build a batch:

[(y11, y12, · · · , y1M), (y21, y22, · · · , y2M), · · · , (yN1, yN2, · · · , yNM)], (16)

which are then fed into the feature encoder to extract their (N × M) deep RF structure
features. hstr_ji represents the deep RF structure features of the i-th RF signal of the j-th
class of RES.
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Figure 7. Metric scorer.

Then, the centroids of the deep RF structure features of the j-th class of RES are
calculated:

ck = Em[hstr_jm] =
1
M

M

∑
m=1

hstr_jm,(1 6 j, k 6 N, 1 6 i 6 M), (17)

where hstr_jm = [hsrt_j1, hsrt_j2, · · · , hsrt_jM].
In addition, it is noted that the deletion of a term when calculating the centroid

of the real RES can stabilize the training process and help avoid trivial solutions [58].
Therefore, when k = j , the centroid of deep RF structure features is calculated using the
following formula:

c(−i)
j =

1
M− 1

M

∑
m=1,m 6=i

hstr_jm. (18)

In addition, the deep RF structure features hstr_ji of each RF signal and the centroids
ck of all classes are combined in series to form (N ×M× N) RF feature pairs as the input
of the metric scorer.

hms_jik =

[hstr_ji, c(−i)
j ] i f k = j;

[hstr_ji, ck] otherwise.
(19)
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The similarity score of each RF feature pair is calculated using a metric scorer, and the
mapping between the feature domain and metric domain is realized:

sjik = gs(hms_jik, ϑs), (20)

where ϑs represents the metric scorer parameter.
In the metric scorer, for each class of RES, each deep RF structure feature in M samples

should have a higher similarity relative to the centroid of the deep RF structure feature in
the same class, and it is far from the centroid of deep RF structure features in other classes.
As shown in Figure 7, the expected effect of the metric scorer is that it introduces a larger
value with respect to the colored part of the similarity score matrix, while the gray part has
a smaller value.

When designing the objective function, first, the (N × M × N) similarity score is
mapped into an (N × M, N) similarity score, and the vector sji,k of each row of the
matrix is as follows:

sji,k = [(s11,k, s12,k, · · · , s1M,k), (s21,k, s22,k, · · · , s2M,k), · · · , (sN1,k, sN2,k, · · · , sNM,k)]. (21)

The SoftMax function is applied to the similarity score of each column so that the
score is a scalar in the range of 0 ∼ 1; then, the similarity score is regressed to the CE loss
function, and the score objective function of a sample of the metric scorer is as follows:

Lms = − log
exp(sji,j)

N
∑

k=1
exp(sji,k)

= −sji,j + log
N

∑
k=1

exp(sji,k), (22)

where the first term is the loss function of positive samples, and the second term is the loss
function of negative samples.

That is, for k = 1, · · · , N, k = j makes the output of the metric scorer equal to 1,
indicating that the features and feature centroid in the RF feature pair belong to the same
class of RES (positive samples; that is, the same or different operating parameters of the
same class of RES). Otherwise, the output is equal to 0, indicating that the features and
feature centroid of the RF feature pair do not belong to the same class of RES (negative
samples). The objective is to make the network reduce the distance between the RF signals
of the hetero-mode operating parameters under the same class of RES in the feature domain
during the learning process and increase the distance between the RF signals of different
classes of RES in the feature domain, thereby improving the feature domain separability of
the deep RF structure features.

Finally, the score objective function of a batch of the metric scorer is as follows:

Jms({ϑs}) =
N×M

∑
j=1,i=1

Lms. (23)

4.2.4. Objective Function

In the AEM network, the feature encoder, reconstruction decoder, and metric scorer
are regarded as a single neural network, and the three subnetworks are jointly trained in
end-to-end training to optimize them relative to one direction. As a result, the inconsistency
in the process of separate network training can be eliminated, and the best network can be
obtained. Therefore, the overall objective function of the AEM network is as follows:

JAEM({ϑe, ϑd, ϑs}) = λ1 Jrd({ϑe, ϑd}) + λ2 Jms({ϑs}), (24)

where λ1 and λ2 represent the proportion weight of the reconstruction objective function
and score objective function, respectively. In this paper, the two objective functions are
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regarded as the same important component, namely, λ1, λ2 = 0.5. Finally, the appropriate
optimization method is selected to optimize the network.

4.3. RES Inversion Method

The flow chart of the RES inversion method is shown in Figure 8, and the overall
process of RES modeling and RES conversion can be observed in the figure, which shows
the training process of the AE network and AEM network, as well as the testing process of
the AEM network. The specific steps are summarized as follows.

Figure 8. Flowchart of the RES inversion method.

1. Building datasets:
Modeling training dataset: yhe three classes of RES modeled above are used to gener-
ate the training dataset under hetero-mode operating parameters, and corresponding
labels are added;
Ideal training dataset: yhe ideal training dataset is generated based on the operating
parameters of the modeling training dataset;
Test datasets: using the three classes of RES models, closed-set test datasets and
open-set test datasets are generated.

2. Data preprocessing:
In-phase/quadrature (I/Q) data are extracted from complex RF signals, and they are
concatenated for normalization. The sampling rate is set to fs = 1 GHz, and the pulse
width is T = 10−6 s; thus, the number of complex RF signal sampling points is 1000.
Therefore, the number of input nodes is 1000× 2 = 2000.

3. Training stage: The specific training process of the network is described as follows:

(a) AE network: The ideal training dataset is used as input to the AE network.
Both the setup feature encoder and the reconstruction decoder have two
hidden layers. The number of output nodes of the feature encoder is set
to 50; thus, the number of nodes of each layer of the feature encoder is
2000-600-150-50 . The number of nodes in each layer of the reconstruction
decoder is 50-150-600-2000. The objective function JAE({θe, θd}) is used to
train the AE network. The adaptive moment estimation (Adam) optimizer is
used for network training. The learning rate is set to 0.0001, and the batch size
is set to 60. The network parameters are selected and determined empirically
after many experiments; the parameters θe, θd of the feature encoder and the
reconstruction decoder are obtained, and the trained feature encoder is saved.

(b) AEM network: The modeling training dataset and corresponding labels are
used as inputs to the AEM network. Each of the setup feature encoder,
the reconstruction decoder, and the metric scorer contain two hidden lay-
ers. The number of feature encoder output nodes is set to 50. The number of
nodes in each layer of the feature encoder is 2000-600-150-50, while the num-
ber of nodes is 50-150-600-2000 for each layer of the reconstruction decoder,
and 100-50-20-1 is observed for each layer of the metric scorer. The objective
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function JAEM({ϑe, ϑd, ϑs}) is used along with the Adam optimizer to train
the AEM network. The learning rate was set to 0.0001 and the batch size was
set to 3× 20, i.e., a batch contains three classes of RES with 20 samples per
class. The network parameters are selected and determined empirically after
many experiments. The parameters ϑe, ϑd, ϑs of the feature encoder, the recon-
struction decoder, and the metric scorer were obtained, and the trained feature
encoder and metric scorer were saved.

(c) Centroid database: In the last epoch, the centroid of each class of deep RF
structure features calculated by each batch is saved and averaged to generate a
centroid database, which is used as the centroid of deep RF structure features
in the test phase.

4. Test stage:
The network is tested using the test dataset. First, the test data are input into the
feature encoder of the AEM network to extract the deep RF structure features. For each
class in the centroid database, class centroids are then combined together and input
into the metric scorer to calculate the similarity score. The maximum matching score
corresponds to the class of RES, and the RES inversion is therefore realized.

5. Experiments
5.1. Simulation and Analysis of the Modelled RF Signal

First, the spurious information introduced by DDS signal source models with different
modulation types is verified using experiments. The frequency of the reference clock source
is fc = 2 GHz, the number of bits in the phase accumulator is N = 15, the number of
bits for phase truncation is B = 6, the pulse width is T = 10−6 s, and the sampling rate
is fs = 1 GHz. Thus, KCW = 409.6, KLFM = 409.6, and K1LFM = 0.0819. According to the
parameters set in the model, fCW = fBPSK = fLFM = fQPSK = 20 MHz and BLFM = 10 MHz
can be obtained. The frequency variation range of the LFM is 20∼30 MHz.

Figure 9 shows four modulation types of source signals generated by the ideal signal
source and four DDS source models. It can be observed from the spectrum that the phase
truncation error of the DDS model has a certain influence on the spectrum of the four
modulation type signals. In addition, the presence of spurious information can be clearly
observed in the spectrum.
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Figure 9. Spectrum diagram of the source signals of four modulation types. (a) CW; (b) BPSK;
(c) LFM; (d) QPSK; (e) DDS_CW; (f) DDS_BPSK; (g) DDS_LFM; (h) DDS_QPSK.
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The RF structure information of the different classes of RES models is then verified
using experiments. Figure 10 illustrates the spectrum diagram of the RF signals produced
by different classes of RES models. It is clear that the three classes of RES models exhibit
distinct differences in the spectrum purity of RF signals of the four modulation types.
Each RF signal carries different RF structure information, with the RF signal generated
by the RES1 model having the smallest amount of RF structure information. This is
because the amplifier of the RES1 model is relatively ideal and only exhibits one stage
of amplification. The measured S parameter is used for the amplifier modeling of RES2
and RES3 models, and the RF structure information is obvious. The structure differences
caused by the usage mode, working principle, and material composition of each module
are also verified. The generated RF signal also carries various levels of unique RF structure
information. In addition, there are obvious differences in the spectrum purity of RF signals
with various modulation types under the same RES model, and each RF signal carries
different signal information.
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Figure 10. Spectrum diagram of RF signals with different classes of RES models: (a) RES1_DDS_CW;
(b) RES1_DDS_BPSK; (c) RES1_DDS_LFM; (d) RES1_DDS_QPSK; (e) RES2_DDS_CW; (f) RES2_DDS_
BPSK; (g) RES2_DDS_LFM; (h) RES2_DDS_QPSK; (i) RES3_DDS_CW; (j) RES3_DDS_BPSK;
(k) RES3_DDS_LFM; (l) RES3_DDS_QPSK.

Finally, the individual information introduced by different REI models under the same
class of RES models is validated experimentally. As shown in Figure 11, as observed from
the spectrum of RF signals (DDS_CW) generated by four different REI models under the
RES2 model, the RF signals of four different REI models under the same RES2 model carry
different individual information, and there is less individual information than RF structure
information, reflecting the subtle differences among individuals.
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Figure 11. Spectrum of DDS_CW signals of four different individuals in the RES2 model: (a) RES2_
DDS_CW_REI1; (b) RES2_DDS_CW_REI2; (c) RES2_DDS_CW_REI3; (d) RES2_DDS_CW_REI4.

5.2. Hetero-Mode Operating Parameter Dataset

In the modeling training dataset, there are RF signals of three modulation types relative
to the DDS_CW, DDS_LFM, and DDS_BPSK models. More precisely, the DDS_CW signal
is set to different frequencies, the DDS_LFM signal is set to different initial frequencies and
bandwidths, the DDS_BPSK signal is set to different carrier frequencies, and the RF link
model is set to different input powers. The operating parameters of the training dataset are
shown in Table 2. The number of RF signal samples of each modulation type of each RES
model is 2000. Gaussian noise with SNR = 10 dB is then added to each RF signal, and the
simulation sample size is 2000× 3× 3 = 18,000 with respect to the hetero-mode operating
parameters of the modeling training dataset as well as the corresponding simulation of the
ideal training dataset. Each sample in the modeling training dataset is then supplemented
with a corresponding label in the one-hot encoding mode, and the label is a 1× 3 vector.
To obtain the unbalanced dataset of hetero-mode operating parameters, these parameters
will be randomly selected. For instance, there will be 6× 6× 3 = 108 combinations of
operating parameters under the DDS_LFM model.

Table 2. Operating parameters of the training dataset.

Model Operating Parameter Ranges

DDS_CW Model Frequency (MHz) 25∼30

DDS_LFM Model
Initial Frequency (MHz) 25∼30

Bandwidt (MHz) 10∼15

DDS_BPSK Model Carrier Frequency (MHz) 25∼30

RF Link Model Input Power (mW) 0.1, 0.5, 1

The test dataset is divided into a closed-set test dataset and open-set test dataset.
The operating parameters of the closed-set test dataset and the training dataset are the
same, but these data and their operating parameters have not participated in the model’s
training, i.e., the network has not perceived these data. The operating parameters of the
open-set test dataset are different from those of the training dataset; that is, the network has
never seen these operating parameters nor participated in network training. As shown in
Table 3, the test dataset is divided into a closed set and five different open-set test datasets,
which are composed of F change; B change; P change; MT change; and MT, F, and P
change. The number of RF signal samples for each modulation type under each class of
RES models is 40. Gaussian noise with different SNR = (10, 5, 0,−5,−10,−15) dB is also
added. For instance, there are 40× 3× 3× 6 = 2160 samples in the closed-set test dataset.
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Table 3. Operating parameters of the test dataset.

Test Dataset F (MHz) B (MHz) P (mW) MT

Closed Set 25∼30 10∼15 0.1, 0.5, 1 CW, LFM, BPSK

Open Set1 (F) 31∼32 — 0.1, 0.5, 1 CW

Open Set2 (B) 25∼30 16∼17 0.1, 0.5, 1 LFM

Open Set3 (P) 25∼30 — 0.3, 0.7 BPSK

Open Set4 (MT) 25∼30 — 0.1, 0.5, 1 QPSK

Open Set5 (MT, F, and P) 31∼32 — 0.3, 0.7 QPSK

5.3. Feature Extraction Performance and Analysis of the AEM Network

First, to verify whether the AEM network can extract the RF structure information
carried by RF signals under hetero-mode operating parameters, the centroids of the deep
RF structure features of three classes of RES saved by the AEM network after training are
visualized and analyzed in the form of a heat distribution map [59]. Figure 12 shows a
visualization of the 50-dimensional deep RF structure feature centroid combination of three
classes of RES extracted from the AEM network. It can be observed that the centroids have
obvious differences. The feasibility and uniqueness of extracting deep RF structure features
from the AEM network are verified. Therefore, these deep RF structure features can be
used for RES inversion.

Figure 12. Visualization of 50-dimensional deep RF structure feature centroids of three classes of RES
using the AEM network.

Sample data with SNR = 10 dB were selected in the closed-set test dataset to further
verify whether the deep RF structure features extracted by the AEM network in this
paper have good separability under hetero-mode operating parameters. The deep RF
structure features extracted by the AEM network have reduced dimensionality using t-
SNE [28] technology, and the distribution of deep RF structure features is visualized in
two-dimensional space. Figure 13a–c show the visualization of the deep RF structure
feature distribution of three classes of RES extracted by the AEM network using CW, BPSK,
and LFM modulation types, respectively. It is clear that these RF structure features have
obvious separability relative to different modulation types, and the separability effect is the
best under the LFM modulation type.

Finally, the stability of the deep RF structure features extracted using the AEM net-
work was further verified under hetero-mode operating parameters. The ideal test dataset
without RF structure information under the operating parameters corresponding to the
closed-set test dataset (SNR = 10 dB) was simulated and input into the AEM network
to verify its separability and inversion rate. This is a mathematical paradox; if the AEM
network cannot clearly distinguish between ideal test data without RF structure informa-
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tion, this indirectly proves that it is extracting deep RF structure features rather than deep
signal features. Figure 14a is a visualization of a two-dimensional space that uses t-SNE
technology to reduce the dimension of extracted features. It can be observed that using the
ideal test dataset, the features extracted by the AEM network are not separable. Figure 14b
shows the inversion confusion matrix, where it can be observed that the AEM network no
longer has the inversion performance. Therefore, the feasibility and stability of deep RF
structure features extracted by the AEM network were indirectly proven.

(a) (b) (c)

Figure 13. Visualization of deep RF structure features relative to different modulation types: (a) CW;
(b) BPSK; (c) LFM.

(a) (b)

Figure 14. Proof by contradiction: (a) visualization; (b) inversion confusion matrix.

5.4. Comparison and Analysis of the Generalization Performance of Different Networks

Since RES inversion is a new problem, there are no comparable methods in the pub-
lished literature. Therefore, in this section, the generalization performance of the AEM
network is evaluated via experimental comparisons with some relevant baseline neural
networks. Due to space limitations, only some of the experimental results from the test
dataset are shown. The baseline network1 is a deep neural network (DNN): it consists of
a feature encoder with two hidden layers and a SoftMax classifier (i.e., a feature encoder
and a classifier without a reconstruction decoder); the baseline network2 is a CNN: it
includes three convolutional and pooling layers, two DNN layers, and a SoftMax classifier.
These two networks are used to demonstrate the role of including a reconstruction decoder
in this AEM network. Another network used for comparisons is the SAE network: it
consists of three stacked AE networks and a SoftMax classifier (i.e., a feature encoder,
a reconstruction decoder, and a classifier). The network is trained by initializing and
fine-tuning layer by layer. This network is used to demonstrate the function of the metric
scorer in the AEM network. Except for the differences in the network’s structure design,
the other conditions are the same as the proposed AEM network.
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In the closed-set test dataset, samples with SNR = 10 dB are selected to verify the
performance of the comparison network and the proposed AEM network. Figure 15a–d
visualizes the four networks using t-SNE technology to reduce the extracted deep RF
structure features in two-dimensional space. It can be observed that the features extracted
by the four networks are distinguishable. However, since the DNN, CNN, and SAE
networks use the SoftMax classifier, the spacing between the same class is large, and the
boundary of different classes is blurred. The AEM network makes the distance between
the same class smaller, the distance between different classes larger, and the boundary
clearer using metric learning. Therefore, features extracted by the AEM under hetero-mode
operating parameters have higher separability, and samples mixed with three different
modulation types of the same class of RES are grouped together. Figure 15e–h illustrates
the inversion confusion matrix of the four networks. As observed, all four networks exhibit
good inversion performance.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Experimental diagram of different networks in closed-set test dataset: (a) visualization of
DNN network; (b) visualization of CNN network; (c) visualization of SAE network; (d) visualization
of AEM network; (e) inversion of DNN network; (f) inversion of CNN network; (g) inversion of SAE
network; (h) inversion of AEM network.

Due to the lack of reconstruction performance in DNN and CNN networks,
Figure 16a,b only shows the time-domain reconstructions of SAE and AEM networks.
It can be observed that the SAE network has poor reconstruction performance. The AEM
network has good reconstruction performance, and it can constrain the features to make
them more stable.

In the open-set test dataset4, samples with SNR = 10 dB are selected to verify the
performance of the comparison network and the proposed AEM network under unknown
operating parameters (MT). Figure 17a–d visualizes the four networks using t-SNE technol-
ogy to reduce the extracted deep RF structure features in two-dimensional space. It can
be observed that in DNN, CNN, and SAE networks, the distance between elements of the
same class is large, the boundary between different classes is fuzzy, and even aliasing occurs
between classes. The AEM network can still make the spacing within the same class smaller,
the spacing between different classes larger, and the boundary clearer under unknown
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operating parameters. Figure 17e–h depicts the inversion confusion matrix of the four
networks, with the total inversion rates being 77%, 72%, 82%, and 89%, respectively. It can
be observed in the figure that the inversion rates of the DNN, CNN, and SAE networks are
low, while the proposed AEM network can also obtain satisfactory inversion performance
under unknown operating parameters. In addition, the inversion rates of RES1 and RES3
can still reach 100%, but the inversion rate of RES2 is lower than that of RES1 and RES3,
and part of RES2 is inverted into RES1. This could be because RES1 and RES2 models are
more similar—i.e., their structure difference is small—while the RES3 model is significantly
different due to its larger RF structure information, which further explains the consistency
with previous RES modeling and spectrum analyses.

(a) (b)

Figure 16. Reconstruction experimental diagram of different networks in closed-set test dataset:
(a) reconstruction of SAE network; (b) reconstruction of AEM network.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Experimental diagram of different networks in open-set test dataset4. (a) visualization of
DNN network; (b) visualization of CNN network; (c) visualization of SAE network; (d) visualization
of AEM network; (e) inversion of DNN network; (f) inversion of CNN network; (g) inversion of SAE
network; (h) inversion of AEM network.

5.5. Robust Performance and Analysis of the AEM Network

Next, the robustness of the proposed network is verified under different SNRs, and ex-
periments are conducted separately relative to all the above test datasets. The inver-
sion rates under different SNRs are shown in Table 4. It is clear that the proposed
network exhibits higher inversion rates under both closed- and open-set test datasets.
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Particularly under different unknown operating parameters, the inversion performance
of the network is still relatively stable as the SNR decreases gradually. When the SNR
is −10 dB, the inversion rate can still reach more than 80%, which proves the anti-noise
performance of the proposed AEM network. In addition, in the training stage, the network
only learns the data in the environment. In the environment of low SNR without training,
the deep RF structure features extracted by the AEM are still unaffected by the unknown
low-SNR environment, which further demonstrates that AEM has high robustness and
generalization performances.

Table 4. Inversion rate of the AEM network under different SNRs.

SNR (dB) 10 5 0 −5 −10 −15

Closed Set 100% 100% 100% 97% 86% 68%

Open Set1 89% 89% 89% 89% 89% 85%

Open Set2 89% 89% 90% 89% 88% 68%

Open Set3 100% 100% 100% 99% 85% 54%

Open Set4 88% 88% 92% 92% 84% 62%

Open Set5 86% 86% 88% 84% 70% 52%

6. Discussion

The results of the above comparison experiment demonstrate that although DNN,
CNN, and SAE networks have good inversion performances using the closed-set test
dataset, their inversion rate is greatly reduced relative to the open-set test dataset be-
cause the features extracted from the known operating parameters of the network do not
have good stability and separability, which greatly affects the network via changes in the
operating parameters. With unknown operating parameters, the generalization perfor-
mance of the network is reduced. The proposed AEM network can extract features with the
essence of RF structure information by means of the joint optimization of metric learning
and reconstruction learning to obtain better inversion performance, and such features have
good stability and separability. Furthermore, the network exhibits good generalization
performance relative to unknown operating parameters.

7. Conclusions

In this paper, an RES inversion method based on a dual neural network is proposed
in complex situations. Using the method of joint unsupervised and supervised training
and the powerful nonlinear processing ability of neural networks, the extracted deep RF
structure features have good stability and separability, and the RES is then inverted via
RF signals in the feature domain. Combined with deep learning technology, RES inver-
sion is studied from a new perspective. The inversion rate and visualization feature map
experiments show that the proposed method exhibits high inversion performance in com-
plex situations and high robustness performance under low-SNR conditions. Even under
unknown operating parameters, the network also has strong generalization performances.
Via RES inversion, the hostile radar can be deeply recognized, which helps in identifying
its performance, threat level, and combat capability and efficiently supports cognitive
reconnaissance of the electronic countermeasure system. In the future, we will further
study RF feature extraction technologies and RES inversion methods using real data in
complex situations.
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