
Citation: Ontel, I.; Cheval, S.;

Irimescu, A.; Boldeanu, G.;

Amihaesei, V.-A.; Mihailescu, D.;

Nertan, A.; Angearu, C.-V.;

Craciunescu, V. Assessing the Recent

Trends of Land Degradation and

Desertification in Romania Using

Remote Sensing Indicators. Remote

Sens. 2023, 15, 4842. https://

doi.org/10.3390/rs15194842

Academic Editors: Jie Wang,

Xinxin Wang, Yongchao Liu

and Xiaocui Wu

Received: 1 September 2023

Revised: 29 September 2023

Accepted: 3 October 2023

Published: 6 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing the Recent Trends of Land Degradation and
Desertification in Romania Using Remote Sensing Indicators
Irina Ontel 1,* , Sorin Cheval 2,3,4 , Anisoara Irimescu 1 , George Boldeanu 5, Vlad-Alexandru Amihaesei 3,6 ,
Denis Mihailescu 1 , Argentina Nertan 1 , Claudiu-Valeriu Angearu 1 and Vasile Craciunescu 1

1 Remote Sensing and Satellite Meteorology Laboratory, National Meteorological Administration, 97 Sos.
Bucures, ti-Ploies, ti, 013686 Bucharest, Romania; anisoara.irimescu@meteoromania.ro (A.I.);
denis.mihailescu@meteoromania.ro (D.M.); argentina.nertan@meteoromania.ro (A.N.);
claudiu.angearu@meteoromania.ro (C.-V.A.); vasile.craciunescu@meteoromania.ro (V.C.)

2 National Institute for Research and Development in Forestry “Marin Dracea”, 077190 Bucharest, Romania;
sorin.cheval@meteoromania.ro

3 Department of Climatology, National Meteorological Administration, 97 Sos. Bucures, ti-Ploies, ti,
01686 Bucharest, Romania; vlad.amihaesei@meteoromania.ro

4 Faculty of Geography, Doctoral School of Geography, Babes, -Bolyai University, 5-7 Clinicilor Street,
400347 Cluj-Napoca, Romania

5 Faculty of Geography, Doctoral School “Simion Mehedint,i”, University of Bucharest, Blvd. Nicolae Bălcescu,
no.1, 030018 Bucharest, Romania; george.boldeanu20@gmail.com

6 Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Ias, i, 20A
Carol I Blvd., 700505 Iasi, Romania

* Correspondence: irina.ontel@meteoromania.ro

Abstract: Land degradation (LD) and desertification (DS) are a sensitive global issue including
southern and south-eastern Europe, which is severely affected by climate change. In this study, a
state-of-the-art approach for assessing the intensity of LD and DS processes using remote-sensing-
derived indicators within a GIS environment was proposed. The analysis was carried out using the
Principal Component Analysis based on integrating the significant trends of relevant biophysical
parameters in Romania. The methodology was tested and validated at the national level in Romania.
In total, 7.76% of the area was identified as LD and 60.8% of the total area tended to improve,
and 31.44% was stable. Most of the regions with LD overlapped with the dryland areas, while
improvement areas were identified outside of the drylands. In forested areas from high altitudes,
a tendency to improve the condition of vegetation was observed, and most of the surfaces being
protected were natural areas that have benefited from proper management. All these results can be
used to adapt management practices to avoid, reduce, or restore the LD. The proposed model was
based on globally available remote sensing datasets, with a high frequency of data acquisition and
collection history that allows for the statistical analyses of changes on a global scale.

Keywords: land degradation; desertification; remote sensing; Principal Component Analysis; Romania

1. Introduction

Many countries aim to prevent land degradation (LD) and desertification (DS), and pro-
mote sustainable land use due to the critical issues they cause, affecting human well-being,
biodiversity, and the economy. The most common causes of LD include deforestation [1],
agricultural practices, overgrazing [2,3], and climatic changes [4]. To combat land degra-
dation and loss of biodiversity, various policies limit uncontrolled deforestation [5], over-
grazing, or the excessive use of fertilizer in agriculture [6]. Extensive areas in south-
ern and south-eastern Europe are affected by the increasing frequency and intensity of
droughts [7–9] or heatwave events [10–13]. The Sustainable Development Goal (SDG)
15 aims to “protect, restore and promote sustainable use of terrestrial ecosystems, sustain-
ably manage forests, combat desertification, and halt and reverse land degradation and
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halt biodiversity loss” [14]. Recent studies have highlighted an increase in vegetation pro-
ductivity and a greening trend in natural vegetation, indicating a possible reverse of land
degradation [15–17]. Additionally, areas with improved resilience of terrestrial ecosystems
to climate change were identified [18].

Different approaches tackle land degradation and desertification at various scales
(e.g., global, regional, and national). Globally, the SDG 15.3.1 indicator was developed for
LD mapping using three sub-indicators: land cover, land productivity, and soil organic
carbon stocks [19]. The World Atlas of Desertification was created using various data,
including population dynamics, climate change data, and satellite data related to vegetation
productivity [20].

Regionally, the MEDALUS project focused on the Mediterranean area, using indi-
cators related to soil quality, climate factor, the quality of vegetation, and the quality of
management [21]. In Romania, land degradation was analyzed through the ecosystem
quality outside of protected areas using various types of data, such as land use and land
cover data, human settlements, the digital elevation model (DEM), pollution sources, and
remote sensing data [22,23].

In this study, the terms LD and DS are defined by the Intergovernmental Panel
on Climate Change (IPCC) and UNCCD as follows: LD is a “negative trend in land
condition, caused by direct or indirect human-induced processes including anthropogenic
climate change, expressed as long-term reduction or loss of at least one of the following:
biological productivity, ecological integrity, or value to humans” [20,24,25]; and DS is “land
degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors,
including climatic variations and human activities” [26–28]. Therefore, desertification is a
consequence of the appearance of land degradation in arid, semi-arid, and dry sub-humid
areas.

Earth observation data play an essential role in mapping and assessing LD and DS by
providing indicators like NDVI, NPP, Evapotranspiration (ET), Land Surface Temperature
(LST), and albedo [29–31]. NDVI combined with land use information is frequently used
for analyzing LD and DS due to its sensitivity to changes in vegetation cover [32] and is
also associated with productivity [33–35]. The negative trend of NDVI denotes an increase
in the degree of vegetation wilting in the long term and low productivity. But, recent
studies quantified LD based on NPP, which is also useful for global carbon cycle analysis;
the decreasing trend of the NPP denotes a decrease in carbon productivity as a result of the
reduction in vegetation cover [36–38].

ET is an important indicator for the water cycle, being closely related to soil and
plant moisture. It signifies the loss of water due to surface evaporation and transpiration
occurring within the vegetation cover. Monitoring ET can help assess water availability
and changes in water balance [34]. LST provides critical information about the thermal
properties of the land surface. It is frequently used for identifying and monitoring urban
heat islands and in the development of green infrastructure [39,40]. A decrease in vegetation
cover can lead to higher LST due to reduced transpiration and cooling effects. In non-urban
areas, the increase in land surface albedo is often determined by the decrease in vegetation
and soil moisture, indicating LD or DS in dryland areas [41,42]. A higher albedo value
indicates greater reflectivity, which can result from a decrease in vegetation cover and an
increase in bare soil or impervious surfaces [43,44].

The aim of this study is to provide a state-of-the-art approach for assessing the intensity
of land degradation and desertification processes using remote-sensing-derived indicators
within a GIS environment. The choice of indices such as: NDVI, NPP, albedo, LST, and
ET for mapping and LD and DS due to their sensitivity to vegetation changes, capacity
to indicate surface properties, and water availability, and their relevance to the study of
ecosystems and the Earth’s climate system. These indices, when combined with other data
sources (meteorological and land cover type) provide valuable insights into the state and
dynamics of land degradation and desertification processes.
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Principal Component Analysis (PCA) was employed to conduct the analysis, inte-
grating significant trends of relevant biotic and abiotic parameters. Land degradation
assessment often involves analyzing a wide range of variables, including soil properties,
vegetation indices, and climate data. These datasets can be high-dimensional, making
it challenging to identify patterns and relationships. PCA helps by reducing the dimen-
sionality of the data while retaining most of the relevant information. The methodology
underwent testing and validation on a national level, but it can be readily applied to other
locations, and is contingent upon the accessibility of the required data in a fast and cost-
effective manner. Assessing land degradation is essential for decision-makers to effectively
manage degraded lands and areas susceptible to desertification. This includes implement-
ing sound agricultural practices, finding drought-resistant plant varieties, promoting soil
conservation, and preventing nutrient depletion, especially in arable lands. In the case of
forests, it involves sustainable forestry practices, reforestation efforts, and protection against
deforestation. For grasslands, it includes responsible grazing management, preventing
overgrazing, and implementing measures to combat invasive species that can degrade these
ecosystems. These strategies collectively aim to enhance soil quality, maintain biodiversity,
and ensure the long-term health and productivity of various land types.

2. Materials and Methods
2.1. Study Area

This study addresses the national level and covers Romania, a country with an
area of approximately 238,400 km2 situated in south-eastern Europe. According to the
Koeppen–Geiger classification [44], there are six types of climates in Romania (Figure 1).
The largest area is represented by a humid continental warm summer climate (Dfb) over
147,000 km2. The hot summer humid continental climate (Dfa) is the second type of climate
that occupies a significant area (approximately 45,000 km2). Cold semi-arid climate (BSk) is
the third type of climate that occupies a large area in Romania (about 31,000 km2).
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Figure 1. Climate types in Romania according to Koppen–Geiger classification (1980–2016) [44] and
the geographical location of Romania in Europe (in the medallion).
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The main types of land cover and land use in Romania are agricultural land, forest,
and grasslands (Figure 2a). Agricultural land occupies large areas in regions with Dfb,
Dfa, and BSk climates (Figure 2b), forests and semi-natural areas are found mainly in
regions with Dfb and Dfc climates, while the BSk climate includes large areas of wetland
ecosystems such as the Danube Delta and the Danube Flood Plain (i.e., Baltile Dunarii, in
Romanian).
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Figure 2. (a) Land use in Romania according to Corine Land Cover 2018 [45]. (b) The surface occupied
by the main categories of land use in different climatic zones in Romania (in km2).

2.2. Earth Observation and Auxiliary Data Used for Land Degradation and Desertification
Mapping

The changes in vegetation were analyzed over the period 2001–2020 using Moderate
Resolution Imaging Spectroradiometer (MODIS) products (Table 1) for the vegetation
season (April–September) at a daily temporal resolution [46]. The data were resampled at
500 m spatial resolution and validated with data from the atlas of degraded ecosystems
from Romania [22] and Trends.Earth SDG 15.3.1 indicator [19]. Climate data such as
precipitation and potential evapotranspiration were used to compute the aridity index
used to identify the areas susceptible to desertification. The CORINE Land Cover (CLC)
dataset [45] was used to delimit the types of land use as well as other geospatial data such
as Koeppen–Geiger climate classification or major landforms.

Table 1. Remote sensing and auxiliary data used for LD and DS identification and validation.

Data Name Period Resolution Data Type Source

Normalized Difference Vegetation Index
(MOD13A1v006) 2001–2020 500 m raster NASA EOSDIS [47]

Net photosynthesis (MOD17A2HV6) 2001–2020 500 m raster NASA EOSDIS [48]
Total evapotranspiration (MOD16A2v006) 2001–2020 500 m raster NASA EOSDIS [49]

Land Surface Temperature (MOD11A2v006) 2001–2020 1000 m raster NASA EOSDIS [50]
Black sky albedo (MCD43A3v006) 2001–2020 500 m raster NASA EOSDIS [51]

Precipitation (P) 1991–2020 - vector National Meteorological Administration
Potential evapotranspiration (ETP) 1991-2020 - vector National Meteorological Administration
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Table 1. Cont.

Data Name Period Resolution Data Type Source

CORINE Land Cover (CLC) 2018 100 m raster Copernicus Land Monitoring Service [45]

Degraded ecosystems 2016–2018 - vector The atlas of degraded ecosystems
from Romania [22]

Land degradation indicator 2001–2015 250 m raster Trends.Earth SDG 15.3.1 indicator [52]

2.3. Methodology

The workflow of this study includes four main stages (Figure 3): 1. the standardization
of the MODIS products; 2. the extraction of trends of the relevant variables; 3. the analysis
of the principal components (PCs) and computing and validating the LD model; and
4. computing the LD clusters and analyzing the areas within the drylands.
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Figure 3. Methodological flowchart of this study. NDVI, NPP, ET, LST, and BSA are biophysical
parameters; z-score represents the anomaly of each parameter; z value—trend and p value—statistical
significance according to the Mann-Kendall test; NDVI-Trend, NPP-Trend, ET-Trend, LST-Trend, and
BSA-Trend resulted from the combination of the z value and p value parameters; LDM—index for
assessing the intensity of land degradation.

2.3.1. Z-Score

The average values of the BSA, LST, and NDVI for the vegetation season (April–September)
were calculated, as well as the sum of the ET. The NPP represents the sum of the Net
photosynthesis index. To remove the scale difference between variables [53], the z-score
(anomaly) was extracted as the difference between the biophysical parameters and the
multiannual average (for the period 2001–2020), relative to the standard deviation.

2.3.2. Mann-Kendall Test

According to the LD definition [20,25], the trend of the land condition over time is an
essential parameter. Therefore, the non-parametric Mann-Kendall test (MK) [54,55] was
used for detecting and estimating the trends of the z-score (anomaly of each parameter). The
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trend (z value) was reclassified into two categories (positive values and negative values),
and the confidence level (p value) was reclassified into five classes which were assigned a
score from 1 to 5 according to Table 2. This led to five new indicators (NDVI-Trend, NPP-
Trend, ET-Trend, BSA-Trend, and LST-Trend) with values between −5 and +5. Considering
that the LD is highlighted by the negative trend of NDVI, NPP, and ET and by the positive
trend of LST and BSA, the values of the last two parameters were multiplied by −1 to be
consistent with the first three. In the end, all the resulting indicators highlighted the same
thing. Thus, positive values between 2 and 5 indicate improved lands, negative values
between −2 and −5 indicate degraded lands, and those between −1 and +1 indicate stable
lands without significant changes.

Table 2. Scores assigned using trend classification (z value), significance level (p value), and confidence
levels.

Trend (According z Value) Significance Level (p Value) Score * Confidence Levels

±

0 to 0.001 5 99.9% confidence level
0.001 to 0.01 4 99% confidence level
0.01 to 0.05 3 95% confidence level
0.05 to 0.1 2 90% confidence level

0.1 to 1 1 <90% No Sig. trend
* Represents the values assigned to the classes obtained after the classification.

2.3.3. Principal Component Analysis

In this study, the Principal Component Analysis (PCA) method [56] was employed
to aggregate the five resulting indicators (NDVI-Trend, NPP-Trend, ET-Trend, BSA-Trend,
and LST-Trend) which were described in Section 2.3.2. PCA is commonly used to reduce
the number of variables by identifying the principal components. It transforms the original
variables into a smaller number of uncorrelated datasets (principal components) that
capture the most significant variations in the data. This simplification makes it easier to
detect patterns associated with land degradation. Each principal component is associated
with eigenvectors; these eigenvectors can be used to obtain the weights for LD indices.

The five main components were obtained based on the five variables used as input in
the principal components (Spatial Analyst) tool from ArcGIS toolbox [57]. The PCA tool
generated new raster datasets where each raster represents a principal component. Each
principal component is a linear combination of the original datasets, and they highlight
different features or information in the data (Figure S1). Also, each PC is represented by
a set of eigenvectors, which are the proportion with which each variable contributes to
obtaining PC1, PC2, PC3, etc. [53]. These values can range between ±1 and 0. The closer
they are to ±1, the greater the contribution of the analyzed variables, while values closer to
0 indicate a smaller contribution. The sign (positive or negative) shows the direction that a
given variable in that PC is going on a single dimension vector.

The results from the PCA revealed that PC1 alone explains 61.24% of the variance,
followed by PC2 with 14.57%, PC3 with 9.82%, PC4 with 7.83%, and PC5 with 6.53%. The
cumulative eigenvalues demonstrated that the first four components collectively account
for 93.47% of the variance (Table 3 and Figure S2 in Supplementary Material). As a result,
the first four PCs were used to compute the Land Degradation Model (LDM).

Table 3. Principal Component Analysis.

PC PC1 PC2 PC3 PC4 PC5

Eigenvectors

NDVI-Trend 0.60243 0.17929 0.55936 0.53391 0.08364
NPP-Trend 0.00131 0.61281 0.40223 −0.57068 −0.37014
ET-Trend 0.19080 0.70214 −0.60794 0.14125 0.28471

BSA-Trend 0.77391 −0.31466 −0.27073 −0.47023 −0.08743
LST-Trend 0.04174 0.01780 −0.28714 0.38497 −0.87595

Eigenvalues 5.30789 1.26291 0.85149 0.67895 0.56581
Percent of Eigenvalues (%) 61.2422 14.5714 9.8244 7.8337 6.5283

Accumulative of Eigenvalues (%) 61.2422 75.8136 85.6381 93.4717 100
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In this study, in the structure of PC1, BSA-Trend contributed the most, followed by
NDVI-Trend, while NPP-Trend contributed the least. Therefore, a significant proportion
of the information related to the degradation phenomenon can be obtained through the
analysis of these two variables alone. However, there remains an approximately 40%
portion that cannot be explained by PC1. In this regard, it is necessary to calculate PC2,
where ET-Trend and NPP-Trend significantly contribute. In other words, these are the next
two variables that complement the information captured by PC1, adding an approximately
14% contribution. ET-Trend and NDVI-Trend significantly contribute to the calculation of
PC3, explaining approximately 9.8% of the information related to degraded lands, while
PC4 is highlighted through the use of the variables NDVI-Trend, BSA-Trend, and NPP-
Trend. It can be observed (Table 3) that LST-Trend has the smallest contribution in the first
four PCs but a significant contribution to PC5. However, PC5 explains only 6.5% of the
phenomenon, while the first four PCs combined explain over 90% of the phenomenon.
Therefore, we can rely on the analysis of the first four components for identifying degraded
lands.

Finally, the five PCs were aggregated into a single LD model using a linear Equation (1).
To achieve this, the value of the percent of eigenvalues was divided by 100 for each PC
to scale values from 1–100 to 0–1. The obtained values were classified into three equal
intervals representing land degradation, stable land, and improvement (Table 4).

LDM = 0.612422 × PC1 + 0.145714 × PC2 + 0.098244 × PC3 + 0.078337 × PC4 (1)

Table 4. LDM value classification.

Values Description

<−1 Land Degradation
−1 to 1 Stable

>1 Improvement

2.3.4. Evaluation of the LDM Performance

The receiver operating characteristics (ROC) analysis was used to evaluate the LDM
performance. Several statistical indices like sensitivity, specificity, accuracy, and Area Under
the Curve (AUC) were calculated [58]. The ROC curve is a method that compares true
positive rates against false positive rates. The ROC analysis was performed using the roc()
function implemented in the pROC R package [59].

The results of the model were compared with the forest ecosystem and grassland
ecosystem evaluations from the atlas of degraded ecosystems from Romania [22] and with
the LD data from Trends.Earth SDG 15.3.1 [52]. It has to be mentioned that the atlas of
degraded ecosystems in Romania contains information about the degradation of grassland
and forest ecosystems; it does not include an assessment of arable land or other types of
land cover or use. Therefore, the information from Trends.Earth SDG 15.3.1 was used to
validate degraded arable land and other types of land use or cover. From what is known
so far, in Romania there are no other data related to land degradation that can be used for
validation. Therefore, 400 points were randomly chosen for forest ecosystems (from the
atlas of degraded ecosystems from Romania), 600 for grassland ecosystems (also from the
atlas of degraded ecosystems), 900 for arable land (from Trends.Earth SDG 15.3.1), and
2500 points for all types of land use to cover all the counties of Romania (from Trends.Earth
SDG 15.3.1).

Generally, a value of AUC greater than 70% indicates relatively good prediction [60]
(Table 5). In this study, the AUC for forest ecosystems was 81.2%, for grassland ecosystems
84.5%, 77.9% for arable land, and for all types of land use AUC was 71.8%, in general
showing satisfactory results (Figure 4). The highest values are in the case of forest and
grassland ecosystems, with the results being compared with data from the atlas of degraded
ecosystems from Romania. The lowest were in the case of arable land and other types of
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use, with the results being compared with data from Trend.Earth SDG 15.3.1. The difference
between the validation results may be due to the data sources used for validation.

Table 5. Interpretation of the Area Under the Curve [60].

Area Under the Curve (AUC) Interpretation

90% ≤ AUC Excellent
80% ≤ AUC < 90% Good
70% ≤ AUC < 80% Fair
60% ≤ AUC < 70% Poor
50% ≤ AUC < 60% Fail
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2.3.5. The Degree of Climate Susceptibility to Desertification Processes

The degree of climate susceptibility to desertification processes was highlighted by
the intersection of two thematic layers, the Koeppen-Geiger climate types (Bsk, Cfa, and
Cfb) and the dryland areas (aridity index between 0.2 and 0.65) determined for the period
1991–2020. Climate types like Bsk, Cfa, and Cfb are associated with different levels of
temperatures and precipitation patterns. Areas with arid or semi-arid climates (such as Bsk)
are more susceptible to desertification due to their limited water availability, while areas
with humid climates (such as Cfa and Cfb) are generally less susceptible. The dryland
(arid, semi-arid, and dry sub-humid areas) represents all areas in which the ratio between
precipitation (P) and evapotranspiration (PET) has values between 0.05 and 0.65 [28,61].
The ratio is known as the UNEP Aridity Index (AI), which is frequently used in studies on
a national [7,62] and global scale [63]. Areas with lower aridity index values have lower
water availability, which can make them more prone to desertification processes [64]. The
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specified range of aridity index values (0.05 to 0.65) likely represents a critical threshold
where the risk of desertification increases significantly [65].

By integrating both climate types and aridity index values, a more comprehensive
assessment of desertification sensitivity was created. Regions that fall into the specified
climate types and also have aridity index values within the defined range are likely to face a
higher risk of desertification. This combined approach considers both the long-term climatic
conditions and the immediate aridity levels, providing a more nuanced understanding of
desertification vulnerability. Four classes were created in which values are assigned from
−1 (slightly susceptible areas) to −4 (extremely susceptible areas) (Table 6). In Romania,
only the semi-arid and dry sub-humid classes (between 0.2 and 0.65) were identified for
the period 1991–2020. To identify areas with DS processes, the LD values lower than −1
from LDM (Table 4) are intersected with the four classes of degrees of climate susceptibility
to desertification (Table 6).

Table 6. The degree of climate susceptibility to desertification processes.

Dryland Areas (Aridity
Index between 0.2 and 0.65)

Koeppen-Geiger
Climate Types

Degree of Climate
Susceptibility to DS Score

Semi-arid
BSK Extremely susceptible areas (ESA) −4
Cfa High susceptible areas (HSA) −3

Dry sub-humid Cfa Moderately susceptible areas (MSA) −2
Cfb Slightly susceptible areas (SSA) −1

2.3.6. Land Degradation and Desertification Hot Spots

To identify the statistical significance of DS process hot spots, the Getis-Ord Gi*
method [66] was applied. This method is computed based on standard normal distribution.
The Hot Spot Analysis was performed in ArcGIS using the Mapping Clusters toolset [67].
The statistical significance is based on the z-score (Standard Deviations) and P-value
(Probability) and it was calculated for 90%, 95%, and 99% confidence levels (Table 7). The
clusters were created based on the mean values of DS within the 10 km resolution cell grid.

Table 7. The statistical significance of hot and cold spots according to Getis-Ord Gi* statistics.

z-Score (Standard Deviations) p-Value (Probability) Confidence Level

<−1.65 or >+1.65 <0.10 90%
<−1.96 or >+1.96 <0.05 95%
<−2.58 or >+2.58 <0.01 99%
−1.65 to +1.65 >0.10 <90% Not statistically significant

3. Results
3.1. Trend of Remote Sensing Indices in Romania

To provide an overview of the BSA-Trend, LST-Trend, NDVI-Trend, NPP-Trend, and
ET-Trend spatial distribution, the values were divided into four classes (decreasing between
0 and −1, significantly decreasing below −1, increasing between 0 and 1, and significantly
increasing above 1) and the surface of each category relative to the total per country was
calculated. Also, the evaluation of the spatial distribution was completed at the local level
(by major landforms and main land cover). The spatial distribution of the increasing trends
(increasing and significantly increasing) of BSA-Trend, LST-Trend, NDVI-Trend, NPP-Trend,
and ET-Trend are presented in Figure 5.
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3.1.1. Black Sky Albedo

Extensive areas with increasing trends were noted in the south-eastern part of Romania
(in the Dobrogea Plateau, the Danube Delta, and in the Romanian Plain), the north-east (in
the Moldavian Plateau), the west (in the Western Plain), and partially in the central part
(Depression of Transylvania) (Figure 5a).

In total, 12.14% of Romania’s surface had BSA with significantly increasing trends and
31.75% with significantly decreasing trends. The decreasing trend of BSA was observed
especially in the mountainous areas (the total was 29.21% of which 18.35% was significantly
decreasing trends) while the increase was registered in the lower areas of Romania (the
total was 21.48% of which 6.75% was significantly increasing trends). The percentage
distribution of BSA trend classes in major landforms compared to the total surface of
Romania are presented in the Supplementary Material (Figure S3).

Arable land occupied 36.32% of the country’s surface, of which 25.86% was increas-
ing (17.14% increasing and 8.71% significantly increasing) and 10.46% decreasing (7.18%
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decreasing and 3.28% significantly decreasing). The forest surface occupied 29.9% of the
country’s surface of which only 4.58% was increasing (3.67% increasing and 0.9% sig-
nificantly increasing). The percentage distribution of trend classes in main land cover
compared to the total surface of Romania are presented in the Supplementary Material
(Figure S4).

3.1.2. Land Surface Temperature

Most of Romania’s surface is warming, but from among all the regions of the country,
significantly increasing trends were observed in the central-eastern part (the Eastern and
the Southern Carpathians) (Figure 5b). The largest surfaces with increasing trends of LST
were observed in the hill and plateau areas (the total was 35.3% of which 11.96% was
significantly increasing trends) and in mountainous areas (the total was 34.22% of which
18.14% was significantly increasing trends) (Figure S3 in the Supplementary Material).
Most of the significantly increasing trends took place in forest areas (14.94%) and arable
land (8.33%) (Figure S4 in the Supplementary Material).

3.1.3. Normalized Difference Vegetation Index

According to the results, only a few areas in Romania had decreasing trends of NDVI
(15.1%, of which 7.17% was in plain areas). Significantly decreasing trends were registered
on only 0.78% of plain areas, 0.54% of hills and plateaus, and 0.21% of mountains (Figure S3).
Significant decreases were noticed in 0.84% of the arable land areas, 0.1% of the grassland
areas, and 0.09% of the forest areas (Figure S4). The increases were observed especially
in the mountainous areas (33.14%, of which 26.52% was significantly increasing trends),
while the decreases were reported in the lower areas of Romania such as the Western
Plain, Romanian Plain, and Danube Delta, and also in the center of the Dobrogea Plateau
(Figure 5c).

3.1.4. Net Primary Productivity

The trends of NPP indicated large areas of decrease in the western part of Romania,
but they were statistically insignificant in most landforms (in the Western Plain, the Crisana
Hills, and the Western Carpathians) (Figure 5d). In total, 33.56% of Romania’s surface had
decreasing trends of NPP, of which 1.61% was significantly decreasing (0.61% in mountain
areas, 0.55% in hills and plateaus, and 0.43 in plain areas). From a land cover point of
view, 13.5% of forest areas, 9.6% of the arable land, and 4.87% registered a decreasing
trend (of which only 0.67%, 0.44%, and 0.24%, respectively, were significantly decreasing)
(Figure S4).

3.1.5. Evapotranspiration

Small areas in Romania registered a decreasing trend of ET (the total was 14.62%, of
which only 0.64% was significantly decreasing). This was observed mostly in the south-
eastern part of the country (Dobrogea Plateau) (Figure 5e). This was known for its arid
nature, and the decreasing trend of ET accentuates this condition. The most affected were
the arable lands, where 6.21% had a decreasing trend, of which 0.33% was significant.

3.2. Land Degradation and Desertification Assessment

According to the LDM, a small percentage (7.76% of the total area of Romania) was
identified as degraded lands. Most of the degraded surfaces were in areas with arable
land (15% of the total area of arable land in Romania), followed by grassland (5.2% of
the total area of grassland), and forests (1.2% of the total area of forests). LD areas were
located predominantly in the center of the Dobrogea Plateau, followed by southeast of
the Romanian Plain, the south of the Western Plain, the north of the Moldavian Plateau,
and the Sub-Carpathians, as well as the center of the Transylvanian Depression (Figure 6).
Meanwhile, extensive areas in Romania tended to improve between 2001 and 2020 (60.8%
of the total area), especially in the Carpathian and Sub-Carpathian areas, and 31.44% of the
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total area was stable. Most of these areas have been declared protected areas and many of
them have a management plan to conserve biodiversity.
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According to the LDM, the largest area of degraded arable land was in the Roma-
nian Plain of 5092.8 km2 (14.79% of its arable land) followed by the Western Plain with
2458.86 km2 (21.23% of the arable land), the Moldavian Plateau with 2080.56 km2 (18.37%
of the arable land), and the Dobrogea Plateau with 1072.53 km2 (15.95% of the arable land).
Table S1 shows the percentage values at the level of major landforms and main types of land
use and Table S2 shows the absolute values in km2 with land degradation (LD), stable lands
(S), and total improvement surfaces (I). The largest degraded forest area was identified in
the eastern Carpathians of 187.3 km2 (which represents 1.14% of the total forest area in this
area), followed by the Romanian Plain with 127.84 km2 (4.34% of the total forest area), the
Moldavian Plateau with 115.3 km2 (3.37% of the total forest area), the southern Carpathians
with 83.38 km2 (0.88% of the total forest area), and the Transylvanian Depression with
49.68 km2 (0.85% of the total forest area). The largest surface extension of the degraded
grassland was present in the Moldavian Plateau, 395.19 km2 (12.67% of the total grassland
area), followed by the Transylvanian Depression, 353.62 km2 (5.42% of the total grassland
area), and the Western Plain, 331.58 km2 (17.61% of the total grassland area).

By aggregating the dryland areas (according to the AI values) with the LD in Romania,
it turned out that the largest areas affected by desertification process were in the central
part of the Dobrogea Plateau, the center and east of the Romanian Plain, and the south of
the Western Plain (Figure 7). In the Dobrogea Plateau, approximately 1236 km2 of land was
exposed to DS, of which 1072.55 km2 was arable lands and 147.65 km2 was grasslands. In
the Romanian Plain, 5253.87 km2 was exposed to desertification, and in the Western Plain,
2431.92 km2.
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Figure 7. Spatial distribution of LD in susceptible areas to DS processes in Romania. ESA represents
extremely susceptible areas, HSA—high susceptible areas, MSA—moderately susceptible areas, and
SSA—slightly susceptible areas.

3.3. Hot Spots of Land Degradation in Areas Susceptible to Desertification

Clustering provided an overview of areas with high concentrations of LD, and stable
or improvement surfaces in areas susceptible to DS. The clusters obtained based on the
Getis-Ord Gi* method highlighted hot spots with 99% confidence of the degraded lands
in the Dobrogea Plateau, extensive areas of the Romanian Plain, the Western Plain, the
Moldavian Plateau and the center of the Transylvanian Depression (Figure 8). These mostly
overlap with the dryland areas, which means that they were susceptible to desertification.
In these areas, management measures need to be applied to improve the quality of the
land. On the other hand, extensive areas of the mountain and plateau areas (except for the
Moldavian Plateau and the center of the Transylvanian Depression) recorded cold spots
with 99% confidence.
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4. Discussion

The EO data were frequently used for the identification of land degradation on an
international scale. Some studies use land surface albedo, others vegetation indices such as
NDVI or NPP [25]. UNCCD recommends land cover, land productivity, and soil organic
carbon stocks [19]. A summary of the LD obtained based on the Trends.Earth SDG 15.3.1
indicator [19] at the level of Romania for the period 2000–2015 indicates 9.89% of the land
area degraded from the total land area, 66.41% improved land area, and 23.33% stable land
area. The values were very close to those obtained in this study (7.76% of the total area of
Romania was LD, 60.8% of the total area tended to improve, and 31.44% was stable), in
which the PCA was used to aggregate remote sensing indices into a single LDM. It is very
likely that the differences between the results were due to the length of the analysis period
(2000–2015 for Trends.Earth SDG 15.3.1 indicator versus 2001–2020 for our model).

In previous studies, various areas that were susceptible to degradation and desertifica-
tion were identified, most of them due to climate changes that cause frequent dry events
such as those in the Dobrogea Plateau and the eastern Romanian Plain [68,69], and in other
areas due to soil erosion and landslides such as those in the Moldavian Plateau [70,71] and
some areas in the Transylvanian Depression [72,73]. Also, soil erosion was identified in var-
ious areas of the Dobrogea Plateau [74], a phenomenon potentiated by overgrazing [75,76].
The results of our study confirm the occurrence of land degradation in all these areas, but
the spatial extension according to our results was less extended than previously estimated.

Cheval (2020) found a high intensity of climate change hot spots determined especially
by air temperatures in the north-western part of Romania (Western Plain, Crisana Hills,
Western Carpathians, and Transylvanian Depression), in the central-southern part (southern
Carpathians and Getic Plateau), and also in the eastern part of the country (the Dobrogea
Plateau and the southern half of the Moldavian Plateau) [77]. However, the vegetation
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responds differently to these climate changes depending on its level of species resilience
and adaptation, thereby explaining the increasing trends of the forest vegetation in the
mountain area. Arable land, on the other hand, was more affected by these climate changes
compared to land covered by natural vegetation (forest and grassland).

The sandy area in the west of the Romanian Plain, called “Sahara of Oltenia” by
Romanians, was considered to be susceptible to desertification because of the destruction
of the irrigation system in the post-communist period, the deforestation of forests, and
forest protection belts [78–81]. All this led many farmers to give up agricultural activities,
and much agricultural land was abandoned. There were studies that have shown that a
greening of vegetation can be observed on abandoned agricultural lands [82]. Also, in
some areas, the increase in tree cover was caused by the abandonment of farms even in
critical regions such as the savannah of Africa [83]. According to our model, there were
land improvements in this part of the country, and the extended surface was covered by
vegetation (a greening of vegetation). The agricultural crops were replaced by natural
steppe vegetation. Moreover, this area is currently a Special Protection Area (SPA) [84,85].
This is proof of the resilience of species and habitats despite climate change. Without
human intervention, nature restores itself. However, a balance between the need to preserve
biodiversity and the need to feed people is required. Not all of Romania’s agricultural
surfaces must be returned to nature, replaced by natural vegetation, but neither should
they be replaced by agricultural land. Therefore, it is recommended to practice sustainable,
environmentally friendly agriculture [86].

The spatial distribution of the LD suggests that most degraded arable lands were
intensively exploited by farmers. A high share of LD processes can also be observed around
big cities (Figure 6) such as Bucharest-Alexandria, Constanta, Cluj-Napoca, Targu Mures,
and Timisoara, etc. The increasing demand of food products in urban concentrations, in
many cases, determined the farmers’ increase in production, to the detriment of the land
quality [87]. It was proven that intensive agriculture without an adequate rotation of crops,
and the use of various chemical fertilizers in quantities exceeding the accepted limit, can
cause land degradation [86]. Also, the building demand determined the expansion of
the cities towards the suburbs, with much agricultural land being replaced by built-up
areas [87]. Moreover, people’s demand for accessibility and the development of the road
network determined the replacement of agricultural or forest land with impervious areas;
for example, the highway between the cities Deva, Alba-Iulia, and Cluj-Napoca, in the
central part of the country, where the impact on the surrounding area can be clearly seen
(Figure S5 in the Supplementary Material). All this leads to the degradation of the lands
near the built-up areas by increasing the concentrations of pollutants and deforestation,
increasing the temperature, and the fragmentation of habitats [87], all with an impact on
the quality of life of the population as well as biodiversity.

This study was carried out based on satellite images, and the results have some
inherent limitations. For example, the spatial resolution of the images (500 m), does not
allow for the identification of smaller degraded surfaces. Also, crop rotation for arable land
could induce errors in the analysis of trends; therefore, the recommendation is an analysis
of the types of crops each year for a better accuracy of the model in these areas. However,
acknowledging the degree of error of the model, the results can be extremely useful in the
identification and monitoring of degraded lands on extensive surfaces, saving part of the
financial resources and time spent in the field collecting data.

5. Conclusions

This study provides a state-of-the-art approach to assess the intensity of land degrada-
tion and desertification processes, with PCA demonstrating its suitability for this purpose.
To identify degraded lands, the first step is to compute long-term trends of relevant biophys-
ical parameters, such as NDVI, NPP, BSA, ET, and LST; then, the trends of remote sensing
products between 2001 and 2020 are integrated to achieve optimal results, considering the
climate change perspective. This methodology uses satellite images with a high frequency
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of data acquisition and collection history that allows for the statistical analyses of changes
on a global scale.

Also, the results of the study are based on the first four principal components (PCs).
PC1 is primarily composed of the variables NDVI-Trend and BSA-Trend, contributing
to the final analysis with a weight of 61.24%. PC2 is composed of ET-Trend and NPP-
Trend and contributes 14.57%. PC3 is composed of ET-Trend, NDVI-Trend, and NPP-
Trend, contributing 9.82%. PC4 is composed of NPP-Trend, NDVI-Trend, and BSA-Trend,
contributing 7.8%.

PCA not only helps reduce the number of indicators but also identifies the most
significant ones. Moreover, the results obtained by the weighted aggregation of all the
identified components are superior to those obtained by individually analyzing each
indicator. The results obtained using PCA are consistent with those obtained in previous
studies over a shorter period (2016–2018) and validated in the field at the national level, as
well as with those conducted globally over a longer period (2001–2015) but not validated in
Romania.

Our findings reveal that LD processes cover 7.76% of Romania’s total area, while the
category of ‘no land degradation’ prevails, representing 60.8% of the total area with an
improvement trend and 31.44% remaining stable. The hot spots of LD exposed to DS were
predominantly observed in the south-eastern part of Romania (the Dobrogea Plateau and
the Romanian Plain), the Western Plain, and the Moldavian Plateau.

These findings bear significant importance for decision makers in effectively managing
degraded lands and those prone to DS processes. By adopting suitable agricultural prac-
tices and selecting drought-resistant plant varieties that enrich the soil without depleting
nutrients, we can strive to improve soil quality and combat desertification, paving the way
towards sustainable land use management.
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in major landforms compared to the total surface of Romania; Figure S4: The percentage of the
distribution of trend classes in main land cover compared to the total surface of Romania; Figure S5:
Spatial distribution of land degradation in the Deva, Alba-Iulia, Cluj-Napoca, and Targu-Mures areas;
Table S1: Total surfaces (%) with land degradation (LD), stable lands (S), and total improvement
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