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Abstract: Fog is a weather phenomenon with visibility below 1 km. Fog heavily influences ground
and air traffic, leading to accidents and delays. The main goal of this study is to use two machine-
learning (ML) techniques—the random forest (RF) and long short-term memory (LSTM) models—to
estimate visibility using 11 meteorological parameters. Several meteorological elements related to
fog are investigated, including pressure, temperature, wind speed, and direction. The seasonal cycle
shows that fog in Sofia has a peak in winter, but a small secondary peak in spring was found in
this study. Fog occurrence has a tendency to decrease during the studied period, with the peak
of fog observations being shifted towards the higher visibility range. The input parameters in the
models are day of year, hour, wind speed, wind direction, first-cloud-layer coverage, first-cloud-layer
base height, temperature, dew point, dew-point deficit, pressure, and fog stability index (FSI). The
FSI and dew-point deficit are evaluated as the most important input parameters by the RF model.
Post-processing was performed with double linear regression for the correction of the predictions
by the models, which led to a significant improvement in performance. Both models were found to
describe the complexity of fog well.

Keywords: fog; machine learning; random forest algorithm; long short-term memory; neural networks

1. Introduction

Fog is a weather phenomenon that reduces horizontal visibility below 1000 m. Low
visibility affects all types of transportation and especially air traffic, where fog forces flights
to be rescheduled. Air traffic controllers and airport ground services require timely fog
warnings in order to run low-visibility procedures on time. Gultepe et al. [1] investigated
the impact of weather on aviation transport using in situ observations, Radar, Lidar, Sodar,
AMDAR, METARs, and satellites for the period 2000–2011. They found that fog was the
phenomenon, after wind, that caused the second most weather-related aviation accidents
in general aviation.

The scientific community has developed various approaches for fog forecasting. Nu-
merical weather prediction (NWP) models are widely used for fog prediction, but accuracy
is still unsatisfactory (Belo-Pereira and Santos [2]). The adequate representation of the
atmosphere physics in the lower part of the troposphere and the interaction with the land
surface remains a challenge. Fog boundary-layer features were studied by Liu et al. [3] for
the period 2006–2009 using data from the meteorological observation station of Nanjing
University of Information Science and Technology. They concluded that the strength of
the inversion and water vapor have primary roles in the formation of thick fog. Román-
Cascón et al. [4] investigated three fog cases in Spain using the WRF model with different
parametrization schemes and found that despite some improvements in the simulated
wind speed and temperature, the positive biases remained an issue for accurate forecasting.
This is because fog formation is strongly related to temperature and wind speed, and even
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a 1 ◦C error could lead to an inaccurate forecast. These kinds of biases were reduced in a
study by Smith et al. [5] using a sub-kilometer Met Office Unified Model. They showed
that soil heat flux parametrization has a key role in the improvement in the calculated
surface temperature, thus resulting in better fog-onset and -dissipation timing. For a better
understanding of the microphysical and macrophysical processes of fog, Jia et al. [6] used
the WRF Chem model for a fog case in the North China Plain. Their research shows that an
increase in the concentration of PM2.5 leads to a nonlinear increase in fog droplet number
concentration, fog area, and fog duration. On the other hand, Yan et al. [7] compared the
impact of urbanization and aerosols on fog properties, and they concluded that the urban
heat island effect enhances updraughts, which shortens fog periods. Although increased
air pollution promotes fog formation, the study shows that the urban effect is stronger
and responsible for the overall decrease in fog occurrences in large cities. Boutle et al. [8]
investigated the importance of aerosol concentration on the speed of the development of
well-mixed fog and pointed out that aerosol activation is still not well-parametrized in NWP
models. Human impact on fog development was also studied by Bergot et al. [9], who used
the Meso-NH research model to perform large-eddy simulations of fog at Charles de Gaulle
Airport in Paris. They found that urban areas and especially the building size should be
taken into account for accurate forecasting. Shao et al. [10] investigated the aerosol–cloud
interaction for two consecutive fog cases in the Yangtze River Delta, China. They showed
that aerosols have a key role in fog-onset and -dissipation timing, as well as fog thickness
and horizontal extent.

Other supplementary tools for fog forecasting are fog indices. These indices, in gen-
eral, rely on measurements of temperature, dew point, and wind speed at the surface
and at higher levels in the atmosphere in order to estimate the stability of the layer be-
tween the two measurements. One such index is the widely used fog stability index (FSI),
which was developed by the US Air Force. The index was used in a series of studies
(Arun et al. [11], Holtslag et al. [12], Song and Yum [13]) where the authors showed that
the index outperforms some of the NWP models. Despite the promising results, the FSI
requires measurements at the 850 hPa pressure level, which is only possible with radio
sounding, which is only available a few times per day. In Bulgaria, a locally developed
stability index for Sofia (SSI) was proposed by Stoycheva and Evtimov [14]. It uses the
surface temperature and altitude differences between Sofia (600 m asl) and the peak of a
nearby mountain (2300 m asl) in order to measure the stability of the layer between the
two altitudes. The index has been in operational use since 2019 at the National Institute
of Meteorology and Hydrology in Bulgaria. Penov et al. [15] used both the FSI and the
SSI to evaluate their capability for fog detection in Sofia, Bulgaria. The SSI was improved
by adding wind speed, relative humidity, and integrated water vapor. Both indices were
found to have good capability for fog detection, with rates of probability of detection of
77.4% and 77.9% for the FSI and the SSI, respectively, but the false alarm ratio remained in
the range of 22–23%.

Machine-learning (ML) algorithms have been used for different classification and
regression tasks for many years, and recently ML-based techniques have begun to be
used for forecasting visibility and other meteorological phenomena. Phenomena like
thunderstorms, severe wind with gusts, and fog can cause arrival delays or even arrival
redirection (inability to land at the destination airport). Lui et al. [16] investigated this effect
at Hong Kong International Airport, and they analyzed flight and weather information for
the period 2017–2018 by applying the Bayesian network model. They concluded that there
was a nonlinear relationship between the weather and its impact on delays and cancellations
and that most of the effect was exerted on delays. Weather-related air traffic delays at
London Gatwick Airport were studied by Schultz et al. [17] using neural networks. They
used meteorological data from METAR observations and information from flight plans in
order to predict delays. Their study confirmed the ability of machine learning to solve tasks
with complex nonlinear relationships among parameters of different kinds. Bari et al. [18]
discussed the applications of the ML approach for fog nowcasting and forecasting and
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concluded that ML algorithms can improve the performance of NWP models, as well as
serve as local fog-nowcasting tools based on historical data of observations.

Kim et al. [19] have used the RF and two deep neural network models for visibility
estimation in two cities in South Korea. In their study, the RF model had the highest R2 and
precision scores, while the deep neural network models performed better in terms of bias.
Castillo-Botón et al. [20] carried out a comprehensive analysis of a series of different ML
models applied for visibility estimation both as regression and classification tasks. They
compared ensemble, artificial neural networks (ANNs), and linear and statistical-based
models and show that the best results for regression task in terms of R2, RMSE, and MAE
are from the ANN multi-layer perceptron model and from the ensemble method RF. The
ensemble models gradient boosting and RF have the best performance for classification.
The linear models are shown to have poor performance, which confirms the complex
and nonlinear nature of the fog phenomenon. A fog event transitions to a visibility of
around 5 kilometers very quickly, which leads to an insufficient amount of data for that
range. Therefore, when used for classification, all models find difficulties in predicting the
categories for mist and fog with visibility above 500 m.

Several deep-learning algorithms were used for visibility prediction by Peláez-
Rodríguez et al. [21] for two locations in Spain. They applied an ensemble procedure
creating 100 members for each model, which effectively improved the performance in
terms of MAE and RMSE compared to individual algorithms. Dewi et al. [22] also eval-
uated five different ML-based algorithms for visibility predictions for Wamena Airport
in Indonesia. They additionally use the stacked ensemble model, which combines all the
individual models and provides the best performance for every lead time prediction in
the study. Bartok et al. [23] proposed the implementation of visibility data from cameras
into ML models in order to improve the visibility forecast at the Poprad-Tatry Airport in
Slovakia. The visibility from the cameras was derived by detecting the presence or absence
of defined visual markers in several directions. They concluded that this approach leads to
an improvement in the accuracy of fog forecasting and especially at the time of fog onset.
Cameras for fog formation in the vicinity of the airport are also in operation at Sofia Airport,
Bulgaria. This technique helps overcome the disadvantage of visibility sensors, which have
a very close distance between the signal transmitter and receiver, which practically makes
it a point observation.

The aim of this work is to study fog characteristics and evolution at Sofia airport over
the period 2005–2022 and test the capability of two ML algorithms to estimate visibility.
Section 2 describes the data used in the study and the ML model setup. Input data have
sub-hourly temporal resolution. Section 3 contains the analysis of the fog characteristics, as
well as the results from RF and LSTM models and the following post-processing. Feature
importance from the RF model is also presented. A conclusion is given in Section 4.

2. Data and Methods
2.1. Study Area

Sofia Airport is located in the capital city of Sofia in the lower part of the Sofia
Valley, Bulgaria (Figure 1). The valley is located approximately in the center of the Balkan
Peninsula and has a well-defined continental climate. It is surrounded by high mountains,
which favors the formation of strong temperature inversion during the autumn and winter
seasons. A key role for fog formation in the area of the airport is the Iskar River passing
beneath the eastern part of the airfield and its adjacent small lakes and swamps. Fog in the
area of Sofia Airport is a radiation or advection–radiation type of fog. The radiation fog is a
result only of the nocturnal cooling of the surface air, while the advection–radiation type is
a combination of surface cooling and upper air warm advection.
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Figure 1. Map of Bulgaria (a) with double zoom over the Sofia Plain (b) and over the airport area (c).
Red and yellow markers indicate the sensor’s locations.

2.2. Data

To study the fog characteristics in Sofia Airport, the Meteorological Aerodrome Re-
port (METAR) observations are used for the period 2005–2022. For this period, there are
315,392 METARs. These bulletins are representative of weather conditions in the airport
area (8 km circle centered over the airport control point) and its vicinity of up to 16 km.
Reports are issued every 30 min and had manual quality control until 24 March 2022.
Now observations are automated between 22:00 (19:00 UTC summer time and 20:00 UTC
astronomical time) and 06:00 (03:00 UTC summer time and 04:00 UTC astronomical time)
local time. The variables in the METAR are wind speed (knots) and direction (◦), prevail-
ing horizontal visibility (m), present weather, cloud coverage of up to three layers, cloud
base (feet), temperature (◦C), dew point (◦C), and sea level pressure (hPa). The reported
wind speed and direction are 10 min average values. Wind characteristics and visibility
are measured in 3 locations alongside the runway, while the cloud sensors (ceilometer)
are located outside either end of the runway (Figure 1c). Temperature, dew point, and
pressure are measured in the middle point. Only the measured wind next to the runway in
use is reported in the METAR, while the reported clouds are averaged between the two
ceilometers on both ends of the runway.

In addition, sensor location can affect the reported values of meteorological elements
in several ways: (1) If the runway in use is from the west, i.e., practically next to the city, the
reported wind speed and direction are only from the western sensor. The pre-fog time is
associated with advection of air with high relative humidity from the east-southeast because
there are several swamps, lakes, and crop fields. This results in a weak easterly wind with
a speed of 1–2 m/s, which is detected mainly by the eastern sensor. This advection can
remain undetected by the west wind sensor because of the urban heat island effect, which
is associated with enhanced boundary layer turbulence and higher temperature. As a
result, fog frequently affects only the central and eastern parts of the airfield. In contrast,
only the thickest and prolonged fogs cover the entire airfield and extend into the city.
Furthermore, now that the observations are automated during the night, the prevailing
horizontal visibility is automatically determined by the three visibility sensors along the
runway. This sometimes leads to delayed mist reports, for example three sensors measure



Remote Sens. 2023, 15, 4799 5 of 17

visibility to be 8000 m in the west, 7000 m in the center, and 4100 m in the east, but the
reported visibility will be 7000 or 8000 when the METAR is issued.

Data Pre-Processing

The algorithm requires numerical values for every variable; thus, the cloud coverage
is transformed from a string to numerical values between 0 and 1. When wind direction is
reported as “variable”, it is replaced by the most frequent value. A parameter “dew-point
deficit” is added to the data by subtracting the dew point from the temperature in order to
have an indicator for the humidity, which is not part of the METAR. The date is converted
to the day of the year to represent seasonal variations. Data normalization using MinMax
Scaler is applied for all variables. Taking into account that METAR messages encode the
visibility above 9000 m as 9999, ML models will not benefit from these reports, because they
fail to establish a connection between the visibility and all the other parameters. Therefore,
only observations with visibility below 8000 m are included and only when the reported
present weather is fog, mist, or none, which results in 77,788 METAR observations (24.7%
of the total). The visibility observations in ascending order are presented in Figure 2. An
almost linear distribution is seen with slight changes in the angle of the curve above 500 m
and above 4000 m visibility. Approximately 10,000 observations have visibility below
1000 m, nearly 28,000 observations have visibility between 1000 and 5000 m, and almost
40,000 reports have visibility between 6000 and 8000 m.

Figure 2. Visibility distribution in ascending order. The red line is a polynomial fit.

2.3. Random Forest Model

The random forest model is a supervised ensemble ML algorithm (Breiman [24]). The
algorithm splits the dataset into training and testing subsets. The training set of data is
used to build multiple decision trees using the bootstrap method (Efron [25]). Each tree
uses a subsample of the training set and builds itself by looking for optimal performance
based on mean squared error and a threshold-based approach over a subset of data features.
The RF model is suitable for both classification and regression tasks. In this study, it is used
for regression tasks since we look for visibility values.
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RF Model Training

Cross-validation is applied with 100 setups to obtain the optimal parameter values.
Table 1 presents the parameters used for configuring the model. Two thousand trees are
built by the model during training and then used for testing. The max features parameter
is the number of features to consider when looking for the best split. The square root of the
total number of features is used for the max features parameter. Max depth is a measure of
how deep the tree is from its root node to its deepest leaf node. The min samples parameter
represents the minimum number of data samples required to split an internal node. The
data are split into 70% training set and 30% for testing. The variables used for building
the trees are day, hour, wind speed, wind direction, first layer cloud base and coverage,
temperature, dew point, temperature deficit, and pressure. The model was configured and
compiled using the scikit-learn library (Pedregosa et al. [26]).

Table 1. Random forest options.

Parameter Trees Max Features Max Depth Min Samples

Value 2000 sqrt 10 10

2.4. Long Short-Term Memory Model (LSTM)

The LSTM network (Hochreiter and Schmidhuber [27]) is a recurrent neural network
model that is designed to solve the issue of vanishing gradients (Rumelhart et al. [28]). This
issue is caused by the rapid increase or decrease in gradients in gradient-based optimization
algorithms during the training stage. In the case of LSTM, the optimization algorithm
is the rate of change of the loss function, which measures the difference between the
predictions and the actual values. The model is suitable for time series forecasting because
it has a three gate mechanism and an additional feature—the memory cell. The gates are
named update, forget, and output. The update gate controls new information, which is
stored in the memory cell, and the forget gate is responsible for storing only the important
information. The output gate combines the current and previous input (one step prior)
state of the hidden layer. These two are combined with the current state of the memory
cell to produce the network output that will also be used for the input of the next hidden
layer. This mechanism is able to effectively detect long-term dependencies and non-linear
relationships in time series.

LSTM Model Training

The same data pre-processing is applied as for the RF model. The data set is again
split into 70% for training and 30% for testing. In Table 2 the LSTM setup parameters are
given. The number of units (neurons) is set to 150, and the number of time steps available
as input is 12, which is 6 h. The adaptive moment estimation (Adam) optimizer (Kingma
and Ba [29]) is used for loss function minimization during training. The learning rate of the
optimizer is exponential decay starting from 0.01 and reduced by 0.9 for every 10,000 steps.
The rectified linear activation function (ReLU) is used to control the model output, making
sure that the predictions have only positive values. In this study, the mean squared error is
used as a loss function, and the number of epochs is set to 10. The model was configured
and compiled using the Keras API (Chollet et al. [30]).

Table 2. LSTM parameters.

Parameter Units Steps Optimizer Learning
Rate Activation Loss

Function Epochs

Value 150 12 Adam Exponential
decay ReLU

Mean
squared

error
10
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2.5. R2, MAE, RMSE

The coefficient of determination (R2) is calculated to evaluate model performance. This
coefficient is an assessment of how well the true visibility values are likely to be predicted
by the model. The possible values are between 0 and 1, where 1 is the perfect prediction,
and 0 is for no relationship between the input and the output of the model. Mean absolute
error (MAE) and root mean squared error (RMSE) are also used to evaluate model accuracy.
While R2 provides an indication of precision, MAE and RMSE give a measurement of the
average of the differences between predictions and observations (MAE) and a measurement
of the magnitude of these differences (RMSE). All three metrics are calculated using the
scikit-learn library (Pedregosa et al. [26]) with the following formulae:

R2(y, ŷ) = 1− ∑n
1 (yn − ŷn)2

∑n
1 (yn − y)2 (1)

MAE(y, ŷ) =
1
n
×

n

∑
1
|yn − ŷn| (2)

RMSE(y, ŷ) =

√
1
n
×

n

∑
1
(yn − ŷn)2 (3)

where n is the number of samples, y is the observation, ŷ is the prediction from the model,
and y is the mean of y.

2.6. POD, FAR, CSI, TSS

Probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and
true skill statistic (TSS) are calculated to provide an additional evaluation of model performance.
These scores are used for classification tasks; thus, a necessary transformation of the results
is applied. The predicted and observed visibility is divided into three classes—fog (0 < visi-
bility < 1000 m), mist (1000 m ≤ visibility ≤ 5000 m), and NIL (visibility > 5000 m). The
classification matrix is obtained, and the metrics are calculated by the formulae:

(1) Probability of detection (POD, [31]):

POD =
TP

TP + FN
(4)

(2) False alarm ratio (FAR, [31]):

FAR =
FP

FP + TN
(5)

(3) Critical success index (CSI, [31]):

CSI =
TP

TP + FP + FN
(6)

(4) True skill statistic (TSS, [31]):

TSS =
TP

TP + FN
− FP

FP + TN
(7)

where TP is the number of correctly estimated fog registrations, FN is the number of misses
(undetected fog registrations), TN is the number of correctly estimated no-fog registrations,
and FP is the number of incorrectly estimated fog registrations (fog was estimated by the
model but not observed). POD presents the percentage of correct fog estimations, and FAR
is the rate of incorrect fog estimations. CSI and TSS, similar to R2, measure the accuracy of
the models.
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The visualizations of fog characteristics and model performance were carried out with
Statistica Software (Sta [32]), Matplotlib (Hunter [33]) and Seaborn (Waskom [34]) libraries.

3. Results
3.1. Sofia Airport Fog Characteristics: 2005–2022

A seasonal distribution of fog observations is presented in Figure 3a, which confirms that
fog appears mostly in winter, but also a small secondary peak is seen for the months May and
June. The secondary peak of fog occurrences is related to the annual maximum of the monthly
rate of precipitation, which is usually convective precipitation. This type of precipitation
can be caused either by daytime heating or as a result of passing cold fronts. After rain,
soil moisture and air humidity are increased in addition to calm weather and clear sky, and
temperature can drop enough for fog to form. The diurnal distribution of fog observations
is shown in Figure 3b where it is clearly seen that the maximum is around 04-05 UTC just
before sunrise, and that is when the minimum temperatures are observed. The measured
sea level pressure (Figure 3c) during fog is high, with a maximum of 1024 hPa. Whilst the
majority of cases reported are above a pressure of 1013 hPa, cases reported below that value
are not negligible. While the majority of fog observations are associated with anticyclonic
weather, there are a number of fog cases caused by an approaching cyclone from W-SW or a
low-gradient pressure field and a weak flow at 850 hPa pressure level from W-SW, as reported
in Penov et al. [15]. Figure 3d presents the temperatures at which fog is reported for the
pressure interval 1015–1040 hPa. The maximum is at−1 ◦C, and most of the cases are grouped
around it in the interval from −6 ◦C to 2 ◦C. With the temperature dropping below −6 ◦C, ice
deposition takes place, and this is why fog occurrence is less likely.

(a) (b)

(c) (d)

Figure 3. Sofia Airport fog characteristics. (a) Monthly number of fog observations, (b) diurnal distri-
bution, (c) fog observations as a function of pressure, and (d) fog observations and air temperature
for the 1015–1039 hPa pressure interval.

The frequency of fog observations (Figure 4) for the period 2005–2022 is divided into
three consecutive periods of five years and one period of three years (2005–2009, 2010–2014,
2015–2019, and 2020–2022). Every next period shows an overall decrease in the number of
fog observations, but, more interestingly, the maximum of the fog observations is shifted
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towards the higher visibility range. While for the first period, the maximum is in the range
of 100–200 m with 57% of all cases below 300 m visibility (Figure 4a), the maximum for the
last period is in the range of 200–300 m with 42% of the cases below 300 m and practically
no observations below 100 m (Figure 4d). This behavior could be explained by the closure
of the biggest metallurgical company in Bulgaria in 2010, located about 8 km from the
airport in the NE direction. Circulation (Vautard and Yiou [35], Stoev et al. [36]) and climate
changes (Maurer et al. [37], Hunova et al. [38]) can also be factors.

(a) (b)

(c) (d)

Figure 4. Number of fog observations and visibility ranges for the period (a) 2005–2009, (b) 2010–2014,
(c) 2014–2019, and (d) 2020–2022.

Wind speed and direction are very important parameters of fog formation. Figure 5a
presents the distribution of reported wind direction when fog is observed. For 33% of the
observations, wind direction is reported, while for 46% of the data, the wind direction is
stated as “variable”, i.e., for the last 10 min before the METAR is issued the variations in
the direction exceed 180◦. Based on that, a wind rose is presented in Figure 5b for the cases
when wind direction is reported. The predominant direction is from E-SE, and wind speed
is mostly below 5 kt. This result is expected as moisture sources are located eastward from
the airport, and therefore a weak wind from that direction is increasing fog probability.

3.2. Random Forest and LSTM Visibility Estimation

The RF and LSTM models are used to predict visibility on given 11 features for 30%
of the data. Figure 6a,d present predictions and observations for the end of the test data.
The period includes three fog cases and demonstrates the ability of the models to track
the complex nature of fog formation and dissipation. Figure 6b is the scatter plot for the
relationship between predicted and observed visibility. It is clearly seen that low visibility
is overestimated, whilst high visibility is underestimated. Identical results are obtained by
the LSTM model (Figure 6d,e). The histograms of visibility (Figure 6c,f) show that both
models have problems predicting the lowest and highest visibility from the data, although
LSTM performs better for visibility below 1000 m.
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(a) (b)

Figure 5. (a) Distribution of the observations with reported wind direction, variable direction, and
calm. (b) Sofia Airport wind rose when fog is reported.

(a)

(b)

(c)

Figure 6. Cont.
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(d)

(e)

(f)

Figure 6. (a) RF and (d) LSTM visibility estimation. (b) Correlation between observations and
predictions for RF and (e) for LSTM. The red line points to the perfect match. (c,f) Visibility histogram
of observations and predictions.

3.2.1. Results Post-Processing and Model Evaluation

Both positive and negative biases are common issues for estimating visibility (Kim et al. [19]).
Thus, a double correction of the results from the RF and LSTM models is made with a linear
function (Kim et al. [39]). The data are split into two sets for visibility below 3500 m and above
3500 m. The function was derived by applying linear regression between predictions and actual
visibility values. The equation was then applied to the predictions from the model in order to
obtain corrected values. The correction functions are as follows:

RF
Visibility[m] = 0.33× y + 516 (8)

Visibility[m] = 0.47× y + 4339 (9)

LSTM
Visibility[m] = 0.33× y + 759 (10)



Remote Sens. 2023, 15, 4799 12 of 17

Visibility[m] = 0.44× y + 4418 (11)

where y is the predicted value. Equations (8) and (10) are applied for y <= 3500 m and
Equations (9) and (11) for the cases where y > 3500 m. By applying different corrections for
the cases with observed visibility below and above 3500 m for the RF and 4000 m for the
LSTM models, the bias is significantly reduced, and as seen on the time series (Figure 7a,d)
the predictions are more accurate. The scatter plot after the post-processing (Figure 7b,e)
indicates that there will be a rapid change in the values when the threshold of 3500 m is
passed. This behavior is in line with the observed rapid change in visibility during fog
onset and dissipation. Visibility between 5000 and 1000 m changes very quickly, as seen
in Figure 7a,d. The histograms of the visibility (Figure 7c,f) show that the predictions are
shifted and clustered in two separate areas for low and high visibility, which corresponds
better with the observations.

(a)

(b)

(c)

Figure 7. Cont.
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(d)

(e)

(f)

Figure 7. (a) Random forest and (d) LSTM visibility estimation after post-processing. (b,e) Correlation
between observations and predictions after post-processing. The red line points to the perfect match.
(c,f) Visibility histogram of observations and predictions after post-processing.

Evaluation of the performance of the models is given in Table 3. As is seen, R2 increases
significantly from 0.38 to 0.81 for the RF and from 0.44 to 0.82 for the LSTM models after
post-processing for correcting model bias. For the RF model, MAE has a 44% decrease from
1752 m down to 984 m and RMSE has a 45% decrease from 2123 m down to 1178 m. For
LSTM, MAE has a 40% decrease from 1600 m down to 955 m, and RMSE has a 43% decrease
from 2024 m down to 1154 m. MAE and RMSE retain a similar relationship, with RMSE
being 21% higher before and 20% higher after for the RF model, while for LSTM RMSE is
27% higher before and 21% higher after the post-processing. The similarity between MAE
and RMSE values means that there are no outliers that significantly affect the squared error.
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Table 3. RF and LSTM performance assessment. RF* and LSTM* stand for the post-processed
predictions.

R2 MAE [m] RMSE [m]

RF 0.38 1752 2123
RF* 0.81 984 1178

LSTM 0.44 1600 2024
LSTM* 0.82 955 1154

The classification matrices for the post-processed RF and LSTM models are presented
in Figure 8a,b, and classification metrics are presented in Table 4. The obtained POD and
FAR scores are low because of the positive bias in the predictions in the low-visibility range
as is seen in Figure 7c,f. The FAR values are around 1% for all configurations which is an
indication of the ability of the algorithms to correctly recognize the low-visibility conditions.

(a) (b)

Figure 8. Classification matrices for (a) RF* and (b) LSTM*.

Table 4. POD, FAR, CSI, and TSS for fog calculated for the RF and LSTM models. RF* and LSTM*
stand for the post-processed predictions.

RF RF* LSTM LSTM*

POD [%] 12 30 29 37
FAR [%] 0.7 1.7 0.9 1
CSI [%] 11 27 27 35
TSS [%] 11 28 28 36

3.2.2. Feature Importance

RF also provides a calculation of the importance of each input variable for the model.
The results are summarized in Table 5. According to the algorithm, the most important
parameter (34%) is the FSI followed by the dew-point deficit (23%), as both of them are a
measure of relative humidity. This result is in agreement with Choi et al. [40], where they
also find relative humidity as the most important input parameter for visibility estimation
according to the RF model. Its top position is expected as without saturation of the water
vapor, fog formation is impossible regardless of the other parameters. Cloud base is
the third most important parameter (11%). This parameter is more difficult to interpret
because it provides information about the outgoing Earth long wave radiation balance,
whereas low clouds directly affect visibility. Air temperature is at fourth place, and as
presented in Figure 3d the number of fog observations and the temperature have an
obvious relationship. The importance of wind speed and direction is also well-defined
and can be seen in Figure 5b. Although, according to the model, wind direction is not
important along with the pressure, hour, and cloud coverage, they have their impact on
fog development, but their role remains small probably because of the ensemble process
of making a prediction. For example, clouds are very important for whether or not the
temperature will drop enough for saturation, but most fog cases occur when there is a
clear sky.
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Table 5. RF feature importance.

Variable Importance

FSI 0.34
Dew-point deficit 0.23

Cloud base 0.11
Temperature 0.09
Wind speed 0.08
Day of year 0.06
Dew point 0.04

Hour 0.02
Pressure 0.02

Wind direction 0.01
Cloud coverage 0.01

4. Conclusions

This work investigated the fog characteristics at Sofia Airport for the period 2005–2022
using METAR observations, as well as visibility estimation capability of two machine-
learning models. The main fog characteristics were studied for the first time for the airport
with the highest traffic in Bulgaria. The fog is mainly during the autumn and winter seasons,
but there is a secondary peak during May and June. Fog occurs predominantly when the
temperature is between −6 and 2 ◦C and the pressure is high with a maximum number of
fog occurrences at 1024 hPa. For the studied period, there is a clear tendency of decrease in
the number of fog observations, and the maximum is shifting towards higher visibility.

The two machine-learning models (RF and LSTM) were built to estimate the visibility
on 11 meteorological parameters. Both models achieve similar performance by detecting
the increasing or decreasing visibility tendency, but an overall positive bias is observed
for the low-visibility spectrum (below 2500–3000 m) and a negative bias for the rest of the
spectrum. Post-processing with linear regression was applied, which improved the models’
performance significantly. The FSI is ranked as the most important parameter with 34%,
followed by the dew-point deficit with 23%, and the cloud base with 11%.

The machine-learning approach for visibility-related regression tasks shows very good
capability for learning the complex and nonlinear characteristics of fog formation and
dissipation. The visibility range of up to 8000 m is of high interest for aviation as the
ML algorithm teaches itself about the conditions before fog initiation. This provides a
lead time for air traffic authorities to prepare for a likely upcoming fog. Although similar
studies show a noticeable difference in the performance between ensemble ML and neural
networks, in our work their difference is very small. This could be as a result of the large
dataset, which is enough for both models to train themselves equally. Although in this work
only an estimation was made, a continuation of the study will be to test the performance in
case studies using NWP data as input in order to predict visibility. The LSTM model will
be used for recursive forecasting, aiming at producing a tool to help operational forecasters
in aviation issue timely fog warnings.
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