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Abstract: Snow cover has significantly changed due to global warming in recent decades, causing
large changes in the vegetation ecosystem. However, the impact of snow cover changes on the
spring phenology of different vegetation types in Northeast China remains unclear. In this study,
we investigated the response of the start of the growing season (SOS) to different snow cover
indicators using partial correlation analysis and stepwise regression analysis in Northeast China from
1982 to 2015 based on multiple remote sensing datasets. Furthermore, we revealed the underlying
mechanisms using a structural equation model. The results show that decreased snow cover days
(SCD) and an advanced snow cover end date (SCED) led to an advanced SOS in forests. Conversely,
an increased SCD and a delayed SCED led to an advanced SOS in grasslands. The trends of SCD
and SCED did not exhibit significant changes in rainfed cropland. The maximum snow water
equivalent (SWEmax) increased in most areas. However, the proportion of the correlation between
SWEmax and SOS was small. The impact of snow cover changes on the SOS varied across different
vegetation types. Snow cover indicators mainly exhibited positive correlations with the SOS of
forests, including deciduous broadleaf forests and deciduous coniferous forests, with positive and
negative correlations of 18.61% and 2.58%, respectively. However, snow cover indicators mainly
exhibited negative correlations in the SOS of grasslands and rainfed croplands, exhibiting positive
and negative correlations of 4.87% and 13.06%, respectively. Snow cover impacted the SOS through
the “temperature effect” in deciduous broadleaf forests, deciduous coniferous forests, and rainfed
croplands, while it affected SOS through the “moisture effect” in grasslands. These results provide
an enhanced understanding of the differences in snow cover changes affecting SOS in different
vegetation types under climate change in Northeast China.

Keywords: spring vegetation phenology; snow cover change; path model; remote sensing; Northeast
China

1. Introduction

Earth’s temperature has experienced an average increase of 0.18 ◦C per decade [1].
Meanwhile, the warming trend in China was measured at 0.21 ± 0.02 ◦C per decade from
1951 to 2010 [2], and this warming trend continues at an even faster pace [3]. Northeast
China is located in the northernmost region, and its annual average surface temperature
change rate is much higher than the national average [4,5]. Climate change has significantly
altered the timing of phenological events, including the widely reported advancement in the
growing season [6–8]. With the backdrop of climate change, these significant phenological
changes have major impacts on community structures and ecosystem functions [9–11].
Phenological changes induced by warming are also a major cause of the recent increase in
plant activity and carbon uptake [12].
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The start of the growing season (SOS) in China’s temperate ecosystems displays dis-
tinct spatial patterns across vegetation types, spatial gradients, and decadal variations. Pre-
vious studies indicate that the SOS in temperate ecosystems in China significantly advanced
from 1982 to 2010, with a maximum rate of 0.79 days yr−1 [8,13]. In comparison, the changes
in SOS are even more pronounced in high-latitude regions. In Northeast China, the SOS ex-
hibited a significant trend of advancement in deciduous coniferous forests (1.3 days yr−1),
deciduous broadleaf forests (0.88 days yr−1), and grasslands (0.79 days yr−1) [14,15], while
the SOS of rainfed cropland was significantly delayed (>30 days) [16].

In most ecosystems, precipitation, temperature, and photoperiod significantly impact
vegetation distribution, phenology, and biomass [17–20]. However, at high latitudes
and elevations, snow cover is another key factor affecting vegetation phenology [21].
Snow cover is considered a crucial element within the northern climate system. It affects
vegetation growth both directly and indirectly [22]. For example, the presence or absence of
snow cover affects the surface energy balance [23], thereby affecting the subsurface thermal
conditions. Snow cover also affects optical reflectance, thus influencing the greening trend.
For example, declining snow cover decreases the surface spectral reflectance, partially
explaining the higher normalized difference vegetation index (NDVI) values [24,25]. Snow
cover inhibits efficient vegetation photosynthesis by blocking incoming radiation, leading
to a delay in the SOS and a shorter length of the growing season [26–28]. The SOS is
clearly impacted by advancing or delaying the snow cover end date (SCED) [29]. The
SCED is determined by both spring temperatures and the depth of snow cover [30]. The
impacts of snowmelt on vegetation phenology are largely driven by synergistic changes
in soil water content and soil temperature induced by snowmelt. As snowmelt begins,
the infiltrated snowmelt water and the insulation of the remaining snow cover stimulate
vegetation activities below the snow [31].

Northeast China is situated within the high-latitude region of the country, with a max-
imum latitude of 53◦33′N. It is the second-largest stable snow-covered region of China [32]
and an important production base for agriculture, forestry, and husbandry. Many studies
have focused on the response of SOS to climate factors such as temperature, precipitation,
and radiation [15,31,33–35], and some studies have also considered the response of SOS to
other factors such as percent tree cover, urbanization, and cropland expansion [14,16,36],
but they have not considered the effect of snow cover. Some studies have explored the
impact of snow cover on SOS and they centered their attention on how snow phenology
affects SOS, but they did not pay enough attention to the effect of snow characteristics, such
as snow water equivalent (SWE) [37,38]. Furthermore, the differences in how snow cover
affects SOS in different vegetation types have received less attention. The understanding
of the pathways, including the pathways of water and temperature, by which snow cover
impacts SOS remains unclear.

In this study, we focused on the relation between SOS and snow cover changes using
remote sensing datasets from 1982 to 2015 in Northeast China to reveal the interaction
between snow cover and SOS. The primary objectives of our study were (1) to analyze the
spatiotemporal changes in SOS and snow cover indicators, (2) to quantify the impact of
snow cover indicators on SOS in different vegetation types, and (3) to reveal the mechanisms
by which snow cover affects SOS in different vegetation types. These findings are expected
to provide new insight into how the SOS responds to snow cover changes and improve the
predictions of the response of vegetation to changing climate conditions in Northeast China.

2. Datasets and Methods
2.1. Study Area

Northeast China serves as the study area (Figure 1). The region exhibits a relatively
large latitudinal gradient (38◦–53◦) and elevational gradient (0–2691 m). The length of sea-
sonal snow cover varies across the region, and it is characterized by a variety of vegetation
types. These diverse vegetation types can be used to explore the varied impacts of snow
cover changes on vegetation.



Remote Sens. 2023, 15, 4783 3 of 16

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 18 
 

 

2. Datasets and Methods 
2.1. Study Area 

Northeast China serves as the study area (Figure 1). The region exhibits a relatively 
large latitudinal gradient (38°–53°) and elevational gradient (0–2691 m). The length of 
seasonal snow cover varies across the region, and it is characterized by a variety of 
vegetation types. These diverse vegetation types can be used to explore the varied impacts 
of snow cover changes on vegetation. 

 
Figure 1. Location of Northeast China and the spatial distribution of mountains, plains, and the four 
major vegetation types, i.e., deciduous broadleaf forest, deciduous coniferous forest, grassland, and 
rainfed cropland. 

The vegetation map was derived from the Climate Change Initiative Land Cover (CCI 
LC) project. The land cover data at a spatial resolution of 300 m were provided by the 
European Space Agency [39]. Our emphasis was on pixels where the land cover types 
remained unchanged, and we selected the main vegetation categories, including 
deciduous broadleaf forests, deciduous coniferous forests, grasslands, and rainfed 
croplands. Croplands included dryland croplands and irrigated fields. We excluded 
irrigated fields because they are significantly disturbed through human management. 
Moreover, the majority of the dryland in Northeast China comprises rainfed croplands, 
which rely on natural rainfall without irrigation and thrive under the prevailing climate 
conditions [40,41]. Forests included deciduous forests and evergreen forests. Evergreen 
forests were also excluded from the analysis since their bud burst was a challenge to detect 
[42]. 

2.2. Observational Datasets 
Snow cover phenology data at a spatial resolution of 5 km from 1982 to 2015 and SWE 

data of 25 km from 1982 to 2015 were provided by National Cryosphere Desert Data 
Center [43,44]. The satellite-derived NDVI commonly represents vegetation greenness 

Figure 1. Location of Northeast China and the spatial distribution of mountains, plains, and the four
major vegetation types, i.e., deciduous broadleaf forest, deciduous coniferous forest, grassland, and
rainfed cropland.

The vegetation map was derived from the Climate Change Initiative Land Cover (CCI
LC) project. The land cover data at a spatial resolution of 300 m were provided by the
European Space Agency [39]. Our emphasis was on pixels where the land cover types
remained unchanged, and we selected the main vegetation categories, including deciduous
broadleaf forests, deciduous coniferous forests, grasslands, and rainfed croplands. Crop-
lands included dryland croplands and irrigated fields. We excluded irrigated fields because
they are significantly disturbed through human management. Moreover, the majority of
the dryland in Northeast China comprises rainfed croplands, which rely on natural rainfall
without irrigation and thrive under the prevailing climate conditions [40,41]. Forests in-
cluded deciduous forests and evergreen forests. Evergreen forests were also excluded from
the analysis since their bud burst was a challenge to detect [42].

2.2. Observational Datasets

Snow cover phenology data at a spatial resolution of 5 km from 1982 to 2015 and
SWE data of 25 km from 1982 to 2015 were provided by National Cryosphere Desert Data
Center [43,44]. The satellite-derived NDVI commonly represents vegetation greenness [45].
It is used to interpret the SOS through the extraction of land surface phenology [13]. We
utilized the GIMMS NDVI3g dataset, which offers a spatial resolution of 1/12◦ from 1982 to
2015. Moreover, the GIMMS NDVI3g dataset has undergone rigorous correction processes,
including calibration, solar geometry, significant aerosol presence, cloud effects, and various
non-vegetation-related elements [46]. As the most extended and uninterrupted dataset
to capture worldwide vegetation dynamics, GIMMS NDVI3g stands out as the optimal
selection for conducting long-term analysis of vegetation trends [47,48].
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Daily temperature, precipitation, solar shortwave radiation, soil temperature (ST), and
soil moisture (SM) were sourced from the European Centre for Medium-Range Weather
Forecasts ERA-5 land dataset [49]. This dataset is the most up-to-date reanalysis dataset,
with a long temporal resolution (1979~) and a high spatial resolution of 0.25◦, and it is
widely used in climatic and ecological studies [50].

Given the diverse timeframes covered by the datasets mentioned, we limited our
analysis to the years 1982–2015 to coincide with the NDVI series. Furthermore, to match the
resolution of the snow cover dataset, all datasets were interpolated to a spatial resolution
of 5 km. This was achieved using the nearest neighbor resampling method, eschewing any
inconsistencies in resolution.

2.3. Snow Cover Indicators and SOS Determination

Using the seasonal snow cover cycle as a reference, the hydrological year is delineated
as commencing on September 1st of a given year and concluding on August 31st of the
subsequent year. SCD is determined by summing up the count of days with recorded snow
cover throughout a hydrological year [44]. SCED, on the other hand, marks the date of the
final occurrence of a continuous five-day snow cover period within the same hydrological
year [51]. Additionally, SWEmax is characterized as the highest value of SWE observed
during a hydrological year [52].

Snowmelt may complicate the derivation of SOS [53,54]. Therefore, before extracting
the SOS, we undertook the procedure of substituting NDVI values affected by snow with the
average of NDVI values during the dormant periods [55]. This replacement was executed
on a per-pixel basis, utilizing the snow flag information derived from the GIMMSNDVI3g
quality field [56]. Then, the Savitzky–Golay filter was applied to significantly enhance
smoothness and reduce noise [57].

There are two steps involved in the SOS extraction method [58]. First, the double
logistic function is employed to fit the NDVI time-series dataset, as it has demonstrated
better suitability than other algorithms, especially in regions with persistent snow cover at
high latitudes [59].

y(t) = a + b
(

1
1 + ec(t−d)

+
1

1 + ee(t− f )

)
(1)

where a represents the initial background NDVI value; b is the maximum NDVI value; t is
the time in days; y(t) is the NDVI value at time t; and c, d, e, and f are parameters that need
to be set.

Second, we employ two commonly used methods to determine the SOS from NDVI
dataset, i.e., the inflection point detection method and dynamic threshold method [60,61].
In the inflection point detection method, we identify the inflection point in the reconstructed
NDVI time-series curve. The SOS is determined as the date corresponding to the maximum
first derivative of the fitted curve [62,63]. In the dynamic threshold method, a fixed
percentage of the annual maximum is used to compare the smoothed fitted NDVI time
series. The SOS is then determined as the date when the threshold of the NDVIday is
exceeded, representing the first day of the growing season [64].

NDVIratio =
NDVIday − NDVImin

NDVImax − NDVImin
(2)

where NDVIratio represents the ratio of the annual amplitude of NDVI on a specific day,
and we set the threshold of NDVIratio as 0.5; NDVIday refers to the fitted NDVI value on a
particular day, while NDVImax and NDVImin are the maximum and minimum NDVI values
observed each year, respectively [65]. Additionally, we refined the selection of suitable SOS
dates, narrowing them down to fall within the range of 1 to 200 days of the year (DOY).
We specifically retained the pixels where SOS could be determined consistently across all
34 years. To mitigate potential uncertainty stemming from methodological disparities, we
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employed a dual approach, incorporating both methods and subsequently averaging their
outcomes to ascertain the ultimate SOS value.

2.4. Statistical Analyses

Theil–Sen method [66] was utilized to calculate the slopes between all pairs of points.
The resulting median slope was then utilized to determine the magnitude and direction of
the temporal trend for both SOS and snow cover indicators. The trends were calculated
by adopting the improved Mann–Kendall test [67], which has been widely applied for
evaluating time-series trends due to its ability to simplify calculations and effectively
handle autocorrelation in the data.

Considering the influence of other climatic factors, we conducted partial correlation
analysis to investigate the impact of SCD, SCED, and SWEmax on the SOS. In this analysis,
we controlled for the impact of total precipitation and mean air temperature in the pre-
growing season (March and April), as well as the mean solar shortwave radiation during
the same period. Because of the multicollinearity among snow indicators, we conducted
stepwise regression to eliminate confounding factors and pinpoint the primary snow
indicators that influence SOS on a per-pixel basis. Furthermore, we conducted a stepwise
regression method to extract the main snow indicators influencing SOS based on the
determination coefficients for each pixel. This is an effective method that can solve the
multicollinearity of different snow indicators, and has been widely used in ecological
studies [52,68,69]

Structural equation modeling (SEM) is a robust multivariate technique that is increas-
ingly prevalent in scientific research for testing and evaluating multivariate causality [70].
It allows for the examination of both direct and indirect effects on predetermined causal
relations. Partial least squares path modeling (PLS-PM) was employed to investigate the
mechanisms through which snow cover impacts SOS. PLS-PM is a component-based, also
known as variance-based, approach to SEM [71]. It demonstrates an improved ability to
manage limited sample sizes and non-normal data.

We included the subsequent variables into the theoretical path model connecting snow
cover factors to SOS, drawing from prior recognition and data availability: snow (including
SCD, SCED, and SWEmax), SM, ST, and SOS [72,73]. Schematic path diagram shows how
snow cover impacts SOS through changes in SM and ST (Figure 2). Two primary pathways
were identified. The initial one is denoted as the “moisture effect”, in which snow cover
affects SOS through changes in SM. The second is recognized as the “temperature effect”,
in which snow cover affects SOS through changes in ST. Notably, in the “moisture effect”,
the effect of ST on SM is also taken into consideration.
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In the PLS-PM analysis, the path coefficients indicate the magnitude and direction
of the direct effect between two variables. A positive path coefficient indicates that when
the explanatory variable increases, the response variable also increases, and vice versa. To
evaluate the quality of the path model and assess its effectiveness, we used the goodness-
of-fit index (GOF), which is a global measurement. A GOF value higher than 0.36 indicates
that the modeling results are reliable [74]. We conducted separate PLS-PM analyses for each
geographical zone, and before performing the path analysis, all variable data were normalized.

3. Results
3.1. Spatiotemporal Dynamics of Snow Cover and SOS

The spatiotemporal changes in snow cover indicators (SCD, SCED, and SWEmax) and
SOS from 1982 to 2015 in Northeast China are depicted in Figures 3 and 4, respectively. The
annual means of snow cover indicators exhibit similar spatial patterns, gradually increasing
with higher latitudes. High values of SCD and SCED are observed in the Greater Khingan
Mountains and Lesser Khingan Mountains (days > 145 and DOY > 94). High values of
SWEmax are observed in high-altitude mountains and in the easternmost plain, with the
maximum value exceeding 32 mm (Figure 3a–c).
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Northeast China.

SCD shows a significant decrease in the Greater Khingan Mountains, Lesser Khingan
Mountains, and Changbai Mountains (Figure 3d). The range of SCED variation is rela-
tively small, and significant delays are observed in certain regions of the Hulunbuir Plain,
Songliao Plain, and Sanjiang Plain (Figure 3e). The SWEmax exhibits a significant increasing
trend, except in the northern and central regions (Figure 3f).

The annual means of SOS exhibit a consistent spatial distribution and trends. An
earlier SOS is observed in the Greater Khingan Mountains, Lesser Khingan Mountains,
Changbai Mountains (average elevation >1000 m), and Hulunbuir Plain (average elevation
of 550–700 m), where SOS predominantly exhibits a significant advancing trend. Conversely,
a later SOS mainly occurs in the Songliao Plain and Sanjiang Plain (average elevation
<200 m), where SOS shows a pronounced delayed trend (Figure 4).

3.2. Impact of Snow Cover Changes on SOS

Partial correlation analysis was conducted to investigate the relation between snow
cover and SOS after excluding the impact of precipitation, air temperature, and solar
shortwave radiation. Overall, snow cover shows a positive correlation with the SOS in
the mountains, whereas the relation is opposite in the plains (Figure 5). SCED has the
most significant impact on SOS, accounting for 20.21% of the whole area. The later SCED
likely delays the SOS in the Greater Khingan Mountains, Lesser Khingan Mountains, and
Changbai Mountains. Conversely, in the Hulunbuir Plain and Songliao Plain, the delay
in the SCED likely advances the SOS (Figure 5b). SCD also has a significant impact on
SOS, accounting for 12.28% of the whole area, which is lower than the proportion of
SCED. Spatially, the relation between SCD and SOS is similar to that between SCED and
SOS (Figure 5a). However, the proportion of the correlation between SWEmax and SOS is
relatively small, accounting for 6% of the whole area (Figure 5c).
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Figure 5. Partial correlation coefficient between SCD and SOS (a), SCED and SOS (b), and SCD and
SWEmax (c) in Northeast China. Only the pixels where p values were less than 0.05 were retained.

We calculated the proportion of significant correlations among different vegetation
types (Table 1). The vegetation region showing a significant positive correlation between
snow cover and SOS is found to be larger than the region with significant negative correla-
tions. SCED has the most significant impact on SOS in different vegetation types, especially
in deciduous coniferous forests, where the proportion of significant positive correlation
pixels is highest at 8.04% compared to non-significant pixels at 9.03%. The impact of SCD
on deciduous coniferous forests is also significant, with a proportion of 3.40% for a signifi-
cant positive correlation and 14.71% for a non-significant positive correlation. However,
the impact of snow cover on different vegetation types exhibits significant heterogeneity.
Significant positive correlations are dominant in deciduous broadleaf forests, with a total
proportion of 6.71% for positive correlations and 1.71% for negative correlations. Similarly,
in deciduous coniferous forests, the total proportion is 11.90% for positive correlations and
0.87% for negative correlations, suggesting that an increase in snow cover could delay the
SOS of forests. Conversely, correlations are mainly significantly negative for grasslands,
with a total proportion of 1.76% for positive correlations and 6.09% for negative correla-
tions. Similarly, in rainfed croplands, the total proportion is 3.11% for positive correlations
and 6.97% for negative correlations, indicating that more snow cover might result in an
advancement in the SOS in these areas.

Table 1. Proportion of area significantly correlated with snow cover indicators and SOS in different
vegetation types (p < 0.05); the proportion of pixels with p values greater than 0.05 are in parentheses.

Vegetations
Snow Cover SCD (%) SCED (%) SWEmax (%)

Positive Negative Positive Negative Positive Negative
Deciduous broadleaf forest 1.43 (17.09) 0.58 (19.08) 3.64 (23.89) 0.44 (10.17) 1.64 (20.91) 0.69 (13.90)
Deciduous coniferousforest 3.40 (14.71) 0.27 (3.00) 8.04 (9.03) 0.24 (4.06) 0.46 (9.64) 0.36 (10.06)

Grassland 0.43 (7.52) 2.45 (13.13) 0.77 (7.31) 2.63 (12.78) 0.56 (10.25) 1.01 (11.10)
Rainfed cropland 0.93 (14.28) 2.79 (22.65) 1.20 (16.55) 3.25 (19.53) 0.98 (20.23) 0.93 (17.77)

We conducted a quantitative analysis to assess the significance of snow cover on
the SOS of vegetation in Northeast China. In the Greater Khingan Mountains, Songliao
Plain, and parts of the Changbai Mountains and Lesser Khingan Mountains, snow cover
variability (SCD, SCED, and SWEmax) together explained the SOS variation, accounting
for 31.86% of the whole region. SCED was the most significant influencing factor, solely
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explaining the SOS variation and accounting for 17.62% of the variation in the whole region.
On the Sanjiang Plain, precipitation was identified as the primary factor influencing SOS,
explaining 7.47% of the whole region. In the Hulunbuir Plain, temperature was considered
a significant influencing factor, explaining 4.18% of the whole region (Figure 6).
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The impact of snow cover and climate factors on SOS in different vegetation types
shows distinct patterns. SCED has a predominant effect on the SOS of all vegetation types
in Northeast China. Furthermore, SCD has a significant impact on deciduous coniferous
forests (1.35%). Precipitation plays a significant role in the SOS of deciduous broadleaf
forests (3.21%) and rainfed croplands (3.54%), while temperature notably influences the
SOS of grasslands (1.86%). In contrast, SWEmax contributes the least among all factors
(Table 2).

Table 2. The proportion of the area significantly affected by snow cover indicators and climate factors
on SOS in different vegetation types. Only the pixels where p values were less than 0.05 were retained.

Vegetations
Impact Factors

SCD (%) SCED (%) SWEmax (%) PRE (%) TEM (%)

Deciduous broadleaf forest 1.17 3.97 2.12 3.21 0.81
Deciduous coniferous forest 1.35 8.43 0.21 0.34 0.10

Grassland 0.91 1.85 0.98 0.38 1.42
Rainfed cropland 1.70 3.36 1.51 3.54 1.86

Total 5.14 17.62 4.82 7.47 4.18

3.3. Underlying Mechanism in Different Vegetation Types

We quantified the relative importance of the two main processes (“moisture effect”
and “temperature effect”) contributing to the snow cover–SOS correlation based on the
path analysis. In all regions, GOF values are higher than 0.36, indicating that the model can
effectively explain the mechanism of snow cover changes affecting SOS. We found that the
“temperature effect” of snow cover plays a dominant role in deciduous broadleaf forests,
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deciduous coniferous forests, and rainfed croplands; however, the “moisture effect” of
snow cover has a greater impact on grasslands. The path effects vary in different vegetation
types (Figure 7).
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Figure 7. Path diagrams and path effects in (a) deciduous broadleaf forest, (b) deciduous coniferous
forest, (c) grassland, and (d) rainfed cropland.

Snow cover has a positive total effect on SOS (that is, earlier SOS under less snow)
for deciduous coniferous forests and deciduous broadleaf forests. In deciduous coniferous
forests, the most pronounced pathway affecting SOS is the “temperature effect” (Snow→
ST→ SOS), with the “moisture effect” being very weak, suggesting that a decrease in snow
cover advances SOS mainly through an increase in ST. Snow cover also has a positive total
effect on SOS in deciduous broadleaf forests, but the “temperature effect” is weaker than
that in deciduous coniferous forests while having a certain “moisture effect”. This result
suggests that the impact of snow cover on deciduous broadleaf forest is also dominated by
the “temperature effect”. In contrast, snow cover for grassland has a negative total effect
on SOS (that is, earlier SOS under more snow cover), and the negative “moisture effect” is
stronger than the negative “temperature effect”. This suggests that the delay in snow cover
could advance SOS due to a water–thermal synergistic effect dominated by the “moisture
effect”. Snow cover in rainfed croplands also has a negative total effect on SOS, but the
“temperature effect” is stronger than the “moisture effect”. This result suggests that the
impact of snow cover on rainfed croplands is dominated by the “temperature effect”.

Additionally, the calculated path coefficients in the path analysis encompass the impact
of one variable’s trend on another variable. For instance, there was an advanced trend in
grassland SOS (Figure 4b) but a delayed trend in snow cover indicators (Figure 3) over the
past 34 years. The negative correlation between SOS and snow cover was consistent with
the path analysis exploring that the total path coefficient linking snow cover indicators
and SOS was –0.05. There was an advanced trend of SOS in deciduous coniferous forests
(Figure 4b) and an advanced trend of snow cover indicators in the past 34 years. The
positive correlation was also confirmed by the positive path coefficient (0.19). We calculated
the path coefficients linking the variables to determine which coupling mainly contributed
to the pattern in different vegetation types. We found that the relatively high “temperature
effect” in deciduous coniferous forests was mainly contributed by the high path coefficients
relating ST to the SOS (–0.44). The “moisture effect” was found in grasslands due to the
relatively high coupling coefficients between ST and SM (–0.48), as well as between SM
and SOS (–0.14).
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4. Discussion
4.1. Spatial Differences in Snow Cover Affecting SOS

Over the past few decades, shifts in SOS driven by the changing climate have been
extensively investigated [10]. We found that the SOS demonstrates an advanced trend in the
Greater Khingan Mountains, Lesser Khingan Mountains, Changbai Mountains, and Hulun-
buir Plain. Conversely, there is a delayed trend in the Songliao Plain and Sanjiang Plain. We
observed that the changes in SOS correspond with satellite-derived SOS variations [16,75].
The results show that regions where SOS is advancing are mainly covered by natural
vegetation such as forests and grasslands, while regions where SOS is delayed are primarily
covered by rainfed cropland. Furthermore, we found that SCD decreases in forested areas,
and SCED experiences delays in grasslands and rainfed croplands. Additionally, increases
in SWEmax were observed in regions beyond the northern forest area.

This study showed that the impact of changes in snow cover on SOS varies in different
vegetation types. Specifically, the SOS of forests shows a positive correlation with snow
cover indicators, while the SOS of grasslands exhibits a negative correlation with snow
cover indicators. This may be attributed to the simpler vegetation structure in grasslands
compared to forests. In grasslands, the snow cover tends to melt immediately due to strong
solar radiation [76,77], leading to an earlier SOS. The response of SOS in rainfed cropland
to snow cover changes is similar to that in grasslands. In contrast, solar radiation is blocked
by the canopy in forests. The melting process of forest snow cover may last for up to one
month [78], which leads to prolonged lower temperatures during the early growing season
and may result in a delay in the SOS. Furthermore, grasslands are sensitive to frost. More
snow cover will prevent grasslands from being exposed to cold air temperatures too early
in spring, protecting plant buds from frost damage [79–81]. Moderate snow cover can
also effectively alleviate pest and rodent damage, which benefits the advanced SOS of
grasslands.

4.2. Different Mechanisms of Snow Cover Affecting SOS

We have revealed the mechanism by which snow cover influences SOS. We found
that the “temperature effect” is the dominant effect on SOS in Northeast China. However,
the effect of snow cover varies among forests, grasslands, and rainfed croplands. This
difference is consistent with previous studies that have indicated how the response of
vegetation phenology to changes in snow cover is influenced. Specifically, it is influenced
by the underlying surface conditions and different ecosystems [51,82].

In deciduous coniferous forests, the most pronounced pathway affecting the SOS is
a positive “temperature effect”, suggesting that less snow advances the SOS mainly by
reducing the optical reflectance and accumulating heat from solar radiation in the soil.
Being located in severely cold regions at high latitudes and high elevations appears to be a
primary factor for the “temperature effect”. Snow cover does not have a clear “moisture
effect” in deciduous coniferous forests, which is consistent with previous studies that
areas with excessive water are situated in high-latitude northern regions above 50◦N,
where water availability is not a limiting factor but energy is [83]. The snow cover effect
in deciduous broadleaf forests is similar to that in deciduous coniferous forests, but the
positive “temperature effect” is weaker, while it has a certain negative “moisture effect”,
which may also be attributed to the different canopy characteristics of the forests in terms
of solar radiation interception [84].

However, increased snow cover advances the SOS of grasslands through the “moisture
effect”. Compared to forests, grasslands have a simpler vegetation structure [85,86]. This
suggests that they can rapidly accumulate heat from solar radiation at the soil surface
and increase available water for SOS. Grasslands are mainly located in semi-arid regions
where water is a crucial limiting factor for vegetation [87]. Grasslands also exhibit a certain
“temperature effect” and advance the SOS of grasslands through water–heat synergy. In
addition, it may also be related to soil nutrient elements under the snow cover. Snow depth
has a significant impact on nitrogen mineralization [88]. Moderate snow depths can foster a
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favorable blend of moist and warm soil conditions, resulting in a significant augmentation
of total soil nitrogen buildup [89]. In rainfed croplands, the most significant pathway
affecting the SOS is a positive “temperature effect”, which is consistent with previous
studies showing that the SOS of agroecosystems exhibits a much higher temperature
requirement for SOS than natural ecosystems [16].

4.3. Implications

Our study reveals that SOS is most correlated with SCED, compared to other snow
cover indicators, and that there are large differences in the response of SOS to SCED in
different vegetation types. For example, an advanced SCED leads to an advanced SOS
in forests, but leads to a delayed SOS in grasslands. If SCED continues to advance, the
difference between the SOS of forests and grasslands will become more pronounced in
the future. In this sense, advancing SOS generally causes an increase in the length of the
growing season in forests, which in turn increases water stress later in the growing season.
In comparison, grasslands will be subjected to more water stress early in the growing
season. This understanding can be more constructive for developing a better climate
mitigation strategy or adaptation policy for different vegetation types.

Moreover, the analysis of SOS in response to changes in snow cover holds broader
ecological implications. The SOS marks the beginning of spring and the return of growth
in many plant species, making it a crucial event in the annual cycle of ecosystems. The
timing of SOS is linked to various phenological phases of plant species, including flowering,
leaf emergence, and fruiting. As a result, it becomes essential to consider the impacts of
snow cover changes when investigating and assessing the broader ecological processes
associated with these phenological events.

4.4. Uncertainties and Future Perspectives

It should be emphasized that the NDVI-based SOS derived from satellite data rep-
resents the average SOS of ecosystems within pixels. However, it may show differences
compared to the data obtained from ground-based observations [90]]. Therefore, we focus
on whether the trends in SOS derived from satellite extraction are consistent with the
data obtained from ground-based observations. Apart from the influence of snow cover
indicators and climate factors, human management might also play a contributing role in
rainfed cropland, such as cultivar and sowing date [16,91,92]. The mechanisms of the dif-
ferences in the SOS between agroecosystems and natural vegetation under anthropogenic
management measures may be very complex, and revealing these underlying mechanisms
can be the main purpose of future studies.

In this study, due to the constraints of available data, we did not consider additional
factors when constructing the SEM. Some of these factors may have impacts on SOS,
such as the total nitrogen (N) in the soil [89]. Including the Snow-N-SOS pathway could
potentially provide a clearer understanding of the mechanisms through which snow cover
influences SOS. Furthermore, in addition to the previously mentioned influencing factors,
there are some potential drivers that have not received sufficient attention affecting SOS in
Northeast China, such as land cover changes [93–95]. This will also be a direction for further
research. We provided a comprehensive understanding of how snow cover influences SOS
in Northeast China based on low-spatial-resolution remote sensing data. In the future, it
will be necessary to further utilize high-spatial-resolution data and conduct long-term in
situ observations to investigate the relation between snow cover and SOS at a finer scale.

5. Conclusions

In this study, we analyzed the SOS and its response to snow cover changes from 1982
to 2015 in Northeast China based on multiple satellite data products and climate datasets.
Overall, in the mountains covered by forests and the plains covered by grasslands, the SOS
exhibited a significant advancing trend. However, the plains covered by rainfed cropland
exhibited a significant delayed trend. The results showed that snow cover had a significant
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impact on SOS. A reduction in snow cover led to an advancement in the SOS in forests,
while an increase in snow cover resulted in an earlier SOS for grasslands and croplands.
The results revealed that the impact of snow cover changes on SOS varied across different
vegetation types. Furthermore, we revealed that snow cover changes affected the SOS of
forests and rainfed croplands through the “temperature effect”, while they impacted the
SOS of grasslands through the “moisture effect”.
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84. Olpenda, A.S.; Stereńczak, K.; Będkowski, K. Modeling solar radiation in the forest using remote sensing data: A review of
approaches and opportunities. Remote Sensing 2018, 10, 694. [CrossRef]

85. Qi, Y.; Wang, H.; Ma, X.; Zhang, J.; Yang, R. Relationship between vegetation phenology and snow cover changes during
2001–2018 in the Qilian mountains. Ecol. Indic. 2021, 133, 108351. [CrossRef]

86. Zheng, J.; Jia, G.; Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 2022,
315, 108828. [CrossRef]

87. Fu, Y.; Li, X.; Zhou, X.; Geng, X.; Guo, Y.; Zhang, Y. Progress in plant phenology modeling under global climate change. Sci. China
Earth Sci. 2020, 63, 1237–1247. [CrossRef]

88. Borner, A.P.; Kielland, K.; Walker, M.D. Effects of simulated climate change on plant phenology and nitrogen mineralization in
Alaskan arctic tundra. Arct. Antarct. Alp. Res. 2008, 40, 27–38. [CrossRef]

89. Magnani, A.; Viglietti, D.; Godone, D.; Williams, M.W.; Balestrini, R.; Freppaz, M. Interannual variability of soil n and c forms in
response to snow—Cover duration and pedoclimatic conditions in alpine tundra, northwest Italy. Arct. Antarct. Alp. Res. 2017,
49, 227–242. [CrossRef]

90. Doktor, D.; Bondeau, A.; Koslowski, D.; Badeck, F.-W. Influence of heterogeneous landscapes on computed green-up dates based
on daily AVHRR NDVI observations. Remote Sens. Environ. 2009, 113, 2618–2632. [CrossRef]

91. Yang, Y.; Ren, W.; Tao, B.; Ji, L.; Liang, L.; Ruane, A.C.; Fisher, J.B.; Liu, J.; Sama, M.; Li, Z. Characterizing spatiotemporal
patterns of crop phenology across North America during 2000–2016 using satellite imagery and agricultural survey data. ISPRS J.
Photogramm. Remote Sens. 2020, 170, 156–173. [CrossRef]

92. Shen, Y.; Zhang, X.; Yang, Z. Mapping corn and soybean phenometrics at field scales over the United States Corn Belt by fusing
time series of Landsat 8 and Sentinel-2 data with VIIRS data. ISPRS J. Photogramm. Remote Sens. 2022, 186, 55–69. [CrossRef]

93. Pan, Y.; Peng, D.; Chen, J.M.; Myneni, R.B.; Zhang, X.; Huete, A.R.; Fu, Y.H.; Zheng, S.; Yan, K.; Yu, L. Climate-driven land surface
phenology advance is overestimated due to ignoring land cover changes. Environ. Res. Lett. 2023, 18, 044045. [CrossRef]

94. Zhang, X.; Liu, L.; Henebry, G.M. Impacts of land cover and land use change on long-term trend of land surface phenology:
A case study in agricultural ecosystems. Environ. Res. Lett. 2019, 14, 044020. [CrossRef]

95. Wang, J.; Zhang, X.; Rodman, K. Land cover composition, climate, and topography drive land surface phenology in a recently
burned landscape: An application of machine learning in phenological modeling. Agric. For. Meteorol. 2021, 304, 108432.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2307/20650284
https://doi.org/10.3390/rs14030705
https://doi.org/10.1016/j.agrformet.2018.01.010
https://doi.org/10.1002/hyp.6382
https://doi.org/10.1002/eco.48
https://doi.org/10.1890/06-2128.1
https://doi.org/10.1111/j.1365-2486.2011.02424.x
https://doi.org/10.1111/j.1365-2486.2006.01185.x
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1038/s41467-021-24016-9
https://doi.org/10.3390/rs10050694
https://doi.org/10.1016/j.ecolind.2021.108351
https://doi.org/10.1016/j.agrformet.2022.108828
https://doi.org/10.1007/s11430-019-9622-2
https://doi.org/10.1657/1523-0430(06-099)[BORNER]2.0.CO;2
https://doi.org/10.1657/AAAR0016-037
https://doi.org/10.1016/j.rse.2009.07.020
https://doi.org/10.1016/j.isprsjprs.2020.10.005
https://doi.org/10.1016/j.isprsjprs.2022.01.023
https://doi.org/10.1088/1748-9326/acca34
https://doi.org/10.1088/1748-9326/ab04d2
https://doi.org/10.1016/j.agrformet.2021.108432

	Introduction 
	Datasets and Methods 
	Study Area 
	Observational Datasets 
	Snow Cover Indicators and SOS Determination 
	Statistical Analyses 

	Results 
	Spatiotemporal Dynamics of Snow Cover and SOS 
	Impact of Snow Cover Changes on SOS 
	Underlying Mechanism in Different Vegetation Types 

	Discussion 
	Spatial Differences in Snow Cover Affecting SOS 
	Different Mechanisms of Snow Cover Affecting SOS 
	Implications 
	Uncertainties and Future Perspectives 

	Conclusions 
	References

