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Abstract: Precipitable water vapor (PWV) with high precision and high temporal resolution estimated
by Global Navigation Satellite System (GNSS) is widely used in atmospheric research and weather
forecasting. However, most previous works are not consensual concerning the characteristics of the PWV
at different time scales and the identification of active and break spells during summ er monsoon climate
in Guangxi, China. Taking radiosonde (RS) observations as reference, a strong correlation (R > 0.97) exists
between GNSS PWV and RS PWV with a mean root mean square error (RMSE) of 2.68 mm. The annual,
seasonal, monthly, and diurnal PWV variations of three years (2017, 2018 and 2020) over Guangxi in
were comprehensively investigated using 104 GNSS stations and the fifth-generation European Centre
for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis (ERA5). The mean annual bias
and RMSE between GNSS PWV and ERA5 PWV are−1.04 mm and 2.63 mm, respectively. The monthly
bias and RMSE range are−0.77 to 3.87 mm, 1.32 to 4.45 mm, and the daily range is−1.41 to 1.07 mm and
1.11 to 5.02 mm, respectively. Additionally, the adopted average standardized rainfall anomaly criteria
also identified 7/7/3 active spells and 5/3/7 break spells during the summer monsoon (June–September)
from 2017 to 2020, respectively. During the three-year period, the daily amplitude ranges for active
spells varied from 1.41 to 2.49 mm, 0.69 to 5.4 mm, and 0.88 to 1.41 mm, while the ranges for break
spells were 2.45 to 6.76 mm, 1.66 to 8.17 mm, and 1.48 to 2.99 mm, respectively. The results show a
superior performance of GNSS PWV compared to ERA5 PWV in Guangxi, and the maximum, minimum
and occurrence time of PWV anomaly vary slightly with the season and the topography of stations.
Despite temperature primarily exhibiting a negative correlation with rainfall, acting as a dampener, a
positive correlation remains evident between PWV and rainfall. Therefore, densely distributed GNSS
stations exhibit excellent capabilities in quantifying atmospheric water vapor and facilitating real-time
monitoring of small and medium-scale weather phenomena.

Keywords: GNSS; PWV; diurnal cycle; ERA5; Guangxi monsoon

1. Introduction

Water vapor is paramount in climate change [1], the hydrological cycle, heat exchange
and transfer due to spatiotemporal variability, the natural greenhouse effect and latent heat
released by condensation [2]. Therefore, an accurate representation of water vapor concen-
tration is crucial for numerical weather prediction [3], extreme weather monitoring [4] and
global and regional scale climate models.

Precipitable water vapor (PWV) is a fundamental parameter for studying the upper
limit of potential precipitation that can fall from any air column [5,6]. Ground-based
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instruments such as the radiosonde (RS), spectrometer, microwave radiometer, and sun
photometer are impeded by adverse weather conditions, con-strained spatial coverage, and
challenges related to data quality. Satellite-derived PWV such as Global Positioning System
Radio Occultation (GPSRO) [7–9] is susceptible to influences such as clouds, aerosols, and
other factors, necessitating intercomparison with reliable measurements to ensure its qual-
ity. PWV can be derived from the zenith total delay (ZTD) of Global Navigation Satellite
Systems (GNSS) signals [10–12], as atmospheric water vapor predominantly contributes
to tropospheric delay. GNSS-derived PWV [13] has gained recognition for its reliabil-
ity, real-time availability, high temporal resolution, and exceptional accuracy (less than
3 mm) [14]. High-precision GNSS PWV plays a crucial role in monitoring and forecasting
extreme weather conditions, such as heavy rainfall [15,16] and typhoons [17,18], while also
contributing to the analysis and prevention of natural disasters like earthquakes [19,20]
and storm surges [21,22] through the provision of reliable data support Nonetheless, as
a relatively recent technique, the retrieval of PWV from GNSS still requires extensive
exploration and validation across diverse global spatial and temporal scales.

This paper focuses on the characteristics of the PWV above the Guangxi Zhuang
Autonomous Region (Guangxi) at low latitudes in southern China. Guangxi exhibits a
highly intricate topography, featuring mountainous hilly basins with highlands in the
northwest and lowlands in the southeast. It distinctly manifests the hallmark attributes of
a subtropical monsoon climate with substantial precipitation and elevated temperatures,
which are influenced by its topography and proximity to the ocean [23]. The intricate topog-
raphy, ample rainfall, and synoptic-scale spatiotemporal circulation patterns emphasized
the significance of delving into the regional climate model of Guangxi. Despite numerous
studies delving into the characteristics and pivotal roles of GNSS PWV in meteorological
processes across various spatiotemporal scales [24–26], there remains a dearth of research
explicitly concentrating on the annual, seasonal, monthly, and diurnal cycles of dense
GNSS PWV within Guangxi. Radiosonde and remote sensing data have been assimilated
into atmospheric analysis data products, but the PWV data detected by GNSS has not yet
been assimilated [27]. Therefore, to explore the coordination and applicability of differ-
ent datasets in Guangxi, a comprehensive comparison is undertaken between the PWV
derived from the Continuously Operating Reference Stations (CORS) [28] and the fifth-
generation European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric
Reanalysis [29] (ERA5) over different time scales.

The quantity of precipitation received by a station is controlled by the amount of avail-
able water vapor, degree of saturation, and the conducive dynamic mechanism to provide
required condensation and form droplets that fall to the earth’s surface. The elevated atmo-
spheric water vapor content but the absence of rainfall in summer suggests a significant
contribution of local evaporation to atmospheric water vapor when horizontal moisture
transport is limited. Furthermore, existing studies indicate a strong correlation between
PWV and multiple factors, such as latitude-dependent solar radiation [30] (i.e., seasons),
temperature [31,32], and the geographical positioning of GNSS stations—encompassing
proximity to lakes or coasts, placement within valleys, atop mountains, or on islands [33].
Therefore, this study also identified the active/break spell of the Guangxi summer monsoon
by average standardized rainfall anomaly criteria and analyzed the variation of PWV and
rainfall during these time periods. Moreover, the Pearson correlation coefficients between
PWV, surface temperature, rainfall, and Precipitation efficiency (PE) [34] were calculated to
understand the role of each meteorological factor.

The paper is structured as follows: Section 2 describes the datasets and methodology
after this Introduction. The comparison and analysis between GNSS PWV and ERA5 PWV
are in Section 3. The active/break spell and the interrelationships of PWV between multiple
meteorological parameters are in Section 3.3. Finally, the Conclusions are in Section 4.
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2. Data and Methodology
2.1. GNSS PWV

In this experiment, due to significant data gaps in the GNSS observations for the year
2019, we utilized data from the years 2017, 2018, and 2020 spanning a three-year period.
The GNSS observations from 2017 to 2020 collected at 121 stations were processed using the
GNSS at Massachusetts Institute of Technology (GAMIT) software, as shown in Figure 1.
And the required meteorological observations and hourly rainfall data are provided by
the China Meteorological Administration (CMA). We combined dense GNSS stations with
co-located meteorological observations, ensuring the retrieved PWV has high spatial resolu-
tion and accuracy. This approach allows for comprehensive PWV assessment and analysis
in Guangxi with complex terrain and unique meteorological conditions, despite the higher
vertical resolution and broader coverage advantages of GPSRO. Notably, there are apparent
observation gaps in the time series of GNSS stations and meteorological (MET) stations, so
we screened stations with the annual hourly records of each station exceeded 80%. Conse-
quently, the observations of 104 GNSS stations in Guangxi were finally selected, which still
ensures the coverage of diverse geographic regions with varying climatic conditions. Given
the dense distribution of GNSS stations and most lack meteorological sensors, we selected
for meteorological stations within a 30 km radius of each GNSS station. The formulas are
as follows [35]:

Ts = T0 − β(h− h0), (1)

Ps = P0

[
1− β

T0
(h− h0)

] g·M
R·β

, (2)

where Ts and Ps are the surface temperature (K) and surface pressure (hPa) of GNSS station,
T0 and P0 are the surface temperature and pressure at the MET station, respectively; h and
h0 are the elevation (m) of GNSS station and MET station. M is the molar mass of dry air of
0.02896444 kg/m3, R is the ideal gas constant of 8.31432 J/K ·mol.
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Figure 1. Distribution of 121 GNSS stations and 4 RS stations in Guangxi.

And gravitational coefficient g, lapse rate parameters β are expressed as follows:

g = 9.8063 ·
{

1− 10−7 h + h0

2

[
1− 0.0026373 · cos(2ϕ) + 5.9 · 10−6 · cos2(2ϕ)

]}
, (3)

β(ϕ, θ, DOY) = δ1 + δ2 ϕ + δ3θ + δ4 cos
(

2π DOY
365.25

)
+ δ5 sin

(
2π DOY

365.25

)
+δ6 cos

(
4π DOY

365.25

)
+ δ7 sin

(
4π DOY

365.25

) , (4)

where ϕ, θ and DOY are latitude, longitude (radian) and the day of year, respectively. δ1,
δ2, δ3, δ4, δ5, δ6 and δ7 are the model coefficients.

In GNSS data processing, ZTD is estimated, and the zenith hydrostatic delay (ZHD) is
modelled to access the zenith wet delay (ZWD). ZHD can be modelled by the Saastamoinen
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formula [36] expressed as a function of surface pressure Ps, latitude ϕ and ellipsoid height
H. The basic formula for deriving PWV from GNSS observations is as follows:

ZTD = ZHD + ZWD, (5)

PWV =
106

ρwRv

[
k3
Tm

+ k′2
] · ZWD, (6)

where ρW is the density of liquid water of 1 × 103 kg/m3, Rv is the water vapor gas
constant of 461.495 J ·kg−1 ·K−1, and k′2, k3 are the empirical values of atmospheric physical
parameters of 22.13± 2.20 K/hPa and (3.739± 0.012) × 105 K2/hPa, respectively. Tm is
the atmospheric weighted mean temperature calculated from surface temperature (K)
Ts, latitude (radian) ϕ and days of year DOY. a0, a1,a2, a3, a4, a5 and a6 are the model
coefficients.

Tm(Ts, ϕ, DOY) = a0 + a1Ts + a2 ϕ + a3 cos
(

2π·DOY
365.25

)
+ a4 sin

(
2π·DOY

365.25

)
+a5 cos

(
4π·DOY

365.25

)
+ a6 sin

(
4π·DOY

365.25

) , (7)

The calculation accuracy of Tm influences the outcome of GNSS-derived PWV [37–39].
While numerous classical Tm models are suitable for regional [40–42], we utilized the obser-
vations of four RS stations from 2013 to 2015 to establish an empirical model specific to the
Guangxi region (GXTm). Taking RS observations in 2016 as a reference, the classical linear
model [14] Tm = 70.2 + 0.72Ts and the third-generation global pressure and temperature
(GPT3) model [43,44] were introduced to validate the accuracy of GXTm. The results show
that the root mean square error (RMSE) of the GXTm is reduced by 26% and 34% compared
with Bevis’s model and GPT3, respectively.

2.2. RS PWV

The RS observations contain meteorological parameters of the atmospheric profile
collected by radiosonde balloons with a time resolution of 12 h per day (UTC 00:00/UTC
12:00) [45]. In order to minimize the impact of distance and elevation, 12 GNSS stations
were selected based on the criteria that the distance between RS stations and GNSS stations
is within 30 km and the elevation difference is within 500 m. Tm and PWV can be calculated
from RS observations by the numerical integration method as follows:

Tm =

∫ ei
Ti

dz∫ ei
T2

i
dz

, (8)

PWV =− 1
g

∫ Pi+1

Pi

q dP = − 1
g

Pi+1

∑
Pi

q · P, (9)

where Ti and ei are the absolute temperature (K) and water vapor pressure (hPa) at the
height level, respectively. g is the acceleration due to gravity, q represents specific humidity
(g/kg), Pi+1 and Pi are the pressures of upper and lower layers (hPa), respectively.

2.3. ERA5 PWV

ERA5 is generated using the 4D-Var data assimilation scheme of the CY41R2 model of
the integrated forecast system (IFS) of ECMWF, which includes the latest multi-satellite
sounders, imagers, and ground-based data through assimilation [46–48]. ERA5 provides
hourly atmospheric reanalysis data at 37 pressure levels from 1000 hPa to 1 hPa with a
horizontal spatial resolution of 0.25◦ × 0.25◦ (longitude × latitude) [27]. The ERA5 hourly
surface gridded PWV from 2017 to 2020 was used to compare with the GNSS PWV to verify
its applicability in monitoring PWV in Guangxi. Since the reanalysis gridded data of ERA5
are not strictly collocated with the GNSS stations, spatial adjustments of the reanalysis data
to the stations are also required [49]. First, the ERA5 PWV of the four grid points around
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the station were vertically adjusted to be the same as the station height. Then, bilinear
interpolation is performed on the ERA5 PWV of the four grid points after the unified height
to complete the horizontal adjustment. The vertical adjustment formula is as follows.

PWVh1 = PWVh2 · exp(β(h1 − h2)), (10)

β(DOY) = A0 + A1 cos
(

DOY
365.25 2π

)
+ A2 sin

(
DOY

365.25 2π
)

+A3 cos
(

DOY
365.25 4π

)
+ A4 sin

(
DOY

365.25 4π
) , (11)

where PWVh1 and PWVh2 represent the PWV values at heights (km) h1 and h2, respectively.
PWV lapse rate β (mm/km) can be calculated by days of year. A0, A1, A2, A3 and A4 are
the model coefficients.

The elevation difference is one of the main reasons affecting the comparison results of
different PWV datasets, so we followed the method of Wang et al. [50] to unify the height
of RS PWV and ERA5 PWV into the geodetic height.

2.4. Statistical Indicators

Noted that the observations will be filtered if the bias between it and its average value
exceeds three times the standard deviation (STD). Therefore, the abnormal PWV caused
by long-term measurement under various conditions has been eliminated by this control
principle. To calculate the daily mean values, we averaged the 24-h PWV data, and a similar
procedure was used to determine the monthly, seasonal, and annual values. To analyze
the diurnal cycle of PWV, the hourly PWV anomalies for each station were obtained by
subtracting the daily average from the hourly PWV values.

For the analysis of differences, the correlation coefficient (R), bias, RMSE and STD are
calculated by the following formulas:

R =

N
∑

i=1

(
XOi − XO

)(
XRi − XR

)
√

N
∑

i=1

(
XOi − XO

) N
∑

i=1

(
XRi− − XR

) , (12)

Bias =
1
N

N

∑
i=1

(
XOi − XRi

)
, (13)

RMSE =

√√√√ 1
N

N

∑
i=1

(
XOi − XRi

)2, (14)

STD =

√√√√ 1
N− 1

N

∑
i=1

(
Xi − Xi

)2. (15)

where XO represents the evaluated value, and XR is the reference value.

3. Results and Discussion

To facilitate the discussion on spatiotemporal PWV variability, the 104 stations in
Guangxi were divided into four categories, i.e., northern Guangxi (GXN), central Guangxi
(GXM), southern Guangxi (GXS), and Guangxi coast (GXC). For examining PWV variability
across different time scales, March to May represents the pre-monsoon season (PreM), June
to September is the summer monsoon season (MonS), October to November is the post-
monsoon season (PostM), and December to February is winter. Additionally, to analyze the
day-night difference and daily cycle of PWV throughout Guangxi, all dataset timestamps
expressed in UTC were converted to local time (LT) using an eight-hour offset.
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3.1. Evaluation with RS PWV

The correlation, mean bias and RMSE between GNSS PWV and RS PWV at three
different times (daily, LT 8:00 and LT 20:00) from 2017 to 2020 were computed. As depicted
in Figure 2, the high correlation coefficients between GNSS PWV and RS PWV are all 0.97
at three different times. The mean biases and mean RMSEs at three different times are
0.10/0.35/−0.16 mm, 2.68/2.63/2.70 mm, respectively. The mean RMSE is less at LT 8:00
than at LT 20:00, whereas the mean bias exhibits the opposite trend. The difference between
daytime and nighttime observations might be attributed to the substantial solar radiation in
Guangxi during daylight hours, leading to more complex variations in water vapor content
compared to night. Moreover, the comparison between GNSS PWV and RS PWV might be
influenced by recognized RS’s radiative dry bias in daytime humidity observations [51].
Mengistu et al. [52] have observed a parallel phenomenon while examining the relationship
between GNSS PWV and co-located RS PWV. The notable correlation between GNSS PWV
and RS PWV in the study might be due to the distinct GNSS processing methodologies and
the utilization of the specialized GXTm model for converting ZTD to PWV.
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Figure 2 illustrates the high correlation in PWV (R > 0.96) between 4 RS stations and the
chosen co-located GNSS stations, and the mean RMSE of approximately 3 mm conforming
to the standard of GNSS PWV applied to meteorology [35]. Most stations exhibit positive
mean biases at different times are negative, suggesting that GNSS PWV is generally wetter
than RS PWV within Guangxi. Zhao et al. [53] concluded that the mean RMS and bias
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between 52 GNSS PWV and RS PWV were 2.25 and 1.57 mm, respectively, and analyzed
diurnal PWV variations in China. Huang et al. [54] discovered t that the mean bias and
RMSE between GNSS PWV and RS PWV in Guilin, China, were −0.9 mm and 3.53 mm,
respectively. These values indicate that in low-latitude regions, the accuracy of GNSS
PWV relative to RS PWV is relatively low, emphasizing the need for further analysis. To
assess the seasonal variation across the two datasets, the monthly biases and RMSEs are
presented in Table 1. Monthly biases and RMSE values are consistently higher during MonS
throughout the year, with a maximum of 2.24 mm and 1.58 mm in August, respectively.

Table 1. Monthly Bias and RMSE between GNSS PWV and RS PWV.

Months January February March April May June July August September October November December

Bias (mm) −0.74 −0.08 0.78 −0.12 0.69 0.36 1.41 2.24 1.03 −0.52 0.16 −0.32
RMSE (mm) 0.22 0.06 0.55 0.08 0.49 0.26 1.00 1.58 0.73 0.37 0.12 0.23

3.2. Comparison of GNSS PWV and ERA5 PWV
3.2.1. Spatial and Annual PWV Variability

To explore more detailed and comprehensive characteristics of PWV, we selected the
ERA5 PWV covering Guangxi for comparison with the PWV of 104 GNSS stations though
RS PWV evaluates the excellent performance of GNSS PWV. In Figure 3, the correlations,
mean bias and RMSE between GNSS PWV and corresponding ERA5 PWV in the entire
Guangxi region and four subregions from 2017 to 2020 are counted separately. The high
correlation (R = 0.97) between GNSS PWV and ERA5 PWV shows the substantial influence
of ground station deployment density and data quality on the consistency and evaluation
accuracy between different datasets. In the whole Guangxi and the four subregions,
both GNSS PWV and ERA5 PWV exhibit negative mean bias ranging from −1.46 to
−0.55 mm, and RMSE falling between 3.62 to 4.16 mm. Compared to GNSS PWV, ERA5
PWV demonstrates poorer accuracy in detecting water vapor due to its larger mean bias
and RMSE in specific GXN regions. The elevated terrain of the GXN region, coupled
with the distribution of mountains, contributes to the intricate water vapor accumulation
patterns. Moreover, the lower RMSE and the insignificant PWV amplitude are observed in
the GXC region due to the relatively limited station coverage and the utilization of data
from only two stations.
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Figure 4 shows the distribution of mean annual bias and RMSE between the 104 GNSS
PWV and ERA5 PWV from 2017 to 2020. The range of mean annual bias in the GX region is
−2.93 to 4.45 mm, and RMSE is 1.91 to 5.67 mm. And positive biases are evident in 75%
of the stations across Guangxi, whereas 25% are negative, predominantly concentrated in
the GXM area. In GXN region, station ‘jz86’ has the largest mean annual bias (4.45 mm),
station ‘jz72’ has the largest RMSE (5.68 mm), as well as stations ‘jz97’, ‘jz86’ and ‘jz43’ in
GXN all have relatively large RMSE. Additionally, the higher RMSE values of the stations
in the northwestern region of Guangxi, near the Yunnan-Kweichow Plateau, reflect the
unstable water vapor conditions. This instability could be attributed to the water vapor
accumulation obstructed by mountains and the varying warming patterns between valleys
and mountains, both of which impact the accurate detection of water vapor. Stations (e.g.,
‘gxrx’, ‘j103’, ‘gxwz’, and ‘j100’) located close to water bodies exhibit higher RMSE and bias
values, which could potentially result in the noticeable difference between the two datasets
in the eastern GXM region.
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3.2.2. Spatial and Seasonal PWV Variability

To analyze the seasonal variability between the two PWV datasets in Guangxi, the
mean monthly bias and RMSE in the four subregions were counted, as shown in Figure 5
in the form of boxplot. The mean monthly bias and RMSE range between GNSS PWV
and ERA5 PWV is −0.91 to 1.85 mm and 1.81 to 3.48 mm, respectively. Based on the
box boundary length and Q2 value, the seasonal pattern is evident with lower bias and
RMSE in winter and higher values in summer. The RMSE between GNSS PWV and ERA5
PWV is 3.16 mm, 3.31 mm, 2.83 mm, and 2.04 mm for PreM, MonS, PostM, and winter,
respectively. The largest mean bias and RMSE occur in July in the GXN region, whereas
the smallest mean bias and RMSE are in November of GXS and January in theof GXCM
and GXS regions, respectively. The variation was more pronounced for bias than RMSE,
and the distribution of negative biases mainly occurred within the GXM region. For RMSE,
uniform consistency was not observed across distinct seasons at various stations, but most
stations exhibited the lowest values in winter throughout the year. Furthermore, large
RMSE values were not consistently observed during seasons with high PWV [55].
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the distance of Q1 and Q3 reflects degree of fluctuation of data; Q2 is the median value, which reflects
the average level of data; Q4 represents the outlier). The purple boxes represent winter, the blue ones
represent PerM, the red ones represent MonS, and the golden ones represent PostM.

Table 2 shows the statistics of the mean daily bias and RMSE between GNSS PWV
and ERA5 PWV in the entire Guangxi region and the four subregions. The mean daily bias
and RMSE for the GX region are 0.80 mm and 2.87 mm, corresponding to the range from
−5.62 to 6.62 mm and 1.18 to 6.63 mm, respectively. Figure 6 illustrates the time series of
the mean daily bias and RMSE between GNSS PWV and ERA5 PWV in various regions
and the corresponding statistical count of days. We observed that the negative daily biases
are mainly distributed during the PostM and winter periods. This indicates that ERA5
PWV underestimates the water vapor content in these two seasons in Guangxi, resulting in
significantly drier conditions than GNSS PWV. In Figure 6, the most significant variation
in bias and RMSE is observed in the GXC region, ranging from −6.51 to 8.12 mm and
1.14 to 8.23 mm, respectively. Negative biases are mostly present during the PostM and
winter within the four subregions, with the percentage of days exhibiting a negative bias
constituting 48% of the entire time series for the GXC region. Based on this, the effect of the
GXC region was evaluated by excluding it from the data, which shows only a slight float
of 0.01 mm for mean bias and RMSE in the entire Guangxi. The GXC region exhibits the
lowest mean bias and RMSE values, accompanied by a relatively average day distribution
of positive and negative bias throughout the year. This distribution could be attributed to
the region’s susceptibility to marine climate influence and relatively consistent seasonal
precipitation distribution.

Table 2. Statistics of the daily bias and RMSE between GNSS PWV and ERA5 PWV in the entire
Guangxi and the four subregions from 2017 to 2020.

Regions Bias (mm) RMSE (mm)

Min Max Mean Min Max Mean

GX −5.62 6.62 0.80 1.18 6.63 2.87
GXN −5.64 7.72 0.79 1.15 7.72 2.76
GXM −5.94 7.37 0.63 1.20 8.04 2.83
GXS −5.76 7.75 0.93 1.06 7.75 2.75
GXC −6.51 8.12 0.18 1.14 8.23 2.37
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Figure 6. Top and middle are the time series of daily mean bias and RMSE between GNSS PWV and
ERA5 PWV of four subregions from 2017 to 2020, respectively (negative bias is red; the bar length of
RMSE is the difference between the corresponding days in this region and the entire of Guangxi).
The bottom left is the time series of daily mean bias and RMSE between GNSS PWV and ERA5 PWV
in the entire Guangxi region. The bottom right is a histogram of days with bias and RMSE greater
than the daily average across four seasons.

Figure 6 illustrates the count of days within each time period for each region, where the
RMSE value exceeds the mean threshold of 3 mm. The count of days in the range (3 mm,
5 mm] of each subregion is the largest. Furthermore, MonS has the highest number of days
across all ranges compared to the other periods, indicating that the variable water vapor
content in MonS is the potential factor affecting the PWV assessment accuracy in Guangxi.

3.2.3. Diurnal Variation in PWV

Regional diurnal variations are governed by the global pattern, but they are also modu-
lated by local features like orography and land-sea interactions, along with transient events
such as the passage of weather systems [56]. Figure 7 shows the diurnal variation of the
PWV anomaly for the selected stations in four subregions during different periods. Diurnal
PWV anomaly values at stations in the entire Guangxi range from 0.91 to 1.32 mm. Stations
in the southeastern regions of GXN and GXM, primarily positioned near water bodies and
at lower elevations, display a pronounced amplitude of PWV anomaly variation during
PreM, ranging from 3.63 to 5.89 mm. The abovementioned area features various topography
and altitudes, encompassing diverse endemic climates and microclimate types. Several
stations in the southeast of GXM and the northwest of GXS exhibit a minor amplitude of
PWV anomaly variation after Mons, ranging from 0 mm to 0.98 mm. The peaks, minimums,
and occurrence times of PWV anomaly shift slightly with the changing seasons for each
station. Furthermore, compared with the more pronounced and distinct cycle in MonS, the
diurnal variation of PWV anomaly is generally slight at most stations during winter, with a
similar diurnal cycle observed at each station. However, several stations within the GXN
and GXM exhibit significant PWV anomalies during the winter, particularly in the daytime.
Except for the GXC stations, a few stations in other subregions of PreM and PostM exhibit
a stronger diurnal variation of PWV compared to other seasons, reaching up to 5.89 mm.
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The mean annual daily cycle shape, obtained by averaging data from all stations, re-
sembles an asymmetric sinusoid characterized by a longer and more pronounced descend-
ing branch compared to the ascending one after LT16:00. To understand the distribution
of PWV anomalies in different seasons of different regions, the maximum, minimum and
corresponding local times were counted in Table 3. Throughout the daylight hours, the
PWV anomaly descends to a minimum of −0.36 mm at LT7:00, then peaks at a maximum
of 0.56 mm by LT 16:00. Subsequently, the PWV anomaly decreases gradually until it
reaches its second minimum of −0.26 mm at LT 20:00, followed by a quicker increase to
the nightly maximum of −0.10 mm at LT 3:00. Additionally, we observed that the diurnal
cycle trends in winter and PostM are relatively similar, and PreM and MonS are relatively
similar. Across different seasons, variations in the diurnal cycle phases reveal that the
phases of MonS and PreM at the same station generally occur earlier, whereas those of
PostM and winter tend to occur later. Furthermore, the phase is affected by the station’s
geographical location and the evolving atmospheric circulation [33]. Differential warming
between land and large water bodies or mountainous areas and valleys results in the
transport of moisture onshore or upslope during daytime and offshore or downhill at night,
primarily due to faster cooling of land surfaces or mountains [57]. As illustrated in Figure 7
and Table 3, the phase point progresses from the coastal regions towards the inland areas,
suggesting the phase tends to occur earlier within and nearby the GXC stations while later
in the GXN stations.

Table 3. Statistics and corresponding time of the hourly PWV anomaly of the daily cycle in different
regions and different periods (unit: mm; time is local time).

Regions
Annual PreM MonS PostM Winter

Min Max Min Max Min Max Min Max Min Max

GX −0.36 0.56 −0.48 0.63 −0.69 0.64 −0.53 0.63 −0.29 0.39
LT 07:00 16:00 15:00 08:00 23:00 09:00 23:00 08:00 03:00 08:00

GXN −0.47 0.42 −0.69 0.46 −0.80 0.74 −0.43 0.49 −0.45 0.22
LT 08:00 17:00 02:00 09:00 23:00 11:00 23:00 08:00 02:00 18:00

GXM −0.40 0.66 −0.65 0.76 −0.78 0.73 −0.55 0.70 −0.31 0.48
LT 07:00 16:00 16:00 08:00 23:00 07:00 23:00 10:00 02:00 08:00

GXS −0.40 0.63 −0.75 0.84 −0.51 0.57 −0.61 0.66 −0.37 0.56
LT 23:00 15:00 15:00 07:00 23:00 06:00 23:00 08:00 15:00 07:00

GXC −0.58 0.41 −1.13 0.81 −0.96 0.94 −0.88 0.78 −0.57 0.84
LT 23:00 13:00 13:00 22:00 12:00 00:00 22:00 09:00 16:00 08:00
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3.3. Active and Break Spells of Monsoon

Numerous methodologies have been proposed to identify active and break spells
of monsoon, utilizing different atmospheric variables such as wind circulation patterns,
temperature, and rainfall [58]. However, varying criteria exist for distinguishing monsoon
active and break spells though rainfall remains the critical meteorological factor employed
for identification. The criterion employed in this study [59] dictates that an active spell is
identified when the average standardized rainfall anomaly exceeds +0.50 mm for three
consecutive days or more. Conversely, if the value falls below−0.50 mm, the event signifies
a break spell. Time series of active and break spells of three years are illustrated in Figure 8.
The number of active and break spells from 2017 to 2020 was 7/5/3 and 7/3/7, respectively.
The duration of the break spell varies between 3 and 7 days, while that of the active spell
varies between 3 and 8 days. Moreover, the mean rainfall and PWV during active spells are
14.65 mm and 58.85 mm, with variation ranges of 7.00 to 36.13 mm and 25.29 to 64.91 mm,
respectively. For break spells, the corresponding values are 0.11 mm and 29.35 mm, with
ranges of 0 to 0.87 mm and 6.53 to 59.06 mm, respectively. During the active spell, PWV
exhibited higher values and an upward trend with noticeable fluctuations, whereas it
remained at lower levels and showed a consistent downward trend during the break spell.
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To examine the diurnal variation of PWV during the active spell (AS) and the break
spell (BS), we selected the complete deaveraged data from 2017 to 2020 as shown in Figure 9.
The daily amplitude ranges of active spells from 2017 to 2020 were 1.41 to 2.49 mm, 0.69
to 5.4 mm, and 0.88 to 1.41 mm, respectively. Additionally, the daily amplitude ranges for
the break spells of three years were 2.45 to 6.76 mm, 1.66 to 8.17 mm, and 1.48 to 2.99 mm,
respectively. We have observed that the smallest negative PWV anomalies typically occurred
at two distinct times during active spells: LT 7:00 for AS3, AS4, and AS5 in 2017; LT 7:00 for
AS3, AS4, and AS6 in 2018; and LT 8:00 for AS2, AS5, and AS7 in 2018. These PWV anomalies
suggest that the water vapor content remains low during these specific moments throughout
the entire diurnal cycle of the active spells. We observed that the PWV anomalies during
the three active periods identified using rainfall standardization in 2020 were all negative.
This demonstrates that PWV is sensitive to temporal conditions, particularly the diurnal cycle,
and illustrates the complex interactions among meteorological processes. In this context,
rainfall can result in a reduction of surface water vapor, subsequently affecting PWV.
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The conditions necessary for precipitation include the available water vapor, a specific
degree of saturation, and a conducive dynamic mechanism [60]. PE is a standard parameter
utilized to assess the efficacy of dynamic process mechanisms, defined as the ratio of total
precipitation to total PWV during the same period and location [34]. The relationships
between PWV, surface temperature, rainfall, and PE from 2017 to 2020 have been established
using Pearson’s correlation coefficient and the confidence interval p-values are less than
0.05. In Figure 10, a robust positive correlation between PWV and temperature is evident
across all periods. Considering Clausius-Clapeyron’s equation [61], as temperature rises, the
atmosphere can hold more PWV before condensation leading to an observed upward trend in
rainfall. Furthermore, except for the relatively modest correlation coefficients of 0.39 and 0.44
observed in MonS and winter, respectively, the correlation coefficients for all other periods
exceed 0.63. The high correlation coefficient of 0.89 between PWV and temperature on the
annual scale remains largely unaffected by MonS and winter which might be due to the
relatively consistent temperature and ample water vapor content in Guangxi.

The correlation between PWV and both rainfall and PE is weak across all periods,
with respective ranges of 0.17 to 0.30 and 0.14 to 0.26. Higher PWV may be associated
with greater precipitation, especially in humid regions or under certain meteorological
conditions. However, specific geographical locations do not follow this trend, such as some
low-latitude regions that receive much solar radiation and can hold more water vapor,
ultimately culminating in the rain even with variable temperatures [16,62,63]. The corre-
lation between rainfall and PE is strong, with coefficients exceeding 0.85 for all periods
except winter (R = 0.71). It should be noted that the correlation between temperature and
both rainfall and PE is weak in each period, with coefficient values not exceeding 0.10.
The correlation between temperature and rainfall is negative in all seasons except for PreM
(R = 0.05). Furthermore, the positive correlation coefficients between temperature and PE
in MonS and winter are 0.05 and 0.01, while the negative correlation coefficients in PreM
and PostM are −0.08 and −0.08, respectively. Various references [64–66] have reported that
higher temperature leads to higher PWV in winter and gives rise to rain without much
impact on PE. However, higher temperatures decrease PE and rainfall during summer
despite having high PWV.
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To analyze the temperature conditions during the active and break spells, the statistics
are presented in Table 4. The temperature difference during the active spell is generally
higher than during the break spell. Furthermore, the temperature difference for break spells
with extended durations and active spells with shorter durations tends to be higher than
other spells.

Table 4. Duration of active and break spells (DT is temperature difference during the corresponding period).

Year NO. Duration of Active Spell Days DT (◦C) NO. Duration of Break Spell Days DT (◦C)

2017 1 5 June–9 June 5 13 1 18 July–20 July 3 5
2 12 June–16 June 5 12 2 28 July–30 July 3 7
3 27 June–4 July 8 10 3 18 August–21 August 4 8
4 7 July–11 July 5 8 4 27 August–29 August 3 6
5 1st August–5 August 5 7 5 11 September–17 September 7 8
6 13 August–15 August 3 9
7 5 September–7 September 3 8

2018 1 1st June–4 June 4 18 1 14 June–19 June 6 10
2 10 June–12 June 3 11 2 8 September–12 September 5 8
3 20 June–26 June 7 8 3 28 September–30 September 3 11
4 6 July–8 July 3 7
5 28 July–4 August 8 7
6 28 August–2 September 6 12

7 16 September–18
September 3 10

2020 1 23 June–27 June 5 22 1 12 July–15 July 4 16
2 30 June–2 July 3 16 2 23 July–25 July 3 20
3 8 July–10 July 3 16 3 6 August–8 August 3 19

4 17 August–22 August 6 17
5 26 August–11 September 7 18
6 16 September–18 September 3 18
7 25 September–27 September 3 19

4. Conclusions

PWV retrieved from 104 GNSS stations and the corresponding ERA5 PWV dataset
were employed to analyze annual, monthly, seasonal, and daily variations in water vapor
for the years 2017 to 2020 in Guangxi. The mean annual bias and RMSE between these
two datasets range from −1.46 to −0.55 mm and 3.62 to 4.16 mm, respectively. Notably,
compared to flat areas, regions like northern Guangxi and terrains featuring high mountains
exhibit larger mean bias and RMSE values. During the summer monsoon, the RMSE
between GNSS PWV and ERA5 PWV has a maximum of 3.31 mm and a minimum of
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2.04 mm in winter. This trend indicates a clear seasonal pattern in PWV, primarily driven
by the elevated summer rainfall and the suppression of surface evaporation due to lower
temperatures in winter.

Based on the superior performance of GNSS PWV over ERA5 in detecting water
vapor in the Guangxi region, the diurnal cycle variation across all stations during different
seasons was examined by analyzing the deaveraged GNSS PWV anomaly. The peak
values, minimums, and occurrence times of PWV anomalies at each station exhibit slight
variations across the seasons, with an annual amplitude ranging from −1.13 to 0.94 mm.
The fluctuating trend of PWV anomalies at each station during winter demonstrates a
higher consistency and generally smaller amplitude than the trend observed in summer.
For hourly PWV anomalies across various regions and seasons, the values are consistently
larger during daytime compared to nighttime, and the phase appearance moment shifts
from areas near large water bodies towards inland regions.

We identified the active and break spells of the monsoon and analyzed the interrela-
tionships among PWV, temperature, rainfall, and PE during various periods in Guangxi.
The variation trend of PWV exhibits a relatively consistent correlation with that of rainfall
during active and break spells. In summary, PWV holds the potential to discern active and
break spells within the monsoon season in Guangxi. Overall, PE is the significant factor
affecting rainfall, compared with the weak positive correlation between PWV and rainfall
and a weaker negative correlation between temperature and rainfall. In winter, higher
temperatures lead to an increase in PWV, resulting in increased rainfall. However, in the
summer monsoon season, despite the high levels of PWV, elevated temperatures decrease
PE and rainfall.

In conclusion, the assessment between GNSS PWV and various water vapor products
across different time scales suggests a significant impact of monsoon season on the precision
of water vapor detection and the effectiveness of monitoring diverse extreme weather
phenomena. Future endeavors will involve examining extended time series to validate
observations, exploring the intricate relationships among a broader range of meteorological
factors, and developing a predictive model for monsoon active and break spells.
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