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Abstract: The importance of monitoring sea level in coastal zones becomes more and more obvious
in the era of global climate change, because, in coastal zones, although satellite altimetry is an ideal
tool in measuring sea level over open ocean, but its accuracy often decreases significantly at coast
due to land contamination. Although the accuracy of waveform processing algorithms for synthetic
aperture altimeters has been improved in the last decade, the computational speed is still not fast
enough to meet the requirements of real-time processing, and the accuracy cannot meet the needs of
nearshore areas within 1 km from the coast. To improve the efficiency and accuracy in the coastal
zone, this study proposed an innovative waveform retracking scheme for the coastal zone based on
a multiple optimization parabolic cylinder algorithm (MOPCA) integrated with machine learning
algorithms such as recurrent neural network and Bayesian estimation. The algorithm was validated
using 153-pass repeat cycle data from Sentinel-6 over Qianliyan Island and Hong Kong–Wanshan
Archipelago. The computational speed of the proposed algorithm was four to five times faster than
the current operational synthetic aperture radar (SAR) retracking algorithm, and its accuracy within
0–20 km from the island was comparable to the most popular SAMOSA+ algorithm, better than
the official data product provided by Sentinel-6. Especially, the proposed algorithm demonstrates
remarkable stability in the sense of proceeding speed. It maintains consistent performance, even when
dealing with intricate wave patterns within a proximity of 1 km from the coast. The results showed
that the proposed scheme greatly improved the quality of coastal altimetry waveform retracking.

Keywords: coastal areas; SAR; Sentinel-6; RNN

1. Introduction

The oceans, covering 71% of the Earth’s surface, play a crucial role in the global mate-
rial energy cycle and climate regulation [1]. Coastal areas are among the most economically
developed regions in the world, with approximately 40% of the world’s population living
within 100 km of the coast and over 600 million people living at elevations of 10 m or less
above sea level [2]. Since the Industrial Revolution, environmental pollution and carbon
emissions have led to global warming and a rise in global sea levels [3], which pose a great
threat to human survival. The situation is more severe in the last three decades. Coastal
residents will be the first to face this severe challenge, as rising sea levels cause problems
such as flooding, storm surge, and coastal erosion [4].

Therefore, it is of utmost importance to monitor changes in coastal sea levels and
study their impacts. The traditional method for monitoring sea level changes is tide
gauge observation [5], but it has limitations such as high construction maintenance costs,
lack of representation by single-point observations, and susceptibility to environmental
and human factors, making it impractical for achieving a global-scale observation. In
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contrast, satellite altimetry technology can provide cost-effective, global, regular sampling
observations of the sea surface with high accuracy and all-weather conditions [6]. It has
revolutionized the monitoring of global oceans and coastal areas in recent decades.

Historically, most satellite altimeters have been pulse limited, such as the Topex/Poseidon,
Jason series developed by US/French, ERS-1/2 and Envisat launched by ESA, and HY-2
series owned by China, along with traditional waveform processing methods [7–9]. Al-
though these conventional methods perform well in open waters and meet basic usage
requirements, the interference from land, rain events, and various scattering signals can
cause the traditional algorithms to fail or suffer significant accuracy loss [10–13]. This is
especially true for altimetry waveforms near the coast, which often perform worse than
open ocean waveforms and require more advanced processing.

The introduction of synthetic aperture radar (SAR) technique is a milestone in the
history of radar altimetry. In SAR mode, the pulses are arranged as the so-called “bursts”.
In early implementations such as Cryosat-2 and Sentinel-3, the bursts, including 64 pulses,
are transmitted and received every 11.7 miliseconds (for Cryosat-2) or 12.5 miliseconds (for
Sentinel-3) with 18kHz pulse repetition frequency (PRF). The mode allows for a reduction in
noise by increasing the average number of echoes reflected from the same surface location,
alongside a higher signal-to-noise ratio of the received signal [14]. Its high spatial resolution
enables it to perform better than traditional altimeters in near-coastal areas.

However, the above implementation, namely, “close-burst mode”, has an intrinsic
limitation: it cannot exploit the whole observation period. There is no echo in at least half
of the time, and the “pseudo” low-resolution measurements by down-sampling the pluses
always have poorer performance than that of the traditional radar altimeters. Therefore,
the so-called “open-burst mode” were proposed and implemented on the Poseidon-4 radar
altimeter embarked on the Sentinel-6 satellite [15]. As shown in Figure 1, the sequence
of the pulses was elaborately designed so that interleaved transmitting and receiving
pulses can be realized, and this implementation can achieve a low-resolution mode that is
fully backward compatible with historical reference elevation measurements, allowing for
complete cross-calibration between the latest data and historical records.
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Figure 1. Pulse signal transmission methods for the limited pulse radar altimeter (LRM) and synthetic
aperture radar altimeter (SAR).

Compared to traditional radar altimeters, synthetic aperture altimeters have further
improvements in measurement accuracy, spatial resolution, and application scenarios [16].
Figures 2 and 3 show the echo waveforms of synthetic aperture radar altimeters and
traditional pulse-limited radar altimeters within 12 km of the coastline. It can be seen from
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the figures that the SAR altimeter waveforms have more obvious statistical characteristics,
and waveform contamination only occurs at about 2 km from the coastline. On the other
hand, the echo waveforms of the traditional pulse-limited radar altimeter are chaotic and
contain many unusable waveforms. Therefore, synthetic aperture radar altimetry has an
unprecedented advantage in near-coastal waveform processing.
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(a) SAR and (b) LRM.

Currently, there have been numerous intriguing advancements in the research of
synthetic aperture radar altimeter waveform retracking [17–21]. The main algorithms
in use include the CryoSat algorithm used in the production of CryoSat satellite level 2
products [22], the MWAPP algorithm proposed by Villadsen et al. [23] for the application
of SAR altimetry in inland rivers and lakes, the SAMOSA algorithm proposed by the
European Space Agency, and the SAMOSA+ algorithm [24] proposed by Dinardo for
improving SAMOSA performance in nearshore areas. While these models provide high
accuracy, their complexity and slow computational speed make them unsuitable for (near)
real-time applications. Moreover, although some algorithms are designed for coastal and
in-land water monitoring, they still have tendency to provide divergent results when
the satellite approaches land (within 5 km) [25]. Therefore, in order to realize real-time
processing and improve the reliability and feasibility of the algorithm, we adopted a simpler
parabolic cylinder model [26] first proposed by Garcia et al. for SAR data processing. The
parabolic cylinder model has a simpler structure and faster processing speed, making it
more suitable for real-time processing.

However, due to the inherent complexity of the waveform processing algorithms
for SAR altimeters, it might be challenging to achieve processing speeds comparable to
those of the LRM altimeter’s waveform processing algorithm. The processing of echoes
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in near-coastal areas is even more challenging, so there are still many problems that need
to be solved in this field. Throughout this study, we have designed and evaluated a
series of innovative algorithms for SAR altimetry waveform processing. Our investigation
begins in Section 2 where we have developed a rapid algorithm that significantly reduces
computation time while maintaining excellent accuracy. Building on this foundation, in
Section 3, we have tailored the algorithm to nearshore regions by introducing the Modified
Parabolic Cylinder Algorithm (MOPCA). In Section 4, we have introduced our selected
study area and sources of input data. We have validated the results of our algorithm
in Section 5, demonstrating its effectiveness and reliability in accurately processing SAR
altimetry waveforms. Finally, in Section 6, we have summarized the key findings of this
work and outlined future research directions.

2. Parabolic Cylinder Model and Its Accelerated Version Algorithm

The Poseidon-4 radar on board Sentinel-6 has a 9 kHz pulse repetition frequency (PRF),
which is approximately four times larger than that of Jason-3, as mentioned in the official
Sentinel-6 publication. This high PRF enables Doppler beam sharpening, which generates
64 Doppler beams from a set of 64 echoes [27]. These beams fan out in a sector along the
flight direction and allow us to slice the data using the range–azimuth selection from the
radar pulse sampling, as shown in Figure 4.
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In this article, we have used a simpler model that approximates the illuminated sea
surface area as the average power of the nadir beam with an effective width, w, along the
orbital direction. The illuminated sea surface area can be approximated as follows:

S(τ) ∼= 2w
dr
dτ

H(τ) (1)
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where t0 is the arrival time of the waveform, τ = t− t0, r is the radius of the annulus, and dr
is the width of the annulus. When w is much smaller than r, it means that the illumination
beam pattern can be viewed as close to a rectangle.

S(τ) = w
(

hc
κτ

)1/2
H(τ) (2)

where h is the altitude of the radar antenna above the surface, c is the propagation speed
of the radar pulse, κ = 1 + h/R, and R is the radius of the Earth. The waveform returned
by the model is the result of convolving a Gaussian pulse (Gaussian function is a widely
adopted approximation of the point target response of the radar system) with the function
representing the area under the sea surface versus time.

M(τ) = P(τ) ∗ G(τ) ∗ S(τ) =
wp0

σ

√
2hc
κπ

∫ ∞

−∞
exp

(
−(τ − τ′)2

2σ2

)
τ′−1/2H

(
τ′
)
dτ′ (3)

where p0 is the peak power of a pulse.
By applying an approximation, we obtain the following:

M(τ) = Aσ−1/2 exp
(
− τ2

4σ2

)
D−1/2

(
−τ

σ

)
exp(−ατ) (4)

Here, Da(z) refers to the parabolic cylinder function of order a with the argument z.
Our objective is to obtain three parameters from the processing: t0, σ, and A.

M = Aσ−1/2 exp
(
−1

4
z2
)

D−1/2(z) exp(−ατ) (5)

∂M
∂t0

= −Aσ−3/2 exp
(
−1

4
z2
)

D1/2(z) (6)

∂M
∂σ

= −Aσ−3/2 exp
(
−1

4
z2
)[

1
2

D−1/2(z)− zD1/2(z)
]

(7)

∂M
∂A

=
M
A

(8)

where z = −τ/σ.
The parabolic cylinder model and its derivatives are illustrated in Figure 5:
The parabolic cylinder model was first proposed by Garcia et al. (2014) [26], while

it has not been widely adopted in community. The main reason lies in the complexity of
the computation of the function Da(z). It should be noted that Da(z) in this equation is a
hypergeometric function [28]. If the complete analytical solution is used for calculation, the
speed would be too slow to meet practical requirements, and the parabolic cylinder model
would have no advantage over other models such as SAMOSA.

D(a, z) =
1√
π

2a/2e−a2/4

 cos
(

πa
2
)

ϕ
(

a+1
2

)
1
F1

(
− a

2 , 1
2 , z2

2

)
+

√
2z sin

(
πa
2
)

ϕ
( a

2 + 1
)

1F1

(
1
2 −

a
2 , 3

2 , z2

2

)
 (9)

where F1(a; b; z) is a hypergeometric function.
We present a lookup table (LUT)-based algorithm optimization method for fast com-

putation of function Da(z) values at a = 0.5 or a = −0.5. Two LUTs are created to map
the parameter z to its corresponding function value Da(z), which are then encapsulated
into callable functions. Our experimental results demonstrate that this method achieves
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comparable accuracy to the original model within a short time span while significantly
improving efficiency. Table 1 and Figure 6 display partial information of the LUT.
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Figure 7. Effect diagram of SAR echo wave shape simulated by parabolic cylinder (the blue line
represents the original SAR waveform data, and the red line depicts the results after retracking fitting
using the parabolic cylinder model).

The fitting results in Figure 7 demonstrate that the proposed algorithm can effectively
achieve tracking range. However, Figure 7 also shows a certain degree of offset in the rising
edge. We believe that this is not caused by the lookup table optimization algorithm, but
by the error introduced by approximating the actual sinc(·) point target response function
with a Gaussian function in the parabolic cylinder model. It should be noted that this
approximation strategy is not only present in the parabolic cylinder model, but also adopted
by many SAR processing models, indicating that it is a common issue [29]. Figure 8 shows
the influence of Significant Wave Height (SWH) and off-nadir angle on the shape of the
backscattering model. The front edge of the backscattering model is mainly affected by
SWH. Therefore, we consider this offset to be closely related to SWH and propose a new
algorithm to eliminate it, which will be detailed in Section 4.
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Figure 8. The impact of SWH and off-nadir angle on the shape of the backscattering waveform:
(a) shows the effect of SWH on the backscattering waveform and (b) shows the effect of off-nadir
angle on the backscattering waveform.

During the testing phase, we conducted experiments using simulated waveforms.
We generated ten thousand simulated backscattering waveforms and used five different
algorithms for retracking processing. These algorithms included MLE3 [30], SAMOSA-
semi-analytical model, SAMOSA2 model [31], parabolic cylinder-analytical form, and
parabolic cylinder-LUTs. Under the same software and hardware platform conditions with
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a CPU of i5-12600 (Intel Semiconductor, Santa Clara, CA, USA), we recorded the running
time of each algorithm and presented the results in Table 2.

Table 2. Time consumption statistics for five algorithms in retracking range.

Analog Waveform Form Algorithm Number of Waveforms
Successfully Processed Total Time(s) Average Time (s)

LRM MLE3 8392 89 0.00917
SAR SAMOSA-semi-analytical model 9541 1032 0.1082
SAR SAMOSA2 model 9532 583 0.0612
SAR Parabolic cylinder-analytical form 9607 420 0.0437
SAR Parabolic cylinder-LUTs 9607 118 0.0111

To test the stability (algorithms in the sense of different waveform processing speed) of
the algorithms in handling different waveforms, we divided 10,000 simulated waveforms
into five groups (2000 waveforms each), which are independent of each other and have
different levels of quality. In the experiment, we recorded the time required for five
algorithms to process each group (2000 waveforms) separately. We obtained stability
curves for various algorithms by recording the ratio of the time required for each algorithm
to compute every two thousand waveforms to the total time. The Figure 9 show that the
two parabolic cylinder algorithms perform more stable than other algorithms, with little
fluctuation even when processing complex waveforms. This indicates that the parabolic
cylinder algorithms are better suited for real-time processing requirements.
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3. Coastal Retracker Strategy Based on the Parabolic Cylinder Model
3.1. Integrated Recurrent Neural Network Algorithm

At present, both SAR and LRM waveform retracking have good performance in
open sea. However, due to the specific characteristics of coastal areas, the use of basic
algorithms often results in significant errors or even fail to converge. To address this
issue, we propose a new algorithm, the multiple optimization parabolic cylinder algorithm
(MOPCA), specifically designed for nearshore areas. Our improved version has four major
improvements over the conventional parabolic cylinder algorithm: the introduction of
the recurrent neural network (RNN) model, a two-step retracking calculation, Bayesian
parameter estimation, and RNN-based error correlation. Figure 10 shows the flowchart of
the entire algorithm.
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3.1.1. Waveform Classification

Coastal radar waveforms have diverse forms compared to the waveforms observed
in open ocean, mainly due to the influence of geographic features such as marine pollu-
tants, river mouths, islands, and complex nearshore terrain. These factors cause complex
waveforms with varying characteristics, which make it a challenging task to classify coastal
waveforms for effective monitoring and assessment of marine environments and changes.
This has been an ongoing focus of remote sensing research. To address this issue, we used
a graphic processing approach to analyze coastal radar echoes and classified them into
two categories: standard SAR echoes and peak echoes contaminated by land obstructions.
We employed a novel classification strategy, the RNN algorithm, for these two waveform
classifications. The RNN algorithm showed better accuracy and more robust performance
than commonly used classification methods based on waveform features.

RNN is a type of neural network that can process input sequences and output se-
quences with advantages such as memorization, parameter sharing, Turing completeness,
and more. It can extract temporal and semantic information that is useful for learning and
classifying complex sequence data [32], especially when it comes to processing time series
data [33]. RNN algorithm performed exceptionally well when processing oceanic environ-
mental data with temporal and cyclical patterns. Therefore, we used the RNN algorithm to
classify coastal radar waveforms and effectively improved the accuracy of classification.
The RNN algorithm can handle time series information in marine environmental data and
is expected to play a significant role in waveform retracking, providing technical support
for monitoring and studying coastal environmental changes.

Figure 11 shows a schematic diagram of the recurrent neural network (RNN), which
explains how the hidden layer at time t is influenced by both the input layer and the
hidden layer at time t−1. This mechanism makes RNN more sensitive to sequential
data and appropriate for handling time series data. RNN has various structures, such as
one-to-many, many-to-many, and Encoder–Decoder [34], which have their own specific
applications. The appropriate structure should be selected for specific problems. For
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example, the one-to-many structure is suitable for generating sequential output from a
single input, such as image captioning [35]. The many-to-many structure is suitable for
scenarios where both input and output are sequences, such as video classification [36]. The
Encoder–Decoder structure is suitable for cases where the lengths of input and output
sequences are different, such as machine translation [37].
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For our waveform classification problem, we eliminated the unusable noise waveform
(5%) in the waveform and divided them into two categories: oceanic return echoes and peak
echoes contaminated by land noise. As shown in Figure 12,this resulted in two possible
classification results, 0 and 1. We chose the many-to-many structure based on the RNN for
waveform classification, which is more appropriate for our problem. Each input waveform
corresponds to a classification label, and a classification result vector is attained. This
method not only improves classification accuracy but also has more potential for future
remote sensing research and applications in the marine environment.
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We divided 10,000 waveforms into training and testing sets at a ratio of 9:1 and con-
ducted classification experiments, and the results are shown in Figure 13. After 30 iterations,
the loss reached stability, and the final classification accuracy was nearly 98%, both in the
training and testing sets. These results indicate that the proposed RNN-based many-to-
many structure algorithm performs excellently in classifying waveforms. Furthermore,
by comparing the training and testing sets, we can conclude that the model has a good
generalization ability for new samples.
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3.1.2. Computational Model Based on RNN

The second application of the recurrent neural network algorithm in our processing of
nearshore echo waveforms is to eliminate the errors caused by using a Gaussian function
instead of the sinc function. Due to the complexity and importance of the problem, it is
necessary to write an individual article to clarify this issue and present the details, and this
paper presents only the solution approach. Detailed discussions on algorithmic details are
under preparation and will be provided in another article of the authors.

sinc2(x) ≈ e
−( x√

2αp
)2

(10)

The current approximation method leads to significant errors in the calculated sea
surface height. To mitigate these errors, it has been proposed to use different αp parameters
for different sea conditions. The commonly used method is to create a lookup table of
αp parameters and SWHs, which are used to eliminate the error term during the final
calculation of the sea surface height. However, this method faces certain problems. Firstly,
a small step size is required, which necessitates a large physical space as the data increases.
Secondly, this method cannot obtain continuous αp parameter, and interpolation may
also be required, compromising the original goal of automated processing. Therefore, we
propose to use a lightweight model trained using a recurrent neural network (RNN) to solve
for the αp parameter. The input parameters of the RNN model include the 128-dimensional
vector of echo waveforms and SWH, and the output parameter is the beta value. This
approach is a novel attempt to solve this type of problem using neural networks. The
algorithm can provide more accurate and continuous results.

3.2. Two-Step Retracking

The closer to the shoreline, the more and pollution (or specular reflection) the wave-
form involves. For severely polluted cone-shaped waveforms, the use of basic retracking
algorithms would lead to significant loss of lock. In order to address this issue, we have
developed a two-step retracking algorithm that takes into account the classification results
of a RNN in the first step. If the waveform is not polluted or has only minor pollution, we
still use the parabolic cylindrical algorithm. For waveforms affected by land pollution (or
mirror reflection), we adopt the two-step retracking algorithm, during which the waveform
is first processed using the parabolic cylindrical algorithm in the first step. However, in the
second step, we set the SWH to 0 [38], and again use the parabolic cylindrical algorithm to
calculate the sea surface height.

The fitting results of the two-step retracking algorithm are shown in Figure 14. Due
to the consistent use of the parabolic cylindrical model, the resulting sea surface height is
virtually identical for both ordinary ocean echo waveforms and peak waveforms. This step
is crucial for generating continuous nearshore sea surface height data.
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Figure 14. The fitting results of waveform data: (a) shows the fitting using single retracking method
for unpolluted echo waveform and (b) shows the fitting using two-step retracking method for severely
polluted cone-shaped waveform.

3.3. Bayesian Parameter Estimation

In the final and most important step, we abandoned the traditional least-squares
algorithm in favor of Bayesian estimation for echo parameter estimation in Algorithm 1. It
is well known that the calculation complexity of the least-squares algorithm is low, but it is
sensitive to data with high noise [39], which can lead to overfitting. Nearshore data often
contains high levels of noise, which can result in relatively large errors when using the
least-squares algorithm and a corresponding loss of accuracy. As a parameter estimation
algorithm, Bayesian estimation can combine prior probabilities with likelihood functions to
estimate posterior probability distributions of the parameters when they are unknown [30].
It can mitigate the problems of noisy data and overfitting and can better utilize sample
information to obtain more reliable model parameters.

However, the current popular SAR echo models are very complex, making it difficult to
obtain a mathematical description of the Bayesian formula, which can lead to a slow solving
process that does not meet practical requirements. Fortunately, the parabolic cylindrical
model we use perfectly solves this problem. The expression for the parabolic cylindrical
model is very concise, and the loss of time efficiency from using Bayesian estimation can
be completely ignored. However, it can greatly improve the poor retracking accuracy of
coastal data.

Algorithm 1 Bayesian parameter estimation

1. Initialize the parameters θ = {θ1, θ2, θ3}
2. Set the number of iteration times T, and initialize the parameter sample set S
3. For t = 1 to T:
3.1 Calculate the likelihood function P(D|θ) and the posterior probabilit P(θ|D) based on the

current parameter θ

3.2 Sample a new parameter θ′ from the posterior distribution P(θ|D)
3.3 Add θ′ to the parameter sample set S.
3.4 Update the current parameter θ to θ′ and continue the loop.
4. Calculate the estimated values of the parameters:
4.1 For each parameter θi, calculate its sample mean θi as the estimated value.
5. Output the estimated values of the parameters θ1, θ2 and θ3

4. Study Areas and Data

We selected two areas, Hong Kong (HK)–Wanshan Archipelago and Qianliyan Island,
to study the accuracy and reliability of Sentinel-6 satellite altimeter data in coastal zone.
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As shown in Figure 15, the 153 pass of the satellite covers both areas, allowing for a
synchronous comparative analysis.
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Figure 15. Schematic diagram of Sentinel-6 153 pass crossing the HK–Wanshan Archipelago (area
(A)) and Qianliyan Island (area (B)).

The Wanshan Islands near HK are located just south of the Tropic of Cancer, and have
extremely complex geographical features, consisting of numerous islands. The climate is
predominantly subtropical and displays clear seasonal variations [40]. On the other hand,
Qianliyan Island is a small island located on the continental shelf on the western coast
of the central part of the Yellow Sea, and the closest distance to the mainland is about
45 km, which indicates a better coastal altimetry performance. The area has undergone
changes over time and was once referred to as the collective name for over 100 islands in
the open sea. Based on the Sentinel-6 altimeter orbit and the matching of the tide gauge
measurements, we used the HK–Wanshan offshore (area A) in the range of 21.5◦N–22.5◦N
and the Qianliyan offshore (area B) in the range of 36◦N–38◦N as the study areas.

To fulfill the requirements waveform classification and retracking, we used the L1B
and L2 level data of 35 cycles from Sentinel-6 between 2022 and 2023 as our data source.
Both HR (high-resolution) and LR (low-resolution) data were processed. The detailed
SAR mode waveforms for the two areas are shown in Figure 16, with increasing numbers
indicating waveforms closer to the coastline. Apart from a few noisy waveforms (green),
they can be mainly classified into two types: ocean-like waveforms (red) and single-peak
waveforms affected by land (blue).

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 15. Schematic diagram of Sentinel-6 153 pass crossing the HK–Wanshan Archipelago (area 
(A)) and Qianliyan Island (area (B)). 

To fulfill the requirements waveform classification and retracking, we used the L1B 
and L2 level data of 35 cycles from Sentinel-6 between 2022 and 2023 as our data source. 
Both HR (high-resolution) and LR (low-resolution) data were processed. The detailed SAR 
mode waveforms for the two areas are shown in Figure 16, with increasing numbers indi-
cating waveforms closer to the coastline. Apart from a few noisy waveforms (green), they 
can be mainly classified into two types: ocean-like waveforms (red) and single-peak wave-
forms affected by land (blue). 

 
Figure 16. Schematic diagrams of sample echoes in the study area: (a) waveform schematic of 153 
pass crossing the HK–Wanshan Archipelago and (b) waveform schematic of 153 pass crossing Qi-
anliyan Island. 

As described by a previous study [41], the Quarry Bay tide gauge in HK is chosen for 
the validation of the algorithms. It provides sea level data with an accuracy of 1 cm for a 
single measurement and is regularly calibrated every other year. The tide gauge is located 
at 114.22°E, 22.28°N, near the northern coast of the HK Island, separated from the Kow-
loon Peninsula by the Victoria Harbor. Sea level on this area is likely influenced by 

Figure 16. Schematic diagrams of sample echoes in the study area: (a) waveform schematic of
153 pass crossing the HK–Wanshan Archipelago and (b) waveform schematic of 153 pass crossing
Qianliyan Island.



Remote Sens. 2023, 15, 4665 14 of 22

As described by a previous study [41], the Quarry Bay tide gauge in HK is chosen
for the validation of the algorithms. It provides sea level data with an accuracy of 1 cm
for a single measurement and is regularly calibrated every other year. The tide gauge is
located at 114.22◦E, 22.28◦N, near the northern coast of the HK Island, separated from the
Kowloon Peninsula by the Victoria Harbor. Sea level on this area is likely influenced by
anthropogenic local-scale factors, in addition to more regional and global ocean variations.
Hourly tide gauge data were used in this study.

5. Results

This section shows the validation results of MOPCA using the repetitive cycle data of
Sentinel-6. The algorithm is compared with current representative approaches including
MLE3, ALES+, CryoSat, MWAPP, and SAMOSA+. It is important to note that MLE3 and
ALES+ algorithms are designed specifically for pulse-limited altimetry data. For these
algorithms, the waveforms in low-resolution mode are processed.

5.1. Efficiency Analysis

To evaluate the performance of the algorithms in offshore areas, we classified 35 cycles
of repetitive data according to offshore distance. We then processed the data using the
six waveform tracking algorithms and recorded the processing time on the same comput-
ing platform (i5-12600 CPU, Intel Semiconductor, Santa Clara, CA, USA). This allowed
us to analyze the efficiency and accuracy of the algorithms in processing echo data in
offshore areas.

As shown in Figure 17, the processing time required for waveform tracking of the
six algorithms varies with offshore distance. It is evident that current representative SAR
waveform processing algorithms require significantly more time than LRM waveform
processing algorithms. However, our proposed MOPCA algorithm boasts an efficiency that
is comparable to representative LRM waveform processing algorithms. Notably, it even
outperforms the ALES+ algorithm in the more complex offshore areas. This highlights the
potential of our MOPCA algorithm for improving SAR waveform processing in near-real-
time remote sensing applications.
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As shown in Figure 18, the processing time of the algorithms is plotted in groups
of every five kilometers. It is evident that there is a significant difference in process-
ing time as offshore distance varies, regardless of whether the algorithm is designed for
LRM or SAR waveform echo processing. Our proposed MOPCA algorithm, however,
remains stable at around 12 s per 1000 waveforms, highlighting its strong stability and
consistent performance.
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5.2. Precision Analysis

In this study, the accuracy evaluation of the algorithm uses the following three indica-
tors: (1) Retracking success rate. When the coastal waveforms are contaminated by land,
the waveform retracking algorithm may fail to extract the sea surface height information or
produce biased results. We can evaluate the retracking success rate by calculating the ratio
of the successfully retracked waveforms to the total waveforms. (2) Standard deviation of
the sea surface height of the retracked altimetry results. The waveform retracking in coastal
areas is more affected by land contamination than in open ocean areas, resulting in higher
standard deviation, which reflects the instability of the sea surface height. Therefore, we
can use the mean standard deviation of the retracked results to measure the performance of
different algorithms in processing contaminated data. The smaller the standard deviation,
the better the retracking performance. (3) Correlation and RMSE difference with tide gauge
data. To verify the external reliability of the retracking algorithm, we can calculate the mean
correlation and RMSE difference between the time series of retracked sea surface height
and tide gauge sea surface height at every 1 km location, and only use the sea surface
height data with the same observation time for comparison.
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5.2.1. Retracking Success Rate Analysis

We applied a three-sigma outlier rejection to the 35 retracked sea surface height time
series from six algorithms in the coastal areas of HK–Wanshan Archipelago and Qianliyan
Island within 1–20 km from the shore and obtained the retracking success rates of different
algorithms at different distances from the shore, as shown in Table 3. From the table, we
can see that the retracking algorithms based on LRM waveforms have low success rates
in the coastal areas, while the retracking algorithms for SAR waveforms perform better.
Especially, our proposed MOPCA algorithm shows high performance in both Qianliyan
and HK–Wanshan areas. Although this algorithm has similar performance to the advanced
SAMOSA+ algorithm at distances above 10 km from the shore, it outperforms SAMOSA+
algorithm within 10 km from the shore, demonstrating its advantage in nearshore processing.

Table 3. Retracking success percentage.

Area Distance to
Coast/km

Retrackers

MLE3 ALES+ MOPCA CryoSat MWAPP SAMOSA+

HK–Wanshan
Archipelago

0~1 34.54% 41.02% 62.00% 50.41% 52.29% 59.01%
1~2 42.22% 52.47% 79.32% 70.47% 74.59% 73.15%
2~4 82.46% 85.12% 92.18% 89.70% 88.31% 90.20%
4~6 92.54% 93.58% 96.78% 94.23% 93.93% 95.52%
6~8 94.03% 95.03% 97.89% 95.44% 95.62% 97.31%

8~10 94.53% 96.38% 98.71% 96.29% 96.01% 98.34%
10~15 95.47% 97.23% 98.93% 97.16% 97.74% 99.03%
15~20 96.57% 98.65% 99.17% 99.35% 98.97% 99.55%

Qianliyan Island

0~1 38.26% 43.21% 64.20% 51.26% 53.03% 59.25%
1~2 44.19% 56.10% 80.16% 72.19% 74.93% 75.28%
2~4 84.07% 86.33% 91.90% 89.11% 89.24% 90.98%
4~6 93.54% 92.89% 96.42% 95.04% 94.21% 95.77%
6~8 94.61% 96.04% 98.28% 96.05% 95.97% 97.09%

8~10 94.52% 96.31% 98.94% 96.64% 97.01% 98.64%
10~15 95.27% 97.19% 98.91% 97.23% 97.54% 99.18%
15~20 97.37% 98.23% 99.35% 98.72% 98.15% 99.57%

5.2.2. Standard Deviation of the Sea Surface Height of the Retracked Altimetry Results

We computed the difference between the sea surface height calculated by six algo-
rithms and their mean elevation as a function of distance from the shore. The results show
that except for the two algorithms for LRM mode, the SAR waveform processing algorithms
perform well, especially the MOPCA algorithm, which uses an optimized algorithm for
nearshore areas, and does not have much fluctuation even within 5 km from the shore.
To ensure enough along-track sampling, we combine the data from both study areas and
calculate the standard deviation at 5 km intervals. The results are shown in Table 4. Ac-
cording to the results in the table, we can see that for the SAR mode retracking algorithms,
except for the 10–15 km interval where the MOPCA algorithm has slightly worse standard
deviation than the SAMOSA+ algorithm, and the MOPCA algorithm performs best in the
other intervals. From the overall standard deviation situation, the MOPCA algorithm is
more suitable for processing nearshore waveforms.

Table 4. Standard deviation of algorithms calculated in groups of 5 km (cm).

Distance to Coast
(km)

MLE3
(LRM)

ALES+
(LRM)

MOPCA
(SAR)

CryoSat
(SAR)

MWAPP
(SAR)

SAMOSA+
(SAR)

0–5 12.24 8.34 3.13 7.31 8.78 6.63
5–10 9.51 7.0 2.52 5.96 4.27 4.72
10–15 8.29 6.63 2.03 3.67 3.91 1.73
15–20 4.59 4.92 1.87 3.06 3.62 1.67
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5.2.3. Correlation with Tide Gauge Data

The altimeter data utilized in this study were derived from Sentinel-6’s L1B dataset, as
detailed in Section 4. Our geophysical corrections encompass dry and wet tropospheric
components, ionosphere correction, sea state bias correction, solid earth tide correction,
polar tide correction, ocean tide correction, and load tide correction and dynamic atmo-
spheric correction [42]. These correction parameters are extracted from the official dataset.
We rigorously selected observation data from tide stations located within 20 km of the
Sentinel-6 satellite ground track observation point, ensuring high data quality. This effort
resulted in the compilation of 18 sets of data at ten-day intervals spanning from January
2022 to June 2022. Additionally, to ensure data coherence, dynamic atmospheric corrections
were applied. Employing retracking algorithms, the nearshore observation data were recal-
ibrated to derive accurate sea surface height information. Simultaneously, the EGM2008
model was employed to rectify geoid gradient variations at each point relative to the nearest
tidal survey station. The obtained findings were categorized based on offshore distance:
0–5 km, 5–10 km, and 10–20 km. Ultimately, by quantifying the differences between sea
surface height time series at individual points and corresponding values from the nearest
tide station, we validated the accuracy of the distinct algorithms employed in this study.

From Figure 19, it is evident that, within the range of 10–20 km from the coast, most of
the algorithms exhibit high consistency with the observed values at the tidal gauge station,
except for occasional jumps in the results obtained through traditional methods. However,
within the range of 5–10 km, the performance of traditional LRM algorithms is insufficient
to meet the requirements, especially with the MLE3 algorithm resulting in significant
fluctuations. At the closest range of 5 km from the coast, the performance of all algorithms
is suboptimal, and even SAR-based algorithms cannot maintain a strong consistency with
the observed values at the tidal gauge station. Nonetheless, it is evident that the MOPCA
and SAMOSA+ algorithms proposed by us show more outstanding performance among
the existing algorithms. To provide a more intuitive comparison of the differences between
different algorithms, we processed the data and calculated the standard deviation and
correlation coefficient with the observed values at the tidal gauge station, providing a
quantitative analysis.
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Figure 19. Time series (days) of the difference between various algorithms and the results from the
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km (bottom) to the coast.

The results presented in Figure 20 indicate that MOPCA and SAMOSA+ showed
similar performance, with the highest correlation for distances within 4 km to the coast
and lowest RMSE for distances within 20 km to the coast. The MWaPP and SAMOSA2
(Cryosat-2) algorithms showed similar performances, with slightly lower correlations and
higher RMSE than the specialized coastal retrackers (MOPCA and SAMOSA+). The LRM
retrackers (MLE3 and ALES+) showed the significantly lower correlation and highest RMSE
for all distances within 10 km of the coast. These findings demonstrate that our proposed
algorithm performs exceptionally well in the nearshore region, particularly within 10 km,
and can provide more reliable nearshore sea level data. This can improve the applica-
tions of satellite altimetry technology in nearshore sea level changes and ocean gravity
field modeling.
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6. Conclusions

To address the problems of decreased accuracy of satellite altimetry data in the
nearshore region, reduced availability of data in coastal areas, and inability to process
SAR data in real-time, we propose a coastal retracking strategy based on the parabolic
cylinder model, named MOPCA. We have developed processing improvements from three
aspects, namely, efficiency optimization, classification accuracy, and special processing for
the coastal region. Finally, taking tidal gauge observations as reference, we compared the
performance and accuracy of our proposed retracking strategy with other representative
retracking algorithms. The results validated the performance and accuracy of the proposed
retracking strategy.

The results show that compared with CryoSat, MWAPP, and SAMOSA+, the waveform
retracking efficiency of MOPCA algorithm is greatly improved. For complex SAR waveform
solutions, our algorithm uses a parabolic cylindrical model, whose simplicity leads to the
processing speed comparable to traditional LRM waveform processing algorithms. The
SAR waveforms can be tracked onboard with affordable computation resource. This will
be a competitive algorithm for the generation of fast-delivery data products and can bring
great benefits to applications such as storm surge monitoring.

Due to the simplicity of the parabolic cylindrical model’s mathematical expression,
the Bayesian algorithm can be employed instead of the commonly used least squares
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algorithm for parameter estimation, and the precision of the height estimation can be
improved significantly. The inclusion of Bayesian estimation is the core optimization of the
MOPCA strategy.

Despite of the increasing calculation speed, MOPCA’s percentage of waveforms suc-
cessfully retracked is comparable to the representative SAR waveform retracking algo-
rithms, and can even outperform the most popular SAMOSA+ algorithm (and others)
in coastal areas within 5 km where the land contamination is particularly severe. These
results sufficiently demonstrate the superiority of our scheme in the processing of nearshore
altimetry data.

The main focus of our future work plan is to merge various algorithms to acquire more
accurate altimetry measurements. There was a debate for decades whether one single wave-
form retracker algorithm is enough for coastal altimetry. Theoretically, there is no single
algorithm suitable for all types of waveform; but in practice, merging multiple retrackers
can usually cause spurious “jumps” in the SSH or SLA series, and the accuracy would thus
be deteriorated because the different retrackers have different system biases (which are
sensitive to parameters such as SWH). To achieve a consistent SLA series is a cumbersome
problem, and the authors are now investigating the alignment of different algorithms (for
example, the MOPCA and SAMOSA+ algorithms). The authors are also considering further
improvements in the efficiency of MOPCA, to better meet the requirements for real-time
processing. Considering that the main time-consuming operation of the MOPCA algorithm
is the processing of the RNN part, developing a lightweight RNN algorithm will be another
focus of our future work.
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