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Abstract: The number of resident space objects (RSOs) has been steadily increasing over time,
posing significant risks to the safe operation of on-orbit assets. The accurate prediction of potential
collision events and implementation of effective and nonredundant avoidance maneuvers require
the precise estimation of the orbit positions of objects of interest and propagation of their associated
uncertainties. Previous research mainly focuses on striking a balance between accurate propagation
and efficient computation. A recently proposed approach that integrates uncertainty propagation
with different coordinate representations has the potential to achieve such a balance. This paper
proposes combining the generalized equinoctial orbital elements (GEqOE) representation with an
adaptive Gaussian mixture model (GMM) for uncertainty propagation. Specifically, we implement a
reformulation for the orbital dynamics so that the underlying state and the moment feature of the
GMM are propagated under the GEqOE coordinates. Starting from an initial Gaussian probability
distribution function (PDF), the algorithm iteratively propagates the uncertainty distribution using a
detection-splitting module. A differential entropy-based nonlinear detector and a splitting library are
utilized to adjust the number of GMM components dynamically. Component splitting is triggered
when a predefined threshold of differential entropy is violated, generating several GMM components.
The final probability density function (PDF) is obtained by a weighted summation of the component
distributions at the target time. Benefiting from the nonlinearity reduction caused by the GEqOE
representation, the number of triggered events largely decreases, causing the necessary number of
components to maintain uncertainty realism also to decrease, which enables the proposed approach to
achieve good performance with much more efficiency. As demonstrated by the results of propagation
in three scenarios with different degrees of complexity, compared with the Cartesian-based approach,
the proposed approach achieves comparable accuracy to the Monte Carlo method while largely
reducing the number of components generated during propagation. Our results confirm that a
judicious choice of coordinate representation can significantly improve the performance of uncertainty
propagation methods in terms of accuracy and computational efficiency.

Keywords: orbit uncertainty propagation; adaptive Gaussian mixture model (AGMM); generalized
equinoctial orbital elements (GEqOE)

1. Introduction

The increasing number of space targets poses a great risk to the safe operation of
on-orbit assets. The accurate location and prediction of objects of interest are crucial for
enhancing space situational awareness. Currently, both ground-based and space-based
observation systems face challenges in meeting the demanding monitoring requirements
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of the numerous targets due to their limited capabilities. As a result, there is a scarcity of
orbital geometry information from sparse measurements. Furthermore, the observation arcs
and the considered dynamical model used as inputs in the orbit determination algorithm
have limited accuracy. All of these factors contribute to orbit uncertainty, which represents
the deviation between the estimated and actual orbits. In specific applications, solely
predicting the nominal orbit is inadequate, as considering the evolution of uncertainty is
also critical. This is particularly true in scenarios where mission reliability is of paramount
concern, such as spacecraft constellation configuration [1,2], space rendezvous [3], and
collision assessment [4].

Uncertainty in a dynamical system primarily refers to both the inherent stochastic
term and the epistemic uncertainty in modeling. It is typically associated with errors in al-
gorithms for orbit computation, modeling defects caused by forces, and measurement noise,
ultimately resulting in orbital uncertainty. The output of the orbit determination pipeline is
often characterized as a Gaussian probability density function (PDF), which serves as input
for the procedure of uncertainty propagation (UP). The evolution of the uncertainty PDF is
governed by the Fokker–Planck (FP) equation [5], and obtaining an analytical solution to
the FP partial differential equation (PDE) can be challenging, while numerical calculations
are extremely time-consuming. The Monte Carlo method, a sampling-based approach, is
an accurate and effective technique for uncertainty propagation [6]. However, mapping
numerous samples for reliable analysis can be also computationally intensive. In practice,
it is typically used as a quantitative benchmark in uncertainty propagation methods. Cur-
rently, many techniques have been developed to propagate uncertainty accurately and
efficiently [7], falling into two categories: intrusive and nonintrusive methods.

The intrusive method employs an approximate dynamic model to simplify the prop-
agation of the distribution over time. The dynamical system is represented during the
analysis as a Taylor series expansion around the nominal orbit. Based on the chosen ap-
proximate order of the model, the uncertainty propagation method can be categorized into
two classes: the linear covariance analysis (LinCov) method [8], which depends on the
first-order state transition matrix (STM), and the state transition tensors (STT) method [9],
which preserves the high-order nonlinear term. Under the LinCov method, the Gaussian
PDF is used to fully characterize the underlying uncertainty. However, this method may
become inaccurate when dealing with highly nonlinear dynamics or when uncertainties
distort significantly after long-term propagation. On the other hand, STT improves upon
the traditional linearized method by utilizing the high-order terms in the Taylor expansion
to handle nonlinearity in dynamics, providing an advantage for reliable uncertainty propa-
gation. Nonetheless, STT highly depends on the propagation of the high-order variational
equation, increasing its computational requirements exponentially as the maximum order
of STT considered increases. The differential algebra-based method [3] also uses Taylor
polynomials to expand the dynamics. Instead of integrating variational equations, differen-
tial algebra employs an algebraic approach over these Taylor polynomials to automatically
map the initial conditions with the solution of complicated equations, allowing for more
efficient propagation compared to STT. It is important to note that Taylor expansion repre-
sents a local solution in the neighborhoods of the nominal trajectory. Depending on the
nonlinearity of the dynamics, the size of the initial uncertainty, and the propagation time,
the Taylor expansion needs to be dynamically adapted to achieve the required accuracy.
Techniques like automatic domain splitting (ADS) [3] and lower-order automatic domain
splitting (LOADS) [10] are employed to address this challenge.

Nonintrusive methods present another sampling-based approach, but they pursue
deterministic sampling to efficiently propagate the initial distribution. One classical non-
intrusive approach is the unscented transform (UT) [11], commonly used to propagate
the first two statistical moments, i.e., mean and covariance, when dealing with Gaussian
uncertainties. The second-order moment can be characterized by sampling and propagating
a few sigma samples into future epochs. Similar numerical quadrature rules include the
Gauss–Hermite quadrature (GHQ) [12], cubature rules (CRs) [13], and compact quadrature
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rules (CQRs) [14]. The UT and CRs both belong to third-degree rules, whereas the GHQ
rule is accurate to arbitrary degrees, making it more suitable for propagating long-term
means and covariances. However, it is worth noting that the GHQ rule requires univariate
tensor product calculations, which can lead to the curse of dimensionality. In contrast,
higher-degree CRs introduced in [15] have demonstrated comparable performance to GHQ
but with a computational complexity on the order of polynomials of the dimension. When
applying the UT and the high-degree CRs, it is essential to be mindful of the potential
occurrence of negative quadrature weights, which can lead to a negative-definite covari-
ance matrix and degrade propagation performance. To address this problem, Bin Jia and
Ming Xin [14] proposed a new class of compact quadrature rules (CQRs) for the orbital
uncertainty propagation based on two positive weighted quadrature rules from [16,17].
The CQRs offer similar performance to GHQ but require considerably fewer quadrature
points. Another nonintrusive method is the polynomial chaos equation (PCE) method [18],
which provides a functional approximation of the orbital dynamics through its spectral
representation using orthonormal polynomials. Once the polynomial chaos coefficients are
calculated, an inexpensive-to-evaluate surrogate is constructed to replace the underlying
dynamical system, resulting in a final PDF recovered from the evaluated samples with less
calculation compared to the MC method. However, it is important to note that the curse
of dimensionality may arise when applying PCE in complex problems, as the number of
terms required to construct the polynomial approximation grows exponentially with the
dimension of the input variables and the order of the polynomial basis.

Many reviews of orbital uncertainty propagation methods reveal that the nonlinearity
of dynamical partial differential equations significantly affects the performance of propa-
gation methods [7,19]. As the initial Gaussian distribution propagates through nonlinear
dynamics, it gradually deforms, making approaches relying on the assumption of a Gaus-
sian PDF ineffective. One solution to this issue is to utilize the Gaussian mixture model
(GMM) [20]. The GMM is an effective probability distribution model that characterizes
any probability density function through a weighted sum of Gaussian components. Each
component of the GMM has a smaller uncertainty, enabling the preservation of the effec-
tiveness of the local linearization of the nonlinear function for a longer period within each
Gaussian. By employing the divide-and-conquer strategy of the GMM, several approaches
that depend on Gaussian validity have burst forth with new vitality, including GMM-
UT [21,22], GMM-STT [23,24], GMM-DA [10,25], and GMM-PCE [26]. These approaches
can be categorized into two classes. The first class aims to enhance their applicability in
dealing with nonlinear dynamics. By dividing the large deviation into several smaller
parts, the Gaussian validity is preserved for a longer period. As a result, the accuracy
of deformed distribution descriptions is improved using methods that rely on Gaussian
assumption, such as GMM-UT and linearization techniques. The second class aims to
reduce the computational complexity of intrusive methods through GMM division. When
handling uncertainty propagation, intrusive methods can replace the propagation flow
within the component deviation domain with a lower-order surrogate model. The sum of
all component surrogates can then be equivalent to a high-order propagation model corre-
sponding to the original deviation domain, which significantly increases the computational
efficiency of intrusive methods.

In addition, some strategies, such as the multifidelity model [27,28] and virtual sam-
pling [29], are explored to achieve the balance of accuracy and efficiency of the GMM-based
methods. However, when applying these GMM-based approaches to multivariate uncer-
tainty propagation, the splitting operation along multiple dimensions leads to unbounded
exploration of the component number, resulting in a degradation in execution efficiency.
To address this issue, the Gaussian mixture reduction [30], including pruning [31] and
merging operations [32] for GMM components, has been proposed to dynamically reduce
the number of components, yielding some successful results. The pruning operation is to
drop the components with the lowest probabilities, and it may reduce the accuracy of final
results, while the number of Gaussian components is decreased gradually based on the
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probabilistic similarity measure. The similar components in the GMM would be merged
to a single Gaussian component. Considering that the lack of established standards for
triggering and executing GMM reduction makes it challenging to strike a balance between
precision and efficiency during application, it is necessary to develop new strategies to
tackle the propagation difficulty arising from nonlinear dynamics.

Recently, research on state representation has demonstrated its potential in mitigating
the effects of nonlinearities on uncertainty propagation. The development of various ele-
ment representations has usually been motivated by the goal of eliminating orbit singulari-
ties [33]. Remarkably, elegantly designed mathematical formulations can effectively absorb
the dominant nonlinearity in the equations of motion (EOMs). For instance, coordinate
systems based on orbital elements, such as the equinoctial orbital elements (EqOEs), can
mitigate the nonlinear effect of the 1/r2 term in the geopotential [34]. Horwood et al. [19],
in a significant advancement, replaced the semimajor axis of EqOEs with the mean mo-
tion, leading to the definition of the alternate set of elements (AEqOE). Using AEqOE,
the Gaussianity of the initial state uncertainty can be preserved throughout its complete
propagation in pure two-body dynamics. In consideration of perturbations on dynam-
ics, Aristoff et al. [35] introduced a set of J2 equinoctial orbital elements (J2EqOE) that
effectively absorb nonlinearities arising from the dominant J2 term of the geopotential
perturbation. Additionally, Baù et al. [36] proposed the generalized equinoctial orbital
elements (GEqOE), which not only reduce the influence of the J2 term but also address
higher-order geopotential harmonics. Notably, Baù et al. [36] established a closed analytical
transformation between Cartesian coordinates and GEqOE, along with a well-defined set of
differential equations of motion. Furthermore, in [37], Javier et al. extended the research by
computing the Jacobian matrix of the time derivatives of the GEqOE, thereby completing
the representation of the motion with the GEqOE.

The effect of different state representations on mitigating the nonlinearity of the
dynamics has been demonstrated in their original works [35–37]. However, the potential of
these representations for uncertainty propagation remains to be explored. In this paper,
we propose a reformulation of the GMM-UT method using the GEqOE representation for
uncertainty propagation. Specifically, we express the orbital state and its distribution in
the space of GEqOE and implement a GEqOE propagator to map the initial uncertainty to
future epochs. To begin with, the initial Gaussian is approximated by a Gaussian mixture
model, from which a set of sigma points is sampled to propagate the associated moment
forward. An adaptive Gaussian mixture model based on differential entropy is used as the
adaptive framework of the underlying PDF. When the differential entropy of a component
exceeds a suitable threshold, a splitting operation is performed on the corresponding
component. Benefiting from the preservation of Gaussianity under GeqOE, this paper
achieves a reduction in the number of GMM components required for uncertainty realism,
thereby enhancing the computation efficiency of GMM propagation. In summary, the main
contributions of this paper are the following:

• This paper conducts a performance comparison of five orbital representations in miti-
gating dynamics nonlinearity during uncertainty propagation. The Cramer–von Mises
test statistic demonstrates the excellence of the GEqOE representation in preserving
uncertainty realism throughout propagation.

• This paper proposes an uncertainty propagation method named AEGIS-GEqOE, which
combines the GMM strategy and the GEqOE state representation to efficiently and
accurately propagate the uncertainty. The use of GEqOE allows us to reduce the
number of GMM components required to describe the PDF of the propagated variables.
Specifically, differential entropy-based splitting, designed to adaptively adjust the
number of components, is applied with the GEqOE.

• To validate the performance of AEGIS-GEqOE in uncertainty propagation, we conduct
simulation tests using three dynamics with increasing complexity. The proposed
approach is compared with an adaptive GMM-UT method based on Cartesian rep-
resentation. The test results show that our method achieves accuracy comparable
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to the MC results, while significantly reducing the number of Gaussian components
compared to the Cartesian GMM approach. This demonstrates the balance achieved
by our method between propagation accuracy and efficiency.

The remainder of this paper is organized as follows. Section 2 defines the uncer-
tainty propagation problem in orbital dynamics. Section 3 provides an explanation of the
motivation behind this work and presents the implementation details of the proposed adap-
tive GMM based on GEqOE representation. Specifically, Section 3.2 introduces two core
modules: differential entropy-based GMM splitting and multidirectional GMM splitting.
The formulation deduction of the GEqOE is then presented in Section 3.3. In Section 4,
a performance comparison between the adaptive GMM in Cartesian and GEqOE space is
conducted under three simulated scenarios: two-body, J2-perturbed, and full dynamics.
A detailed discussion of the simulation test results is provided in Section 5. Finally, Section 6
concludes the paper.

2. Problem Statement

Given a nonlinear dynamical system that follows the subsequent ordinary differential
equations (ODEs)

ẋ = f (x(t), t), x(t0) = x0 (1)

where x(t) ∈ Rn is the state vector at time t and its initial state is x0, f : Rn → Rn is a
differentiable function.

When the system state has an initial error distribution p(x0, t0), the problem of uncer-
tainty propagation arises in describing the evolution of state error over time, p(x, t). In
orbital dynamics, the initial orbital uncertainty p(x0, t0) is typically defined as a Gaussian
probability density function [7], fully characterized by its first-order and second-order
moments (mean and variance):

pg(x; m, P) =
1√

(2π)n det(P)
exp(−1

2
(x−m)TP−1(x−m)) (2)

where m ∈ Rn is the reference trajectory, P ∈ Rn×n is the covariance matrix, det(·) repre-
sents the determinant of the square matrix, and exp(·) is the exponential function.

Under a nonlinear map, the initial Gaussian distribution will inevitably deform into a
non-Gaussian distribution after long propagation if no actions are taken. Consequently,
uncertainty propagation methods that rely on the Gaussian assumption would fail. To
address this issue, the Gaussian mixture model was proposed, offering a solution for de-
scribing the true PDF under Gaussian deformation. The GMM possesses the theoretical
capability to accurately fit any distribution with a sufficient number of components, en-
abling an accurate description of the true PDF. Moreover, by dividing the deviation domain
of the original distribution into multiple GMM components with smaller deviations, the
nonlinear propagation of these smaller components can be locally approximated as linear
propagation, thereby extending the Gaussian validity. The formulation of the GMM is
obtained via

p(x) =
L

∑
i=1

αi pg(x; mi, Pi) (3)

where L is the number of components and αi, mi, and Pi represent the associated weight,
mean, and covariance of each component, respectively. To ensure the PDF is positive and
the integral is 1, αi satisfies the condition{

αi ≥ 0 ∀ i ∈ {1, 2, ..., L}
∑L

i=1 αi = 1
(4)

With the assurance of approximately linear propagation over neighboring times of-
fered by the GMM [38], some well-established propagation techniques can reliably map
the means and covariances of the GMM to construct the final PDF. Mainstream works
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consist of two categories. The first [21,39] involves dividing the initial distribution into a
sufficiently large number of components so that the deviation of each evolved component
remains small enough for the linear approximation to be valid over the entire propagation
period. However, determining the number of required components can be difficult, and the
computation burden of propagating numerous components from the beginning to the end
can be challenging. The second category [40,41] starts with a small number of components
but achieves uncertainty realism by adaptively adjusting the number of components. In this
paper, we investigate the second strategy, focusing on how to combine the adaptive GMM
and the GEqOE representation to keep the uncertainty realism. The functional modules
and specific details will be introduced in the next section.

3. Methodology
3.1. Proposed AEGIS-GEqOE

To achieve a balance of propagation accuracy and efficiency in orbital nonlinear
propagation problems, we propose a novel method that combines the adaptive Gaussian
mixture model with the GEqOE representation. The overall procedure of this method
is depicted in Figure 1, comprising two core components: the adaptive GMM and the
GEqOE propagator.

Candidate components

𝑝(𝛼𝑖 ,𝒎𝑖 , 𝑷𝑖)
Is the uncertainty 

realism broke down?

Component splitting
Splitted components

𝑝(𝛼𝑗𝑙 ,𝒎𝑗𝑙 , 𝑷𝑗𝑙)

Yes

No

∙
∙ ∙ ∙

∙
∙ ∙ ∙ ∙ ∙

t

Initial distribution
𝑝(𝒚;𝒎(𝑡0), 𝑷(𝑡0))

Initial distribution
𝑝(𝒙;𝒎(𝑡0), 𝑷(𝑡0))

Final GMM
𝑝(𝒚;𝒎(𝑡𝑓), 𝑷(𝑡𝑓))

Final GMM
𝑝(𝒙;𝒎(𝑡𝑓), 𝑷(𝑡𝑓))

⋯ ⋯

Figure 1. Flowchart of GMM-based uncertainty propagation on different representations.

The original motivation behind incorporating GMMs into uncertainty propagation
was to remove the assumption of the Gaussian distribution in state estimation while ap-
plying the extended Kalman filter to nonlinear systems [20]. The adaptive GMM (AGMM)
involves two essential procedures [21,38]: nonlinear detection, which accurately identifies
the breakout point of the dynamics’ uncertainty realism, and the splitting operation, which
divides the detected component into multiple smaller portions. As shown in the gray
functionality block of Figure 1, these two functional modules are iterated during propaga-
tion. Once the nonlinear metrics of GMM components surpass the preset threshold, the
corresponding component is divided into multiple subdomains.

Specifically, under the influence of the nonlinear system, the initial Gaussian distribu-
tion of orbital uncertainty will deform. The degree of nonlinearity determines the rate at
which the Gaussian distribution deforms: the more severe the nonlinearity, the faster the
deformation occurs. In the traditional Cartesian dynamical system, the Gaussian validity
will eventually be lost depending on the initial deviation and the length of propagation
time. The required number of components of traditional AGMM to accurately describe
the true PDF will increase exponentially, as a result of an increasing number of triggered
splitting operations. Given the capability of orbital elements to mitigate the nonlinearity of
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dynamics, a natural question arises: is there a possibility of reducing the number of com-
ponents in GMM-based approaches by carefully selecting orbital elements and associated
dynamics? If the underlying dynamics exhibits less nonlinearity compared to Cartesian
dynamics, the speed of distribution deformation slows down, delaying the occurrence of
the first splitting event and increasing the interval between subsequent splittings. These
effects would contribute to a reduction in the number of components.

In this paper, we have improved adaptive entropy-based Gaussian mixture informa-
tion synthesis (AEGIS) by incorporating GEqOE. For the sake of brevity, we will refer to
the proposed method as AEGIS-GEqOE hereafter. We first implemented a new propagator
based on the GEqOE state representation. As illustrated in Figure 1, the initial Gaussian
distribution is firstly transformed from Cartesian coordinates (x) to GEqOE coordinates
(y). Subsequently, both the samples and PDF moment features are propagated using the
GEqOE propagator. Two splitting strategies are then reformulated to accommodate the
change in orbital state representation. With the reduction in nonlinearity achieved by the
GEqOE, the trigger times for the splitting event can be significantly decreased, resulting
in fewer components that need to be propagated in the AGMM. At the final propagation
epoch, we can reconstruct the Cartesian PDF based on the GEqOE results. This entire
process is equivalent to uncertainty propagation in Cartesian space, providing reliable
accuracy while imposing a lower computational burden.

3.2. GMM Splitting Strategies

Different from dividing the initial uncertainty and then propagating GMM compo-
nents individually as in a particle filter, the adaptive GMM starts from the original Gaussian
assumption and dynamically adjusts the number of components using a well-designed
splitting strategy. The goal is to trigger the splitting operation as soon as the Gaussian
components can no longer adequately represent the true state PDF, typically implemented
through nonlinear detectors. To achieve this, the procedure first constructs a univariate
splitting library and subsequently splits the multivariate Gaussian into multiple compo-
nents along a specific split direction. As a result, the multivariate Gaussian distribution
transforms into the weighted sum of univariate Gaussian distributions. The distorted
components are thereby replaced by smaller ones, effectively mitigating the effects of
underlying nonlinearities.

3.2.1. Differential Entropy-Based Splitting

An important advancement in the adaptive GMM is due to DeMars et al. [40], who
proposed using the differential entropy of covariance as the nonlinearity measure for the
evolving dynamics. The differential entropy quantifies the average amount of information
content associated with a random variable. For a Gaussian distribution N(x; µ, P), its
differential entropy can be calculated as follows:

H(x) =
1
2

log |2πeP| (5)

where H represents the differential entropy corresponding to the Gaussian distribution, x
is the system state, e is the natural logarithm, and P is the covariance matrix. In the case of
a linearized dynamical system, the temporal derivative of the differential entropy can be
expressed by

Ḣ(x) = trace(F(µ(t), t)) (6)

where F(µ(t), t) is the Jacobian matrix of the time derivatives of the state as a function of
the distribution mean µ(t).

In this paper, we employ the nonlinearity index introduced in [40] to identify the break-
down point of the dynamics’ uncertainty realism. This index is constructed by measuring
the difference between the differential entropy of linear and nonlinear propagation, denoted
as ∆H = |Hnonlinear − Hlinear|. Two differential entropy values are propagated over time:
the value of the entropy for a linearized dynamical system, Hlinear, can be calculated by
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numerically integrating Equation (6), while a nonlinear implementation of the integration
of the covariance matrix using UT [11] is considered. The propagated covariance matrix P
can be reconstructed with the transformed sigma points, resulting in a nonlinear entropy
(Hnonlinear) determined via Equation (5). The deviation of the nonlinear entropy from the
linear entropy ∆H quantifies the nonlinear effects impacting the GMM component. Once
the ∆H reaches a predetermined threshold ε, indicating a violation of uncertainty realism
(∆H − |ε · Hlinear| > 0), a splitting operation is triggered.

After detecting the breakdown of uncertainty realism, it is necessary to split the origi-
nal distribution into multiple components. Given the Gaussian assumption used for filter
prediction and uncertainty propagation, the problem of approximating a Gaussian distribu-
tion with multiple Gaussian components has been extensively investigated. A commonly
employed approach is to build a nonlinear optimization problem based on the homoscedas-
tic simplification, i.e., all of the components have the same variance. The optimization
solution used in this paper is a univariate splitting library of 3 and 5 components, which
can be applied to split a multivariate GMM. The procedure is outlined in Algorithm 1. The
u-th GMM component ready to be split is characterized by mean µi and covariance matrix
Pi. Based on the univariate splitting library consisting of L Gaussian distributions, {α̃s, µ̃s,
σ̃s}, a set of split components {ws, µs, Ps} can be obtained, where s ∈ [1, L] and σ̃s denotes
the standard deviation of the splitting library.

Algorithm 1 DeMars’s splitting strategy

Input: GMM component: αi, µi, Pi; univariate splitting library: {α̃s, µ̃s, σ̃s};
Output: Splitted component set: {ws, µs, Ps};

1: Spectral decomposition: Pi = ∨∧∨T, where ∧ = diag{λ1, ..., λn}.
2: Choose the splitting direction corresponding to the k-th eigenvalue λk:
3: for the s-th splitting individual of splitting library do
4: weight update: ws = α̃sαi.
5: mean update: µs = µi +

√
λkµ̃svk, where vk is the k-th eigenvector of Pi.

6: covariance update: Ps = ∨∧s ∨T, where ∧s = diag{λ1, ..., σ̃2
s λk, ..., λn}.

7: end for

In the implementation of AGMM, the unscented transform is employed as the mo-
ment mapping method. Starting with the initial Gaussian or GMM component, we use
the unscented transform to sample featured points from the underlying PDF and then
concatenate them with the initial differential entropy for time propagation. Assuming a
splitting duration of [ts−1, ts], the initial PDF is characterized by weight αi, mean µi, and the
covariance Pi. According to the UT scheme, 2n + 1 sigma points can preserve the first and
second statistical moments of any transformed distribution, where n is the state dimension,

X (0) = µi

X (j) = µi +
√

n + λSj

X (j + n) = µi −
√

n + λSj

(7)

where j ∈ [1, n], Sj represents the j-th column of the Cholesky decomposition matrix S,
Pi = SST, and λ is a tunable parameter. The propagated mean µ̂i and covariance P̂i can be
reconstructed by

µ̂i =
2n

∑
j=0

wm(j)Y(j)

P̂i =
2n

∑
j=0

wc(j)(Y(j)− µ̂i)(Y(j)− µ̂i)
T

(8)

where wm(i) and wc(i) are weights and {Y(j)} represents the sigma cloud that has been
propagated. During propagation, a nonlinearity threshold ε is predefined and the ∆H is
calculated in every step. If the resulting value violates the threshold ε, a splitting library
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with L components is applied to the propagated component along the eigenvector with the
maximum eigenvalue. Finally, the original PDF of the component is approximated by the
sum of splitted components:

αi pg(x; µi, Pi) u
L

∑
s=1

ws pg(x; µs, Ps) (9)

where pg represents the Gaussian PDF.

3.2.2. Multidirectional Splitting

Considering the increasing deformation of the evolving uncertainty PDF, different
degrees of nonlinearity will appear in different dimensional directions. Vittaldev et al. [4,42]
propose a univariate splitting library, allowing for an arbitrary direction choice. This
library supports up to L = 39 components for a single splitting action. Additionally,
multidirectional splitting can be performed in a recursive manner. If splitting along only
one direction fails to capture the non-Gaussianity of the underlying distribution, each
resulting component from the first splitting can be further split along the next specified
direction. This procedure can be repeated multiple times, depending on the required
accuracy and available computational resources. In the adaptive GMM-based approaches,
we use multidirectional splitting to divide the initial distribution, aiming to decrease the
splitting number during full propagation.

An arbitrary-direction splitting library is first constructed via

µs = µi + µ̃sSâ∗

Ps = S(I + (σ̃2
s − 1)â∗ â∗T)ST

â∗ =
S−1u
||S−1u||2

(10)

where {µi, Pi} is the moment feature of the i-th candidate component; µ̃s, σ̃s are the compo-
nent mean and standard deviation of the splitting library, respectively; u is the arbitrary
direction vector on which the splitting operation can be performed, and S is the square-root
matrix after Cholesky decomposition for Pi.

The directions along which the splitting operation is performed are often chosen by a
nonlinearity statistic proposed in [4],

φi =
f (µ + h̃σ||â) + f (µ− h̃σ||â)− 2 f (µ)

2h̃2
(11)

where φi represents the nonlinearity metric corresponding to the current splitting; µ is the
mean vector of the candidate component; and h̃ is set to

√
3 to align function evaluations

with the sigma points along µ. The associated deviation along the splitting direction u is
calculated with σ||â = ||S−1 â||−1

2 .
After evaluating φi for all candidate directions, the directions are ranked based on their

nonlinearity using the 2-norm measure. By recursively choosing the interested direction to
split the Gaussian distribution, the resulting components exhibit smaller deviations than
the original Gaussian. While adopting the strategy described in [4] as an adaptive scheme
of GMM components may lead to an unbounded growth in the number of components
due to the increasing uncertainty and extending propagation time, the multidirectional
splitting approach shows great potential in scenarios with highly deformed and elongated
density distributions, especially in long-term uncertainty propagation. In this paper, we
investigated the effectiveness of the multidirectional splitting strategy to improve the
capability of the proposed AEGIS-GEqOE in dealing with highly nonlinear scenarios.
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3.3. Generalized Equinoctial Orbital Elements

Recent works [34–36] have explored the effectiveness of the state representation for
uncertainty propagation. In particular, Baù et al. [36] proposed a new set of variables
to represent the orbital state that can improve propagation performance when some or
all of the perturbing forces come from potential energy. The new variables are called
generalized equinoctial orbital elements and are given by (ν, p1, p2,L, q1, q2), in which ν
is the generalized form of the mean motion n, (p1, p2) are the generalized versions of the
equinoctial orbital elements (h, k), L is the generalized mean longitude, and (q1, q2) coincide
with the equinoctial orbital elements (p, q). In the following section, we will provide the
mathematical formulation of GEqOE based on a nonosculating ellipse firstly, and then the
equations of motion under the new coordinate representation will be presented.

3.3.1. Mathematical Formulation

Following [36], consider a point P of mass m attracted by a body of mass M. Its motion
in a geocentric inertial reference frame is described by the differential equation

r̈ = −µr
r3 + F(r, ṙ, t) (12)

where r, ṙ, and r̈ are the geocentric position, velocity, and acceleration of P, respectively.
The quantity µ is the gravitational parameter of the Earth, r is the position magnitude, and
t denotes time. The point mass is subject to the perturbing force F that consists of one
term P that does not arise from a potential and another one that arises from the potential
energy U :

F(r, ṙ, t) = P(r, ṙ, t)−∇U (r, t). (13)

The main concept behind GEqOE is that some or all of the perturbing forces can be
derived from a potential U . The total energy E is the sum of the Keplerian energy EK and
the potential energy:

E = EK +U (14)

In the following, by embedding the potential energy U in the definition of the gener-
alized version of angular moment, semimajor axis, and eccentricity, a nonosculating ellipse
Γ can be introduced.

First, the generalized angular momentum is defined as

c =
√

h2 + 2r2U , c = ceh (15)

where h denotes the magnitude of the angular moment, h = |r× ṙ|, eh is one element of the
orthonormal basis of the orbital reference frame ∑or = {O; er, e f , eh},

er =
r
|r| , e f = eh × er, eh =

r× ṙ
|r× ṙ| (16)

Moreover, the generalized velocity vector is introduced:

υ = ṙer +
c
r

e f (17)

Now, based on the pair of vectors (r, υ), a nonosculating ellipse Γ is defined, taking
the primary body as center and lying on the orbital plane. Next, we need to determine the
shape and orientation of the ellipse.

The generalized semimajor axis a and generalized eccentricity g are introduced as
the following:

a = − µ

2E
, g =

1
µ

√
µ2 + 2E c2 (18)
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The generalized eccentricity g is related to the osculating eccentricity e by

g2 = e2 +
2U

µ2 [h2 + 2r2(EK +U )]. (19)

The generalized Laplace vector is introduced to fix the orientation of Γ on the or-
bital plane:

µg = υ× (r× υ)− µer, (20)

where |g| = g.
Finally, the instantaneous location of the target in the orbit should be determined by

the generalized true anomaly θ, defined as the angular separation between the vectors g
and r, formulated via {

g cos θ = c2

µr − 1,
g sin θ = cṙ

µ

(21)

Similarly, the generalized eccentric anomaly G can be defined with the relations{
g cos G = 1− r

a ,
g sin G = rṙ√

µa
(22)

The generalized Kepler’s equation takes the form

M = G− g sin G (23)

whereM is the generalized mean anomaly.
Consider the classical equinoctial reference frame ∑eq = {O; eX , eY, eZ}. The angular

displacement between the direction of er and that of eX is called true longitude and is
given by

L = ω + Ω + f (24)

where ω represents the classical argument of the pericenter, Ω is the right ascension of the
ascending node, and f is the true anomaly.

We are ready to introduce the generalized equinoctial orbital elements. The first three
elements are defined as

ν :=
1
µ
(−2E )3/2, (25)

p1 := g sin Ψ, (26)

p2 := g cos Ψ, (27)

where ν is the generalized form of the mean motion n, and p1 and p2 are the generalized
versions of the equinoctial orbital elements h and k, defined as the projection of g along
the in-plane axes of Σeq. The angular variable Ψ, named the generalized longitude of the
pericenter, is defined as

Ψ = L− θ. (28)

Then, the fourth element of GEqOE, the generalized mean longitude L :=M+ Ψ, is
introduced to fix the position of P with respect to Σeq. Lastly, the elements q1, q2 are defined
as the elements p, q (see [33]), that is:

q1 := tan
i
2

sin Ω, (29)

q2 := tan
i
2

cos Ω (30)

where i is the classical inclination.
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The improvement in nonlinearity reduction can be attributed to the reduction in the
number of fast variables used to describe the target’s location from six in Cartesian space
to one in the GEqOE representation. Additionally, from the derivation process of GEqOE,
it can be seen that the perturbation derived from a potential is effectively absorbed by
the proposed elements. In [37], a mathematical analysis is provided to demonstrate the
GEqOE’s ability to mitigate the nonlinearity effect. The closed analytical formulations,
which encompass the transformations between Cartesian coordinates and the GEqOE
representation, as well as the analytical expressions for the variational equations, are
detailed in [36,37]. It is worth noting that the computation of the Jacobian matrix F (see
Equation (6)) is essential for the time propagation of the differential entropy. All the research
and efforts related to the GEqOE significantly contribute to its application in this paper,
where it is employed to address the uncertainty propagation problem.

3.3.2. Time Derivatives of the GEqOE

Given the initial position r0 and velocity v0 at epoch time t0 in an ECI frame ∑, we can
obtain its GEqOE initial conditions based on the conversion equations in [36]. The state
vector expressed in the GEqOE, denoted by y = (ν, p1, p2,L, q1, q2), obeys the equation
of motion:

ẏ = f (y, t) (31)

The Jacobian matrix ∂ f (y, t)/∂y can be computed analytically for GEqOE. Its deriva-
tion is not shown here for simplicity, which can be referred to in the original paper [37].
The time derivatives of the GEqOE are given by

ν̇ = −3
(

ν

µ2

)1/3

Ė ,

ṗ1 = p2

(
h− c

r2 − wh

)
+

1
c

(X
a
+ 2p2

)
(2U − rFr)

+
1
c2 (Y(r + $) + r2 p1)Ė ,

ṗ2 = p1

(
wh −

h− c
r2

)
+

1
c

(Y
a
+ 2p1

)
(2U − rFr)

+
1
c2 (X(r + $) + r2 p2)Ė

L̇ = ν +
h− c

r2 − wh +
( rṙα

µc
(r + $)

)
Ė

+
1
c

[
1
α
+ α
(

1− r
a

)]
(2U − rFr),

q̇1 =
1
2

wY(1 + q2
1 + q2

2),

q̇2 =
1
2

wX(1 + q2
1 + q2

2),

where the time derivative of energy can be calculated via

Ė = Ut + ṙPr +
h
r

Pf (32)

Here, Pr = P · er, Pf = P · e f , and Ut is the partial derivative of U (r, t) with respect
to t. In addition, X, Y represent the target’s coordinates in the equinoctial reference frame
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∑eq; wX , wY, wh are the projections of the angular velocity of ∑eq with respect to ∑ on the
equinoctial axes; α, $ are the auxiliary terms. The expressions of these quantities are

X = r cos L, Y = r sin L (33)

wX = Fh
r
h

cos L,

wY = Fh
r
h

sin L,

wh = − r
h

Fh tan
i
2

sin(w + f )

(34)

where Fh = F · eh and

α =
1

1 +
√

1− p2
1 − p2

2

, $ =
c2

µ
(35)

4. Results

In this section, we implement a series of simulation tests to validate the performance
of the proposed AEGIS-GEqOE method. First, in Section 4.1, we perform a Cramer–von
Mises test on a classical LEO case to verify the extension of Gaussianity achieved by the
GEqOE representation for uncertainty propagation. Then, in Section 4.2, we simulate three
dynamics scenarios with increasing complexity and compare the proposed AEGIS-GEqOE
with the Cartesian GMM-based method and the Monte Carlo method to assess its ability to
balance propagation accuracy and efficiency.

For all simulation tests, the initial epoch time is set to 1 January 2020 00:00:00 UTC.
The state propagation under various dynamics representations can be implemented using
MATLAB’s ode113 (a variable-order Adams–Bashforth–Moulton PECE solver [43]) based
on the corresponding equations of motion. The relative and absolute tolerance of the
propagator is set to 10−10.

4.1. Uncertainty Realism Evolution

By employing an appropriate state representation in uncertainty propagation, the
nonlinearity of the dynamics can be mitigated, thereby extending the time period before
the uncertainty realism achieved by the Gaussian distribution starts to breaks down. In
this subsection, we evaluate the ability of various state representations in preserving
Gaussianity during uncertainty propagation, providing essential support for the state
representation choice of the proposed UP method.

The following test employs five sets of orbital elements for uncertainty propagation.
We first use a formulation based on the Cartesian coordinates due to its wide application in
space surveillance, and the classical GMM-based UP method, implemented in Section 4.2,
is also formulated based on it. The second formulation is given by the equinoctial orbital
elements (EqOE), which is one of the most commonly used nonsingular element sets
for mitigating the nonlinear effect from 1/r2. The alternate set of elements (AEqOE), a
representation that replaces the semimajor axis of EqOE with the mean motion, is used for
performance comparison against the recent GEqOE, considering its important advance in
this research field. Lastly, we include in the comparison with the J2EqOE [35] a set of orbital
elements devised for reducing the nonlinearity arising from the J2 term of the geopotential.
To demonstrate the superior ability of GEqOE in extending Gaussian validity, we choose
a J2-perturbed LEO test case from [35], and the mean and variance of each of the orbital
elements are shown in Table 1. The propagation duration is set to 1 day to ensure that the
uncertainty realism under different coordinate choices is distinguishable at the final epoch.
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Table 1. Initial state moment in LEO for Cramer–von Mises test (angles are in degrees).

a, km e i Ω ω M
7136.6 0.00949 72.9 116 57.7 105.5

σa, km σp1 σp2 σq1 σq2 σl
20 10−3 10−3 10−3 10−3 10−2

4.1.1. Cramer–Von Mises Test

The Cramer–von Mises (CvM) test, as used in [35], is employed to assess the per-
formance of different coordinate choices in UP. The Mahalanobis distance measures the
deviation of a sample from its distribution. The squared Mahalanobis distance is defined as

M(i)(x(i); µ, P) = (x(i) − µ)TP−1(x(i) − µ), (36)

where x(i) is the state sample, µ denotes the state mean, and P is the covariance matrix. In
the orbital uncertainty propagation, if the true distribution is Gaussian, then the variable
M(i) will exhibit a chi-squared distribution (χ2) with six degrees of freedom. Its cumulative
distribution function (CDF) can be calculated as follows:

F(z) = 1− 1
8

exp(− z
2
)(z2 + 4z + 8) (37)

where z represents the squared Mahalanobis distance.
Two propagation procedures will be performed during the CvM test. The first involves

propagating the feature moment under the selected representation. The second procedure
propagates Monte Carlo samples from the initial distribution in Cartesian coordinates.
At the final epoch, the MC samples are converted into the target’s representation. Then,
the discrepancy between the empirical distribution function statistic and the expected χ2

provides a quadratic term to qualify the uncertainty realism under the target representation:

Q =
1

12k
+

k

∑
i=1

[
2i− 1

2k
− F(z(i))]2 (38)

where k is the total amount of samples sorted in increasing order by Mahalanobis distance.

4.1.2. Changes of Uncertainty Realism under Different State Representations

When evaluating the effect of different representations, the null hypothesis of the CvM
test is that the candidate distribution is subject to the χ2 distribution. A threshold of the
CvM test statistic to ensure uncertainty realism is set to 1.16, corresponding to a 99.9%
confidence level. In this test, a total of k = 10,000 samples of the initial orbital uncertainty
are propagated within the dynamics.

The CvM test statistic for a LEO scenario [35] is depicted in Figure 2, which was
obtained by propagating the PDF of different state representations through the UT. For
the PDF to be realistic (with 99.9% confidence), the metric value should fall within the
shaded region. Observing Figure 2, it becomes evident that the uncertainty realism remains
consistent under the Cartesian representation for the shortest duration, as the CvM test
value exceeds the threshold line of 1.16 shortly after propagation begins (approximately
within 0.028 orbital periods). Conversely, the statistical values of EqOE, AEqOE, and
J2EqOE surpass the threshold line for 3.925, 3.665, and 12.149 orbital periods, respectively.
Remarkably, the GEqOE maintains uncertainty realism throughout the entire one-day
propagation, indicating its superiority over other representations.
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Figure 2. Cramer–von Mises statistics of different state representations for the LEO test case (see
Table 1).

4.2. Numerical Simulations

In this section, different uncertainty propagation methods are compared with the
Monte Carlo results in three scenarios to evaluate their accuracy and efficiency. These
scenarios involve various dynamics, including pure two-body dynamics for a high Earth
orbit (HEO), J2-induced dynamics for a low Earth orbit (LEO), and full dynamics with
an 8 × 8 gravity model and lunisolar perturbations for a medium Earth orbit (MEO).
These scenarios present force models of increasing complexity that allow evaluating the
applicability of the proposed GEqOE-AEGIS to preserve uncertainty realism under different
perturbations. The HEO and LEO cases are adapted from [40], while the MEO scenario is
a circular, inclined orbit of the Galileo constellation, as used in [10] to highlight the great
reduction in the number of kernels achieved through Taylor polynomials.

• Dynamic modeling

We consider here the gravitational perturbations arising from the nonspherical shape
of the Earth and the third-body gravitational attraction of the Moon and the Sun. The
acceleration agrav from the Earth’s gravity potential U is equal to the gradient of U, as
shown below:

U =
GM

r

∞

∑
n=0

n

∑
m=0

Rn

rn Pnm(sin φ)(Cnm cos(mλ) + Snm sin(mλ))

agrav = ∇U

(39)

where GM denotes the gravitational parameter of the Earth, while R and r represent
the Earth’s radius and the magnitude of the target’s position vector, respectively. Pnm
is the Legendre polynomial of degree n and order m; Cnm and Snm are the geopotential
coefficients, which correspond to different gravity models. In this paper, we have adopted
the Grace gravity model 03 GGM03C [44]. Additionally, λ and φ denote the geocentric
longitude and latitude, respectively.

The third-body gravitational acceleration a3bd is expressed by

a3bd = GM(
s− r
|s− r|3 −

s
|s|3 ) (40)

where r and s are the geocentric coordinates of the target and of the celestial body. The
positions of celestial bodies are obtained from the JPL DE440 ephemeris [45].
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It should be noted that, as shown in Equation (13), the perturbed force comprises a
term that is derivable from the potential energy U and a term P that is not. In the GEqOE
representation, all terms in the potential of the used gravity model (except for the point
mass potential) are included in the potential energy.

With the dynamic model in place, we can formulate the time rate of the differential
entropy of the linearized dynamics as follows (see Equation (6)):

Ḣ(x) = trace{F(m(t), t)}

=
n

∑
i=1

∂ fi(x(t), t)
∂xi(t)

(41)

where x can be the state expressed in the Cartesian or GEqOE space and F represents the
Jacobian matrix of the underlying dynamics.

• Scenario setup

The initial orbital uncertainties are assumed Gaussian in the following simulated
scenarios, and their initial reference orbital elements are summarized in Table 2, followed
by Table 3 where the 1σ deviations of the Cartesian states for each scenario are given.
The setting of the orbital elements is properly adjusted on the basis of [10,40], to build a
dynamic simulation with a different perturbation complexity.

Table 2. Initial orbital elements for three scenarios (angles are in degrees).

Case a, km e i Ω ω M

LEO 6603.0 0.01 0.0 0.0 0.0 0.0
HEO 35,000.0 0.2 0.0 0.0 0.0 0.0
MEO 29,600.135 0.0 56.0 0.0 0.0 0.0

Table 3. The standard deviation values of the Cartesian states for three scenarios.

Case x, km y, km z, km vx, km/s vy, km/s vz, km/s

LEO 1.3 0.5 1.0 2.5× 10−3 5.0× 10−3 0.5× 10−3

HEO 1.0 1.0 1.0 1.0× 10−3 1.0× 10−3 1.0× 10−3

MEO 0.5 1.0 1.0 0.5× 10−3/2 0.5× 10−3/2 0.5× 10−3/2

In the following, we conduct a comparison of adaptive GMM methods based on
different element representations, namely AEGIS-Cartesian and AEGIS-GEqOE, in three
dynamical models. The results of Monte Carlo simulations are used to evaluate the perfor-
mance of different approaches. The performance metric utilizes the likelihood agreement
measure, as described in [40]. Additionally, we investigate the impact of multidirectional
splitting for initial uncertainty on the proposed AEGIS-GEqOE in the high-nonlinearity
MEO scenario.

4.2.1. Definition of the Accuracy Measure

To assess the representation accuracy of different propagation methods compared
to MC, the classical likelihood agreement measure (LAM) between two distributions is
adopted as the evaluation criterion:

L(p, q) =
1
K

K

∑
i=1

(
L

∑
j=1

αj pg(µi; mj, Pj)) (42)

where K is the MC sampling number, set to 10,000 in the following tests; L is the number of
Gaussian components; µi is the center of the Dirac delta distribution, equal to the i-th MC
sample; and αj, mj, and Pj are the weight, mean, and covariance matrix of the Gaussian
components, respectively.
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The LAM value describes the amount of overlap between two PDFs. Since the distri-
bution PDFs obtained by UP approaches are represented in different coordinate systems, in
order to ensure a fair performance evaluation, we fit the Monte Carlo samples, generated
through Cartesian nonlinear dynamics, with a GMM comprising 100 components. Then, we
sample from the propagated PDFs in different coordinate spaces and transform them into
the Cartesian space. This enables us to perform LAM calculations using the fitted GMM
and the transformed samples. A higher LAM value indicates a more accurate description
of the propagated PDF. In the subsequent performance presentation, we aim to provide
an intuitive comparison of different methods’ performance. Therefore, we normalize the
LAM based on the highest value among the test results. Similarly, the computational
effort, defined as the consumed time of UP methods, will be also normalized based on the
MC effort.

4.2.2. HEO Two-Body Dynamics

The results obtained by applying AEGIS-Cartesian and AEGIS-GEqOE in the two-
body HEO test case are presented in this section. The initial Gaussian PDF is converted
from the given Keplerian orbital elements and associated Cartesian covariance to the
respective Cartesian and GEqOE representations using the unscented transform. Previous
research [35] has shown that the resulting Gaussian PDF in the transformed representation
can be regarded as “truth” for the purpose of initiating the Monte Carlo samples. During
the adaptive splitting process, a fixed threshold is utilized for detecting nonlinearity. If
the deviation of differential entropy ∆H exceeds this threshold, a splitting strategy will
divide the corresponding component into three subcomponents. To prevent an exponential
increase in the number of components during uncertainty propagation, a minimum weight
value is set to avoid excessive computation consumption. Components with a weight less
than 0.001 will not be split and will be propagated until the final epoch.

The performance of adaptive GMM-based approaches is greatly influenced by the
splitting threshold, ε. Therefore, it is crucial to test the scores of both approaches (Cartesian
and GEqOE) for different ε values and choose the best for the purpose of comparison. In
this simulation, K = 10,000 Monte Carlo samples are randomly generated from the initial
Gaussian distribution and are propagated through nonlinear orbital dynamics. Two com-
peting algorithms for uncertainty propagation are employed, each following its respective
set of equations of motion. Given different values of ε = {10−5, 10−4, 10−3, 10−2, 10−1}, the
LAM and computational effort are recorded and normalized. Specifically, the LAM values
obtained from all runs are divided by the maximum LAM value, and the computation
efforts are normalized by Monte Carlo running times.

Figure 3 illustrates that the LAM curve of AEGIS-GEqOE exhibits less fluctuation, and
the best score in the HEO scenario is achieved by AEGIS-GEqOE when ε = 0.1. Further-
more, the results of normalized computational effort indicate that AEGIS-GEqOE achieves
significant efficiency gains across all values of ε. This consistency is attributed to the
absence of any splitting events during the propagation of AEGIS-GEqOE, which is also sup-
ported by the findings in Section 4.1.2. Similar to the traditional GMM-based approaches,
AEGIS-Cartesian reduces the computation time compared to Monte Carlo when ε is small,
but it fails to accurately capture the true PDF. However, as the ε decreases, AEGIS-Cartesian
can achieve great accuracy improvement at the cost of increased computational effort.

Next, the propagation results for the best cases of the two methods are projected on
the x− y and vx − vy planes in Cartesian space, as shown in Figure 4. The black dots on
the projection plan represent the density distribution obtained through the Monte Carlo
propagation. The shape of the distribution appears as a crescent in both the position
and velocity planes, indicating that severe nonlinear effects were encountered during
the propagation process. A comparison of the results with the Monte Carlo simulation
reveals that both methods successfully capture the basic shape of the true PDF. However,
the tail part of the true distributions cannot be accurately recovered with the Cartesian
GMM method. This is evident from the plots of the marginal probability distribution in
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Figure 4. The box plot reveals several outlier points in the Monte Carlo output, which are
also obtained via the GEqOE. Nevertheless, it is evident that the Cartesian GMM fails to
capture these outliers effectively.
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Figure 3. Normalized LAM measure and computational effort with respect to the selected ε for the
HEO test case.
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Figure 4. Distribution of position and velocity in the HEO scenario.

4.2.3. LEO J2-Induced Dynamics

In this section, we simulate an orbit influenced by J2 perturbations to demonstrate
the capability of UP methods in handling complex perturbation scenarios. The orbiting
object is placed in LEO, and its orbital Keplerian elements and associated covariance are
provided in Tables 2 and 3. The splitting threshold is set to {10−5, 10−4, 10−3, 10−2, 10−1},
and a minimum weight constraint of 0.001 is also applied.

The behavior of the implemented approaches with respect to different values of ε
is presented in Figure 5. In this scenario, the AEGIS-GEqOE with ε = 10−3 achieves the
best score. As for the HEO test case, there were no splitting events during propagation.
The trend lines for the likelihood deviation and computational effort of AEGIS-GEqOE
show minimal change, resulting in a significant reduction in required computational effort
compared to Monte Carlo of two orders of magnitude. Concerning AEGIS-Cartesian, it
achieves its worst score in terms of LAM for ε = 10−1, despite obtaining a 10× speedup.
With smaller values of ε, AEGIS-Cartesian shows competitive results similar to AEGIS-
GEqOE, but it demands greater computational effort than Monte Carlo.
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Figure 5. Normalized LAM measure and computational effort with respect to the selected ε for the
LEO test case.

From the visualization of the distribution of position and velocity in the final epoch, a
high deformation can be seen in both projection planes of Figure 6. In the position plane,
the gray points show that the AEGIS-Cartesian PDF concentrates on the central part and
exhibits a more diffuse volume compared to the Monte Carlo results. Furthermore, AEGIS-
Cartesian struggles to accurately capture the tail distribution, especially in the x direction.
On the other hand, AEGIS-GEqOE, represented by the red scatter, closely approximates
the true PDF distribution, with only minor mean divergence in the x and Vy directions. In
this LEO scenario, the tails of the marginal distributions shown in Figure 6 can be properly
reproduced by using GEqOE, while they are missing when using Cartesian variables.
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Figure 6. Distribution of position and velocity in LEO scenario of two approaches.

4.2.4. MEO Full Dynamics

In this section, we investigate the performance of AEGIS-GEqOE in propagating a
large initial uncertainty through a more realistic dynamical model. Since no splitting
event occurred in the previous test cases with AEGIS-GEqOE, we conduct a simulation
on a medium Earth orbit (MEO) affected by an 8× 8 gravity model and lunisolar per-
turbation. To further ensure the occurrence of the splitting event in the AEGIS-GEqOE
implementation, the initial uncertainty of the velocity is increased by a factor of two in
this simulation. To handle uncertainty propagation in this highly nonlinear scenario, two
AEGIS-GEqOE methods without and with multidirectional splitting are implemented for
further investigation of the advancements offered by the GEqOE representation.

• Without Multidirectional Splitting

Figure 7 presents the changes in accuracy and efficiency of AEGIS-GEqOE and AEGIS-
Cartesian under different ε values. It is evident that AEGIS-GEqOE consistently achieves
higher LAM scores than AEGIS-Cartesian across all ε values, with the best LAM observed
when ε = 10−5. Moreover, the LAM curve of AEGIS-GEqOE exhibits an upward trend
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along the descending ε. A smaller ε implies that more splitting events are triggered
to increase the number of components, leading to improved accuracy at the expense of
increased computation time, as evident from the normalized computational effort plot. The
time consumption of AEGIS-GEqOE gradually increases, but it remains significantly lower
than the computational effort required by Monte Carlo simulations and also smaller than
that of AEGIS-Cartesian.
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Figure 7. Normalized LAM measure and computational effort with respect to the selected ε for the
MEO test case.

The number of propagated components using different approaches for different values
of ε is recorded in Figure 8. In the left plot, we observe a sharp increase in the number of
AEGIS-Cartesian components shortly after the initial epoch. Moreover, the final number
of components of AEGIS-Cartesian for all considered values of ε reaches the upper limit
allowed by the minimum weight constraint, which is 887. This indicates that AEGIS-
Cartesian cannot deal with highly nonlinear dynamics effectively. On the other hand, the
right plot displays a gradual change in the component number for AEGIS-GEqOE. The first
splitting times in AEGIS-GEqOE implementation are {−,−, 1.7185, 1.5174, 0.6146} orbital
periods, and the final component numbers are {1, 1, 9, 27, 149}, arranged in decreasing
order of ε. The growth rate of component numbers is related to the splitting threshold. The
smaller the threshold, the faster the growth of the components.
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Figure 8. Cumulative number of components produced during propagation in the MEO test case for
different values of the threshold ε with Cartesian variables (left) and GEqOE (right).

Finally, the best results obtained with the two state representations are presented in
Figure 9. The scatter plots in both the position and velocity planes demonstrate that both
AEGIS-Cartesian and AEGIS-GEqOE capture the basic features of the true distribution.
However, the dispersion of AEGIS-Cartesian in the X extends the range of the MC distribu-
tion, resulting in a slightly divergent representation. On the other hand, AEGIS-GEqOE
nearly perfectly captures the true PDF, albeit losing some outlier records at the tail of
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the distribution, as depicted in Figure 9. Despite this, when considering the LAM value
as the performance criterion, AEGIS-GEqOE still outperforms AEGIS-Cartesian in terms
of accuracy.
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Figure 9. Distribution of position and velocity in the MEO scenario.

• With Multidirectional Splitting

Since this test case is affected by a high nonlinearity, an alternative to further advance
the capability of adaptive GMM-based UP methods is combining the proposed method
with multidirectional splitting at the initial epoch [41]. In this subsection, we conduct a
series of tests on the AEGIS-GEqOE with {9, 25, 49} initial components for performance
comparison. Multidirectional splitting is performed using the univariate library proposed
in [4,42] in the two directions with the maximum nonlinearity.

Specifically, AEGIS-based methods will dynamically adapt the number of propagated
components based on the used splitting threshold ε. Considering the refinement of the
initial uncertainty enabled by multidirectional splitting, the splitting threshold is set as
{0.001, 0.01, 0.1, 0.2, 0.3, 0.4} for testing. To better evaluate the performance of different
methods, the best score of AEGIS-GEqOE without multidirectional splitting achieved with
ε = 10−5 is chosen as the LAM basis to normalize the accuracy behavior.

The left plot of Figure 10 is the normalized LAM based on the best LAM obtained by
AEGIS-GEqOE without initial splitting. It shows that a better performance is obtained by
applying a nine-component splitting to the initial distribution. It can be also seen that a
small threshold cannot provide accurate results when initial splitting is performed. On the
other hand, the right plot depicts the normalized computational effort in units of consumed
time from Monte Carlo. As the number of initial splittings increases, it becomes evident
that the computational effort of the proposed method also rises. However, AEGIS-GEqOE
equipped with multidirectional splitting consistently exhibits a lower computational bur-
den than MC.
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Figure 10. Performance of AEGIS-GEqOE with different initial component numbers.
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5. Discussion

This paper proposes a method that combines the GEqOE representation with the adap-
tive GMM for uncertainty propagation. Unlike the Cartesian coordinate representation,
the proposed method utilizes the GEqOE representation to mitigate the impact of nonlin-
ear dynamics on uncertainty realism. Consequently, the number of GMM components
needed to maintain uncertainty realism is reduced, enabling significant improvements in
computational efficiency while maintaining the accuracy of the propagated PDF represen-
tation. Four simulation tests are designed to evaluate the performance of the proposed
method in uncertainty propagation. Firstly, the effectiveness of the GEqOE representation
in absorbing nonlinearity is validated using the Cramer–von Mises test. Secondly, three
application scenarios are designed to compare the accuracy and computational efficiency of
two methods: AEGIS-Cartesian and AEGIS-GEqOE. In this section, the simulation results
are discussed.

5.1. Uncertainty Realism Evolution with Different Representations

Unlike traditional methods that reduce the number of GMM components, the pro-
posed method aims to establish a mathematical formulation for weakening the nonlinearity
in the equations of motion through variable transformations. This approach allows for
a substantial reduction in propagated components in the adaptive GMM by effectively
decreasing the frequency of splitting events. Section 4.1 presents a simulation of an uncer-
tainty propagation using UT implementation to verify the effectiveness of the GEqOE. The
initial uncertainty distribution is propagated using five different coordinate representations,
and the Cramer–von Mises test is conducted based on the moment features and Monte
Carlo results during the propagation process.

The test results demonstrate that the orbital elements-based representation signifi-
cantly extends the duration of uncertainty realism compared to the Cartesian coordinate
representation, which experiences early-stage deformation during propagation. This find-
ing is consistent with the results presented in [35]. With increasing propagation time, the
representations EqOE, AEqOE, and J2EqOE gradually deviate from the true PDF descrip-
tion, encountering failures at propagation periods of 3.925, 3.665, and 12.149, respectively.
On the other hand, the GEqOE exhibits stable statistical performance throughout the test,
with the statistical quantities remaining within the reliable range indicated by the gray
region even after a propagation duration of one day. This suggests that the state can still be
accurately described by a Gaussian distribution in this coordinate representation.

In summary, the results of this test demonstrate that the GEqOE representation outper-
forms other commonly used coordinate representations in maintaining uncertainty realism.
This lays the groundwork for integrating the GEqOE and adaptive GMM. However, it is
important to note that the ability to maintain uncertainty realism under a fixed coordinate
representation is influenced by factors such as the propagation duration, complexity of the
dynamics, and initial deviation size. Relying solely on coordinate transformation strategies
to accurately describe the evolution of real deviations in all scenarios may not be realistic.

5.2. Performance Analysis of the Accuracy and Computational Efficiency for the Proposed Method

To validate the performance of the adaptive GMM propagation with the GEqOE in
uncertainty propagation applications, we conduct simulations of three test cases that differ
in the initial orbit and the considered dynamical model. Considering the significant im-
pact of the splitting threshold ε on the performance of the algorithm within the adaptive
Gaussian evolution framework, we statistically analyze the algorithm’s performance at
different thresholds. Based on this analysis, we select the best-performing AEGIS-Cartesian
and AEGIS-GEqOE in terms of accuracy, as measured by the LAM, for comparison. Ad-
ditionally, we evaluate the execution efficiency of the two methods AEGIS-Cartesian and
AEGIS-GEqOE by testing and comparing their time consumption for propagation with that
of the Monte Carlo method. In this simulation, we consider the Monte Carlo propagation
results from 10,000 trials as the mapping results of the real distribution.
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In Section 4.2, the HEO, LEO, and MEO test cases present an increasing level of
complexity of the perturbations included in the dynamical model. The applicability per-
formance of the proposed method is validated in these three scenarios. Specifically, in the
HEO and LEO scenarios, AEGIS-GEqOE did not trigger any splitting events and achieved
the best scores during the propagation process for two periods, resulting in a speedup of
over a hundred times compared to Monte Carlo propagation. Additionally, AEGIS-GEqOE
outperforms AEGIS-Cartesian when measuring the accuracy of the final results using
the LAM. It is worth mentioning that AEGIS-Cartesian undergoes multiple triggers for
splitting events during the propagation process due to the unmitigated nonlinearity of the
underlying dynamics. Its performance improves as the splitting threshold decreases, a gain
brought by the increment in the number of propagated components. At a threshold of 0.1,
AEGIS-Cartesian exhibits a significant difference in the LAM compared to AEGIS-GEqOE.
At a threshold of 0.01, AEGIS-Cartesian achieves comparable accuracy to AEGIS-GEqOE
with a higher computational cost than Monte Carlo propagation. Furthermore, as the
threshold increases, the number of splitting events triggered in AEGIS-Cartesian also in-
creases, causing the number of components to quickly reach the upper limit allowed by
the minimum weight constraint. At this point, the performance of the AEGIS-Cartesian
algorithm does not improve.

From the simulation results in these two scenarios, it can be seen that AEGIS-GEqOE
weakens the underlying dynamics’ nonlinearity, enabling an accurate representation of the
true PDF with fewer components. The position and velocity projections in Figures 4 and 6
provide intuitive visualization evidence for this.

To further verify the capabilities of AEGIS-GEqOE in handling complex force scenarios,
we conducted a simulation involving an MEO test case with higher-order Earth gravity
field and lunisolar perturbations. The initial orbit was intentionally set with a considerable
deviation in the velocity direction to ensure that AEGIS-GEqOE could trigger splitting
events. In this scenario, we also test the AEGIS-GEqOE method integrated with initial
multidirectional splitting to investigate the effect of this strategy combination when applied
to highly nonlinear dynamics propagation.

In Figure 7, it can be observed that AEGIS-GEqOE outperforms AEGIS-Cartesian in
terms of the LAM under different threshold settings, and the best performance is achieved
at a threshold of 10−5. In terms of computational effort, due to the increased number of
splitting events and the growing number of propagated components, the time consumption
of AEGIS-GEqOE gradually increases as threshold decreases. On the other hand, the
computational consumption of AEGIS-Cartesian does not change a lot with ε, since for all
considered values of ε the maximum number of components is reached after less than one
orbital period (see Figure 8, left). This indicates that the generated components from AEGIS-
Cartesian cannot well capture the true evolution of the PDF. Concerning the variation in
the number of components with ε, we can see that for both approaches a smaller splitting
threshold leads to an earlier occurrence of the first splitting event. The left plot of Figure 8
shows that AEGIS-Cartesian experiences an early splitting event for all values of ε and the
number of splitting components increases at a fast rate. From the right plot, it is apparent
that AEGIS-GEqOE has a long interval before the first splitting. Moreover, for all the
considered thresholds, the first splitting event is triggered later for AEGIS-GEqOE than for
AEGIS-Cartesian, resulting in a smaller number of components at the end of propagation.
During propagation, the number of components of AEGIS-GEqOE never reaches the upper
limit corresponding to the minimum weight constraint, which indicates that in the presence
of complex perturbations and significant initial deviations, AEGIS-GEqOE, benefiting from
the absorption effect on nonlinearity, can still effectively measure the true distribution
during propagation through adaptive splitting. The position and velocity projections in
Figure 9 provide a visual comparison between the Monte Carlo propagation and that of
AEGIS-GEqOE, further confirming the excellent performance of the proposed method in
balancing propagation accuracy and execution efficiency.
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In Figure 10, the performance behavior of AEGIS-GEqOE with and without multidi-
rectional splitting in the initial distribution is presented. It can be seen that a good LAM
score can be obtained with the help of initial splitting, but the time for propagation would
increase. A refinement of the initial distribution would make the implemented approach
have a good LAM with a loose threshold for splitting. Moreover, a suitable initial number
of components should be explored to achieve a balance of accuracy and efficiency, because
the performance of the UP approach is not proportional to the number of components, as
can be seen from the fact that the best score is obtained by the nine-component strategy.

6. Conclusions

In this paper, we present an improved GMM-based UP method that tackles the issue
of computational complexity from the perspective of orbital state representation. Unlike
traditional GMM component reduction approaches, a mathematical reformulation of the
underlying dynamics is deployed to maintain the accuracy of the true evolving PDF while
significantly reducing the computational effort. This is achieved by replacing the Cartesian
coordinates with generalized equinoctial orbital elements (GEqOE), recently introduced by
Baù et al. [36], which greatly mitigate nonlinear effects during distribution propagation.
As a result, our proposed method extends the validation period of uncertainty realism
and reduces the number of components during uncertainty propagation. To assess the
performance of the proposed method, we simulated three scenarios of increasing complexity
and compared them with the Monte Carlo and Cartesian GMM-based UP methods. The
performance metric and the obtained results demonstrate that the propagated PDF from
AEGIS-GEqOE is consistent with the Monte Carlo results. Moreover, the proposed method
exhibits superior execution efficiency compared to AEGIS-Cartesian, validating both the
accuracy and efficiency of this uncertainty propagation scheme. It is worth noting that
this paper focuses on exploring and analyzing the impact of the gain generated from
AEGIS-GEqOE’s capability of absorbing the nonlinearity from the gravity term of the
adaptive GMM method. In future work, we may consider more complex dynamics, and
potential research directions may involve investigating the applicability of different splitting
strategies in these more complex scenarios.
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