
Citation: Guo, H.; Bao, W.; Feng, W.;

Sun, S.; Mo, C.; Qu, K. Multispectral

and Hyperspectral Image Fusion

Based on Joint-Structured Sparse

Block-Term Tensor Decomposition.

Remote Sens. 2023, 15, 4610. https://

doi.org/10.3390/rs15184610

Academic Editor: Shih-Yu Chen

Received: 12 July 2023

Revised: 10 September 2023

Accepted: 15 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multispectral and Hyperspectral Image Fusion Based on
Joint-Structured Sparse Block-Term Tensor Decomposition
Hao Guo 1 , Wenxing Bao 1,∗ , Wei Feng 2 , Shasha Sun 1 , Chunhui Mo 1 and Kewen Qu 1

1 School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China;
20207169@stu.nun.edu.cn (H.G.); 20217392@stu.nun.edu.cn (S.S.); 20207173@stu.nun.edu.cn (C.M.);
qukewen@nun.edu.cn (K.Q.)

2 The School of Electronic Engineering, Xidian University, Xi’an 710071, China; wfeng@xidian.edu.cn
* Correspondence: baowenxing@nun.edu.cn

Abstract: Multispectral and hyperspectral image fusion (MHF) aims to reconstruct high-resolution
hyperspectral images by fusing spatial and spectral information. Unlike the traditional canonical
polyadic decomposition and Tucker decomposition models, the block-term tensor decomposition
model is able to improve the quality of fused images using known endmember and abundance
information. This paper presents an improved hyperspectral image fusion algorithm. Firstly, the
two abundance matrices are combined into a single bulk matrix to promote structural sparsity by
introducing the L2,1-norm to eliminate the scaling effects present in the model. Secondly, the counter-
scaling effect is eliminated by adding the L2-norm to the endmember matrix. Finally, the chunk
matrix and the endmember matrix are coupled together, and the matrix is reorganized by adding the
L2,1-norm to the matrix to facilitate chunk elimination and solved using an extended iterative
reweighted least squares (IRLS) method, focusing on the problem of the inability to accurately
estimate the tensor rank in the chunk-term tensor decomposition model and the noise/artifact
problem arising from overestimation of rank. Experiments are conducted on standard and local
datasets, and the fusion results are compared and analyzed in four ways: visual result analysis, metric
evaluation, time of the algorithm, and classification results, and the experimental results show that the
performance of the proposed method is better than the existing methods. An extensive performance
evaluation of the algorithms is performed by conducting experiments on different datasets. The
experimental results show that the proposed algorithm achieves significant improvements in terms
of reconstruction error, signal-to-noise ratio, and image quality compared with the existing methods.
Especially in the case of a low signal-to-noise ratio, the proposed algorithm shows stronger robustness
and accuracy. These results show that the proposed algorithm has significant advantages in dealing
with multispectral high-resolution hyperspectral data.

Keywords: image fusion; tensor decomposition; structured sparse; iteratively reweighted least squares

1. Introduction

In the field of remote sensing, hyperspectral imaging, and multispectral imaging
systems occupy an important position. Hyperspectral imaging has been widely used in
mineral detection, environmental detection [1], climate monitoring [2], and classification [3].
Hyperspectral images are obtained by hyperspectral sensors capturing sunlight reflected
from an object or scene. During the acquisition of the image, it is affected by the light,
resulting in a reduced spatial resolution of the image [4], but with rich spectral information.
In contrast, multispectral images have only a few bands, but the images are rich in spatial
information. In the past two decades, a lot of efforts have been made to obtain hyperspectral
images with high spatial resolution, and image fusion is the most economical, applicable,
and effective means among all methods. The fusion mainly extracts effective high spatial
resolution information from source images such as multispectral images and panchromatic
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images (PAN) and incorporates it into hyperspectral images. Fusion into hyperspectral
images to obtain hyperspectral images with high spatial resolution helps to accurately
identify observation scenes with high spatial resolution, etc. The most common fusion
method is to obtain high spatial resolution hyperspectral images (HRHS) by fusing high
spatial resolution multispectral images (HR-MSI) and low spatial resolution hyperspectral
images (LR-HSI). At the same time, when an image is reduced in size, the redistribution of
pixel information and interpolation algorithms results in a loss of detail or distortion of the
original image, a process known as the “scaling effect”. Conversely, when a low-resolution
image is scaled up to a higher resolution, this is often accompanied by a loss of information,
and the image may appear blurred, distorted, or show unrealistic details, a process known
as the “counter-scaling effect”.

In the early studies of fusion algorithms, sharpening methods were mainly used to fuse
PANs and MSIs possess high spatial resolutions [5]. In 2019, Meng et al. [6] reviewed the
development history of pansharpening and divided it into two main categories: component
replacement (CS) [7,8] and multi-resolution analysis (MRA) [9–11], among which the
more famous methods are based on hue–intensity–saturation (HIS) [12], wavelet-based
techniques [13,14], principal component analysis (PCA) [15], the Laplace pyramid [16],
etc. Yokoya et al. [17] found that sharpening fusion methods does not improve the spatial
resolution of each spectral band very well after conducting extensive experiments. There is also a
growing interest in the study of multispectral and hyperspectral image fusion (MHF) algorithms.
A method often referred to as the multi-sharpening process involves the most popular techniques,
including matrix factorization [18–24] and tensor decomposition [25–32]. In addition, some
new research results have appeared in recent years. For example, in 2020, Feng et al. [33]
proposed a two-by-two matching based on a spatial–spectral graphical regularization
operator for the hyperspectral band selection method, which encodes its geometric structure
by constructing a spatial–spectral information map using spatial–spectral adjacencies.
In 2021, Huang et al. [34] proposed a subspace clustering algorithm for hyperspectral
images, which improves the model’s noise immunity by introducing an adaptive spatial
regularization method. In 2022, Qin et al. [35] proposed a multi-focus image fusion method
based on sparse representation (DWT-SR) by decomposing multiple frequency bands
and shortening the algorithm’s running time by utilizing GPU parallel computing, which
features high contrast and richer spatial details. In 2022, Zhang et al. [36] proposed a sparse
demixing method in order to avoid inaccuracy in extracting the endmember information
and to retain the original domain super-pixel inter-correlation and spectral variability in the
approximated image domain. In 2023, Y et al. [37] designed a new attentional reinforcement
learning network to accomplish the spatio-temporal prediction of wind power.

The matrix-based decomposition method is widely used in MHF problems because
of its clear motivation and excellent performance. After matrix decomposition, the po-
tential factors have a strong physical meaning, such as endmember and abundance are
non-negative [22,38,39]. In 2011, Yokoya et al. [18] used a coupled non-negative matrix
decomposition (CNMF) unmixing method to decompose hyperspectral and multispectral
data into endmember matrices and abundance matrices alternatively; the cost function
in the model is non-convex, resulting in an unsatisfactory algorithm fusion. In the same
year, Kawakami et al. [40] decomposed the target image HRHS into a basis matrix and a
sparse matrix and then recombined the spectral basis matrix of LR-HSIs and the coefficient
matrix of HR-MSIs to obtain them. In 2014, Simoes et al. [21] introduced total variation (TV)
regularization in a subspace-based HRHS fusion framework, which effectively eliminated
the noise. In 2015, Lanaras et al. [41] completed the acquisition of HRHSs by jointly un-
mixing two input images into a pure reflection spectral matrix and a mixed sparse matrix.
In 2018, Kahraman et al. [42] proposed a graph regularization L1/2-sparse constrained
non-negative matrix decomposition-based image fusion method that enhances the fusion
performance by using the L1/2 and streamwise regularization to enhance the unmixing.
In 2021, Mu et al. [43] introduced a spectral-constrained regularization term to avoid spec-
tral distortion and maintain spectral integrity based on the coupled non-negative matrix
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decomposition (CNMF) algorithm. In 2022, Khader et al. [44] proposed a new non-negative
matrix factorization decomposition-inspired deep unfolding network (NMF-DuNet) to
fuse LR-HSIs and HR-MSIs using a non-negative coefficient matrix and orthogonal trans-
formation coefficient constraints. In 2022, Han et al. [45] proposed a fusion model based
on spatial nonlocal similarity and low-rank prior learning to solve the problem of the
existing methods that cannot simultaneously consider the spatial and spectral domain
structure of hyperspectral image cubes; however, there problems still exist, such as the
partial loss of spectral correlation, and the complexity of the algorithm is high. In 2023,
Lin et al. [46] proposed a highly interpretable deep HSI-MSI fusion method based on a 2D
image CNN-based Gaussian denoiser, which can fuse the LR-HSIs and HR-MSIs under a
known imaging system and achieve good fusion performance.

While there are many other improved algorithms based on matrix decomposition, they
all require the conversion of 3D data into a 2D data format, resulting in difficult exploitation
of the spatial–spectral correlation in LR-HSIs. In contrast, the fusion method based on tensor
decomposition can effectively avoid such defects and becomes a new research hotspot for
the MHF problem. It regards LR-HSIs and HR-MSIs as a 3D data cube consisting of two
spatial dimensions and one spectral dimension (i.e., spatial × spatial × spectral), where
the spectral dimension is the key to identifying objects in the scene. Based on this fact,
in 2018, Kanatsoulis et al. [47] proposed a coupled tensor decomposition-based (CTD)
framework to solve the MHF problem, and, using canonical polyadic decomposition (CPD)
uniqueness, they proved that HRHSs can be recovered under mild conditions. Xu et al. [48]
constructed the nonlocally similar patch tensor of LR-HSIs based on HR-MSIs, calculated
the smoothing order of all patches used for clustering, preserved the relationship between
HRHSs and HR-MSIs by CPD, and proposed a multispectral and hyperspectral fusion
algorithm based on the CPD decomposition of the nonlocally coupled tensor. In 2020,
Prévost et al. [25] extended a similar idea to the Tucker decomposition for solving MHF
problems with better results. In the same year, Xu et al. [27] proposed a one-way TV-based
fusion method, which decomposes the HRHS into a core tensor and three modal dictionary
forms, and imposes the L1-norm and the one-way TV characterizing sparsity and piecewise
smoothness, respectively. In 2021, Peng et al. [49] introduced a global gradient sparse
nonlocal low-rank tensor decomposition model to characterize the nonlocal and global
properties of HRHSs, which can effectively capture the spatial and spectral similarity of
the nonlocal cube, and introduced spatial–spectral total variation (SSTV) regularization to
reconstruct HRHSs on the nonlocal domain low-rank cube, thus obtaining global spatial
piecewise smoothness and spectral consistency. In 2022, Prévos et al. [50] proposed a fast
coupling method based on the Tucker approximation into this work to take full advantage
of the coupling information contained in hyperspectral and multispectral images of the
same scene. After a large number of experiments, CPD and Tucker have been proven to
have excellent recoverability on the MHF problem, and the frameworks of both have shown
excellent performance; however, the failure to utilize the physical interpretation of the
potential factors makes it difficult for both to utilize the a priori information to improve the
algorithmic fusion effect. In addition, a new tensor decomposition, called tensor ring (TR)
decomposition, is proposed in [51], which decomposes higher-rank tensors into cyclically
contracted third-rank tensor sequences. This method inherits the representation capability
of CPD and extends the low-rank exploration capability of Tucker decomposition. In 2022,
Chen et al. [52] proposed a factorially smoothed TR decomposition model, which solved the
problem that the spatial–spectral continuity of HRHSs could not be preserved in the existing
TR decomposition model; however, the algorithm has high requirements on hardware
equipment in the case of a large amount of spectral data. In summary, CPD and Tucker
decomposition are not necessarily better than the methods for low-rank matrix estimation,
and TR decomposition is not necessarily the best choice.

In contrast, linear mixed models (LMM) using matrixed LR-HSI and HR-MSI low-rank
structures can circumvent such problems, and their endmembers and abundances possess
a strong physical interpretation, which can be further improved by imposing structured
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constraints or regularization on them, especially in the presence of noise, where this
information is particularly important. In 2018, Li et al. [32] demonstrated, under a relatively
restricted condition, that the coupled matrix decomposition model is able to identify
recovered HRHSs. For example, if the abundance matrix of an HR-MSI is sparse, i.e.,
under tensor notation, the LMM can be rewritten to approximate the 3D spectral data as the
sum of the outer products of the endmembers (vectors) and the abundance maps (matrices).
This approach can fully match the matrix-vector third-order tensor decomposition, which
decomposes the tensor into the sum of the component tensors, each of which in turn consists
of matrix-vector outer products [53]. The matrix-vector third-order tensor factorization can
also be regarded as the block-term tensor decomposition (BTD). Therefore, matrices and
vectors in the BTD can be used as abundance maps and vectors, respectively, with non-
negativity and coupling properties. In 2019, Zhang et al. [54] proposed a coupled non-
negative BTD model [55–57]. The BTD was used to decompose the spectral images to
take full advantage of the physical significance of their potential factors, but the use
of regularization to improve the algorithm’s performance and application in multiple
scenarios was not considered. In 2021, Ding et al. [58] reformulated the recovery HRHS
process as a special block-term tensor model, imposing constraints and regularization
to improve the performance of the algorithm, but failed to take into account the effects
between individual abundance matrices, and there were limitations in the experimental
scenario. In 2022, Guo et al. [59] proposed a coupled non-negative block-term tensor
decomposition algorithm based on regularization. Consider the sparsity and smoothness
of the individual abundance and the endmember matrix; to these, add the L1-norm and
bidirectional TV. However, the L1-norm has a non-smoothness property and is not the best
choice for the regularizer. The algorithm takes too long to run. Therefore, a joint-structured
sparse block-term tensor decomposition model (JSSLL1) based on joint-structured sparsity
is proposed by introducing the L2,1-norm to promote the structured sparsity of the block
matrix composed of potential factors and eliminate the scaling effects present in the model,
The L2-norm is introduced to the endmember to counteract the counter-scaling effects in
the decomposition model. Finally, the block matrix and endmember are coupled together,
and the L2,1-norm is imposed on them to promote the elimination of the block matrix.
The contributions of the proposed algorithm are as follows.

• During the reconstruction of an HRHS, in order to promote the sparsity of the abun-
dance matrix and counteract the scaling effect existing in the abundance matrix during
image recovery, the two abundance matrices are superimposed to obtain the chunk
matrix, and the blending parametrization L2,1-norm is added to it.

• In the process of reconstructing an HRHS, the counter-scaling effect of the endmember
vector is considered and avoided by adding the L2-norm to the endmember vector.

• In the block-term tensor factorization model, the accuracy of the rank is a key factor
that is unknown a priori. Inaccurate rank estimation may cause noise or artifacts
to interfere with the experimental results. In order to solve this problem, this paper
introduces the reweighted coupling of the block matrix and the endmember matrix
and introduces the mixing norm. Through this method, the influence of the inaccuracy
of the rank estimation can be reduced while maintaining flexibility, so as to improve
the reliability of the experimental results.

Below is the remainder of this article. Section 2 describes the background and re-
lated works. Section 3 describes the MHF method and optimization scheme based on the
joint-structured sparse LL1 model. Section 4 describes the experimental setup, visualiza-
tion of experimental results, evaluation metrics, and classification results and develops
the discussion. Section 5 summarizes the algorithm proposed in this paper and future
improvement directions.

2. Background

Because LR-HSIs possess two spatial dimensions and one spectral dimension, they
can be regarded as third-order tensors. In recent years, with the continuous improvement
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of the MHF algorithm, the tensor decomposition method has been widely used because
of its ability to avoid an excessive loss of spatial and spectral information. The two more
common models are the CPD and Tucker models.

The CPD model [60] is a tensor rank decomposition model. The procedure is shown
below, which allows the decomposing of the tensor into the total of multiple tensors of rank
one. The mathematical model is as follows (note: see Appendix A for an explanation of the
relevant symbols in the text).

Y =
R
∑

r=1
Ar ◦ Br ◦ Cr . (1)

where Ar ∈ RI×1, Br ∈ RJ×1, and Cr ∈ RK×1 are second-order factor matrices; Y ∈ RI×J×K

is a third-order tensor. Figure 1 represents the flow of CPD.
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1b

1c
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Rb
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…

1
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…
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B

Figure 1. Canonical polyadic decomposition process.

The Tucker model [61] is also widely used in the field of imaging, and it is a higher-
order form of principal component analysis (PCA), which focuses on decomposing the
tensor into a core tensor and three-factor matrices. The Tucker decomposition process is
shown in Figure 2. The mathematical model is expressed as [62]:

Y = G × 1A× 2B× 3C. (2)

where A ∈ RI×n1 , B ∈ RJ×n2 , and C ∈ RK×n3 are the factor matrices; G ∈ RI×J×K is a
third-order core tensor.1a

1b

1c

Ra

Rb

Rc

…

1
TB
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…

Y A

C

B

Figure 2. The Tucker decomposition process.

In addition to the two tensor models mentioned above, the BTD model is gradually
being applied to the field of image fusion because the potential factors have a good physical
interpretation, such as in the work performed previously [59]. In solving the MHF problem,
compared with the CPD and Tucker models, potential factors in the BTD model, respectively,
represent the abundance and the endmember, which have a physical sense of non-negativity
and spatial smoothness, and contribute to the utilization of various prior knowledge in the
image fusion process.

By combining the advantages of the CPD and Tucker models, the BTD of rank− (Lr, Mr, Nr)
(abbreviation: LMN model) in general form can be expressed as:

Y =
R
∑

r=1
Gr × 1Ar×2Br × 3Cr . (3)

where Ar ∈ RI×Lr , Br ∈ RJ×Mr , Cr ∈ RK×Nr , and Gr ∈ RLr×Mr×Nr . The LMN decomposi-
tion process is shown in Figure 3. The above description shows that the BTD is approximat-
ing the tensor Y by R component tensors, and each tensor is a Tucker of rank− (Lr, Mr, Nr).
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If each component tensor rank is one, it can be treated as a CPD. Similarly, if R = 1,
then Equation (3) is the Tucker model of rank− (Lr, Mr, Nr). In other words, the BTD can
decompose a tensor into the sum of multiple component tensors, and this process can be
viewed as the CPD, while each component tensor decomposition is viewed as a Tucker
decomposition. This overcomes the problem that each component tensor rank must be one
in the CPD and lifts the restriction that the Tucker decomposition has only one component
tensor. It is a combination of the CPD and the Tucker decomposition.

X
T
1B

1c

1A

T
RB

Rc

RA
…

B

1c

1A

…
1G

RB

Rc

RA

G Y
1

R

Figure 3. LMN decomposition process.

Usually, the special BTD model is adopted to resolve the MHF problem. The special
BTD model of rank− (L, L, 1) (abbreviation: LL1 model) is obtained when each member
tensor degenerates to an Lr × Lr matrix, and each Lr takes the same value. The decom-
position process of the LL1 model is shown in Figure 4. The mathematical model is
as follows:

Y =
R
∑

r=1

(
ArBT

r
)
◦ cr . (4)

where Ar ∈ RI×Lr , Br ∈ RJ×Lr , and C = [c1, . . . , cR] ∈ RK×R. Among these, Ar and Br
are, respectively, the subblocks of the block matrices A and B, denoted as A= [A1, . . . , AR]

∈ RI×∑R
r=1 Lr , B= [B1, . . . , BR] ∈ RJ×∑R

r=1 Lr . In general, the full column rank requirement
for A and B is min(I, J) ≥ ∑R

r=1 Lr. Under mild conditions, the LL1 model possesses a
nice property, i.e., ArBT

r and cr are identifiable until the alignment and scaling ambiguities
arise, which is induced as follows (Theorem 4.7 of [56]). The potential factors ArBT

r and cr
represent the abundance information; the former represents the abundance information of
the endmember r, and the latter represents the rth endmember.

1

TB

1c

1A

T

RB

Rc

RA

…

Figure 4. LL1 decomposition model.

In summary, the CPD and Tucker models are both low-rank models (see Figures 1 and 2),
capable of “encoding” dependencies in different dimensions of the data and often used in spectral
image modeling with good recoverability [25,47]. Although this is useful for recovering an HRHS,
it is not necessarily better than the BTD-based MHF approach in practice. The BTD-based MHF
framework can be used to introduce the structural information of potential factors using their
physical interpretation, which helps to standardize the MHF criteria with a priori knowledge.

3. MHF Method Based on Joint-Structured Sparse LL1 Model
3.1. The MHF Method for the LL1 Model

The proof of how the model can be interpreted using physics is described in a
separate work [59]. The LL1 model is used to model the spectral images. For all
spectral images, they can be viewed as a third-order tensor of the form “space × space ×
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spectrum”. Y ∈ RIM×JM×KH , YH ∈ RIH×JH×KH , and YM ∈ RIM×JM×KM are used to denote
the HRHS, LR-HSI, and HR-MSI, respectively. Further, IH , JH , and IM, JM denote the
spatial dimensions of the LR-HSI and HR-MSI, respectively; KH and KM denote the spectral
dimensions of the LR-HSI and HR-MSI, respectively. Due to the limitation of current optical
sensors, multispectral images are rich in spatial information, and hyperspectral images are
rich in spectral information; i.e.:

IM � IH , JM � JH , KH � KM. (5)

The goal of the MHF problem is to obtain the HRHS by fusing an HR-MSI and LR-
HSI in the same scene. The theoretical validation of the LMM model and the LL1 model
was demonstrated in another work [59]. Thus, assuming that the abundance matrix is a
low-rank matrix, the LL1 model formulation on the HRHS is:

YS =
R

∑
r=1

(
ArBT

r

)
◦ cr. (6)

where Ar ∈ RIM×Lr , Br ∈ RJM×Lr , and C = [c1, · · · , cr] ∈ RKH×R, r = 1, 2, · · · , R. YS
denotes the fused image.

The expansion of the tensor Y can be expressed as:

Y(1)= (C� B)AT, (7)

Y(2)= (C�A)BT, (8)

Y(3)= [(B1�cA1)1L1 , · · · , (BR�cAR)1LR]CT. (9)

The above expressions are used in the subsequent alternating iterations to solve A, B,
and C. The LR-HSI can be obtained by spatially blurring and downsampling the HRHS.
Thus, the fuzzy matrix and downsampling matrix are modeled by multiplying the rows
and columns of each Y(:, :, k) component. The mathematical model is shown below:

YH(:, :, k) = P1YS(:, :, k)PT
2 , (10)

k = 1, 2, . . . , KH .

where P1 ∈ RIH×IM and P2 ∈ RJH×JM , respectively, denote the spatial ambiguity and
downsampling matrices along the two spatial dimensions.

If Y conforms to the LL1 model and the spatial decay model of Equation (10) holds,
there is:

YH =
R

∑
r=1

(
P1Ar(P2Br)

T
)
◦ cr. (11)

The HR-MSI can be modeled as an HRHS spectral band aggregation form. The mathe-
matical model is as follows:

YM(i, j, :) = P3YS(i, j, :), (12)

∀i, j.

where P3 ∈ KM×KH is the waveband aggregation matrix associated with the sensor specifi-
cation. Similarly, if Y conforms to the LL1 model and the spectral degradation model in
Equation (12) holds, there is:

YM =
R

∑
r=1

(
ArBT

r

)
◦ P3cr. (13)
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Under this degenerate model, the task of reconstructing the HRHS is mainly to estimate
the potential factors ArBT

r and cr from YH and YM. The HRHS is then reconstructed using

Y =
R
∑

r=1

(
ArBT

r
)
◦ cr. Thus, the MHF problem based on the LL1 model can be modeled as:

min
A,B,C

1
2

∥∥∥∥YH −
R
∑

r=1
(P1Ar(P2Br)

T) ◦ cr

∥∥∥∥2

F
+ 1

2

∥∥∥∥YM −
R
∑

r=1
(ArBT

r ) ◦ (P3cr)

∥∥∥∥2

F
,

s.t.A ≥ 0, B ≥ 0, C ≥ 0.
(14)

3.2. The MHF Modeling Based on Joint-Structured Sparse

The solution to the above model has an uncomfortable nature, so constraints need
to be placed on the potential factors of the above objective function, and regularization
methods need to be added to improve the performance of the algorithm. Consider that the
operation time, computational complexity, and convergence speed of the BTD algorithm
are affected by the rank R and L. In addition to the above, too high or too low estimates of
R and L may allow noise/artifacts to interfere with the desired results [63]. The sparsity of
the abundance matrix and the scaling/counter-scaling problems that occur in the fusion
model can also affect the performance of the algorithm. Based on the above considerations,
this paper introduces a regularization term that matches the structure of the BTD model,
which improves the flexibility of the model by having hierarchical node blocks and column
sparsity. Firstly, the potential factors A and B are formed into a chunk matrix U, which
introduces an L2,1-norm to promote structured sparsity and eliminate the scaling effects
present in the model. Secondly, add a L2-norm value to the endmember cr, in order to
counteract the counter-scaling effects that occur in the decomposition model. Finally,
the chunk matrix U and cr are coupled together to form a matrix ϕ(A, B, C) of the size
2× R. The introduction of the L2,1-norm promotes the elimination of the entire block of
A and B, ensuring that the BTD algorithm can avoid noise/artifacts from interfering with
the experimental results in the case of an overestimated rank. In summary, the modified
scheme is expressed as follows:

min
A,B,C

1
2

∥∥∥∥YH −
R
∑

r=1
(P1ArBT

r PT
2 ) ◦ cr

∥∥∥∥2

F
+ 1

2

∥∥∥∥YM −
R
∑

r=1
(ArBT

r ) ◦ (P3cr)

∥∥∥∥2

F
+ λ‖ϕ(A, B, C)‖2,1,

s.t.A ≥ 0, B ≥ 0, C ≥ 0,
(15)

ϕ(A, B, C) =

[
‖U1‖2,1 ‖U2‖2,1 · · · ‖UR‖2,1
‖c1‖2 ‖c2‖2 · · · ‖cR‖2

]
. (16)

where λ > 0 is the regularization parameter, matrix Ar =
[

ar1 ar2 · · · arLr

]
∈ RI×Lr ,

Br =
[

br1 br2 · · · brLr

]
∈ RJ×Lr , and C =

[
c1 c2 · · · cR

]
∈ RK×R. R and L

are the rank, and r = 1, 2, . . . , R. U = [ AT BT ]T denotes the rth (I + J) × Lr block.
Using the above modification scheme, while solving the MHF problem using the LL1
model, the ranks R and L can be overestimated, which can be reduced to real values by an
appropriate selection of λ. In reference to the ideas in the literature [64,65], the well-known
IRLS [66] method is extended to solve Model (15).

The flow chart of the algorithm is shown in Figure 5. The two images of the LR-HSI and
HR-MSI are decomposed using the LL1 model to obtain the endmember matrix C and the
abundance matrix A, B. Then, A, B, and C are brought into Model (15), and the extended
IRLS method is used to iteratively solve A, B, and C and bring them into Equation (6) to
reconstruct the HRHS.
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Figure 5. Algorithm flow chart.

The procedure for solving Model (15) is as follows. Express Model (15) in a more
explicit form. The mathematical model is shown below:

min
A,B,C

1
2

∥∥∥∥YH −
R
∑

r=1
(P1ArBT

r PT
2 ) ◦ cr

∥∥∥∥2

F
+ 1

2

∥∥∥∥YM −
R
∑

r=1
(ArBT

r ) ◦ (P3cr)

∥∥∥∥2

F
+

λ
R
∑

r=1

√(
L
∑

l=1

√
‖arl‖2

2 + ‖brl‖2
2 + η2

)2

+ ‖cr‖2
2 + η2.

(17)

where η is a positive integer with guaranteed smoothness. For each potential factor A, B,
and C in the model, they are convex with respect to the objective function. In addition,
since each factor matrix in the regularization term is indistinguishable, the exact analytic
formula cannot be obtained, and the extended IRLS method is used to solve the problem
of Model (15). A hierarchical IRLS structure consisting of two independent reweighted
least squares steps is identified from the regularization terms. Each step produces a
separate reweighting matrix. The first matrix O1 is composed of the inverse of the external
summation term of the regularization term in Model (15), which is the block of the joint
weighted A and B. The second matrix O2 consists of the inverse of the terms summed
inside the regularized terms in Model (15), which is used to balance the corresponding
columns of Ar and Br. The expressions O1 and O2, respectively, are shown below:

Ok
1 (r, r) =

( L
∑

l=1

√∥∥∥ak
rl

∥∥∥2

2
+
∥∥∥bk

rl

∥∥∥2

2
+ η2

)2

+
∥∥∥ck

r

∥∥∥2

2
+ η2

−1/2

, (18)

Ok
2 ((r− 1)L + l, (r− 1)L + l) =

(∥∥∥ak
rl

∥∥∥2

2
+
∥∥∥bk

rl

∥∥∥2

2
+ η2

)−1/2
. (19)

where O1 is a diagonal matrix of order R, O1(r, r) denotes the value of the rth diagonal
element; O2 is a diagonal matrix of order RL, O2((r− 1)L + l, (r− 1)L + l) denotes the
value of the element in row (r− 1)L + l, column (r− 1)L + l.

Regarding the three potential factors, A, B, and C in Model (15) are estimated by
iterative alternation.
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3.2.1. Sub-Problem A

Estimating A at the k + 1th iteration, the subproblem on A is formulated as follows:

Ak+1 = arg min
A

1
2

∥∥∥YH(1) − Sk(P1A)T
∥∥∥2

F
+ 1

2

∥∥∥YM(1) −MkAT
∥∥∥2

F

+λ
R
∑

r=1

 L
∑

l=1

‖arl‖
2
2+‖bk

rl‖
2
2
+η2√

‖ak
rl‖

2
2
+‖bk

rl‖
2
2
+η2

2

+‖ck
r‖2

2+η2

√(
L
∑

l=1

√
‖ak

rl‖
2
2+‖bk

rl‖
2
2+η2

)2

+‖ck
r‖2

2+η2

.

(20)

where S ∆
= C� P2B and M ∆

= P3C� B. Equation (20) is obtained by the extended IRLS
method. By deriving Equation (20) and making its derivative zero, the Sylvester equation
with respect to A can be obtained as follows.

PT
1 P1Ak+1SkTSk + Ak+1(MkTMk + λOk) = PT

1 YT
H(1)S

k + YT
M(1)M

k. (21)

where O ∆
= (O1 ⊗ IL)O2. Problem (21) is solved using the conjugate gradient (CG) algo-

rithm [67].

3.2.2. Sub-Problem B

Similarly, the minimization problem with respect to B is as follows:

Bk+1 = arg min
B

1
2

∥∥∥YH(2) −Vk(P2B)T
∥∥∥2

F
+ 1

2

∥∥∥YM(2) − ZkBT
∥∥∥2

F

+λ
R
∑

r=1

 L
∑

l=1

‖ak
rl‖

2
2
+‖brl‖

2
2+η2√

‖ak
rl‖

2
2
+‖bk

rl‖
2
2
+η2

2

+‖ck
r‖2

2+η2

√(
L
∑

l=1

√
‖ak

rl‖
2
2+‖bk

rl‖
2
2+η2

)2

+‖ck
r‖2

2+η2

.

(22)

where V ∆
= C� P1A and Z ∆

= P3C�A. Equation (23) is obtained by the extended IRLS
method. By deriving Equation (22) and making its derivative zero, the Sylvester equation
with respect to B can be obtained as follows:

PT
2 P2Bk+1VkTVk + Bk+1(ZkTZk + λOk) = PT

2 YT
H(2)V

k + YT
M(2)Z

k . (23)

Problem (23) is solved using the CG algorithm.

3.2.3. Sub-Problem C

Similarly, the minimization problem on C is as follows:

Ck+1 = arg min
C

1
2

∥∥∥YH(3) −QkCT
∥∥∥2

F
+ 1

2

∥∥∥YM(3) − Ek(P3C)T
∥∥∥2

F

+λ
R
∑

r=1

 L
∑

l=1

‖ak
rl‖

2
2
+‖bk

rl‖
2
2
+η2√

‖ak
rl‖

2
2
+‖bk

rl‖
2
2
+η2

2

+‖cr‖2
2+η2

√(
L
∑

l=1

√
‖ak

rl‖
2
2+‖bk

rl‖
2
2+η2

)2

+‖ck
r‖2

2+η2

. (24)

where Q ∆
= (P2B1�cP1A1)1L1 , . . . , (P2BR�cP1AR)1LR , and E ∆

= (B1�cA1)1L1 , . . . , (BR�c
AR)1LR . Equation (25) is obtained by the extended IRLS method. By deriving Equation (24)
and making its derivative zero, the Sylvester equation with respect to C can be obtained as
follows:

PT
3 P3Ck+1EkTEk + Ck+1(QkTQk + λOk

1
)
= YT

H(3)Q
k + PT

3 YT
M(3)E

k . (25)
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Then, the CG algorithm is used to solve Problem (25).
The steps regarding the proposed algorithm are shown in Algorithm 1.

Algorithm 1 JSSLL1-IRLSCG.

Input Y , R, L, λ > 0, η > 0, k = 0.
Output Target image HRHS.

While unconverged do
Calculate O1 and O2 by Equations (18) and (19);
Update Ok by quation

(
Ok

1 ⊗ IL
)
Ok

2 ;
Solve Problem (21) using the CG algorithm to update Ak+1;
Solve Problem (23) using the CG algorithm to update Bk+1;
Solve Problem (25) using the CG algorithm to update Ck+1;
k← k + 1;

end While;

Reconstruction of images using type Y =
R
∑

r=1

(
ArBT

r
)
◦ cr and acquisition of HRHS.

In summary, in the proposed algorithm, when the ranks R and L are overestimated
in the model, reweighting by matrix O1 will impose joint block sparsity on A and B and
column sparsity on C, which helps to estimate R. Meanwhile, re-weighting the matrix
O2 will jointly promote column sparsity on the corresponding blocks of A and B, thus
estimating L.

4. Experiments and Analysis
4.1. Datasets
4.1.1. Standard Datasets

The Pavia University dataset [59] was acquired by the Reflection Optical System Imag-
ing Spectrometer (ROSIS) over the city of Pavia. The size of the acquired image is 610 × 340
and consists of 115 spectral bands with an image resolution of 1.3 m. To enhance the ex-
perimental effect, the sub-image located in the upper left corner of the image was selected
as the experimental image after removing the band containing water vapor. The size of
the experimental image is 256 × 256 × 102, and the image contains rich features such as
houses, roads, and trees.

The Indian Pines dataset [59] was acquired by the Airborne Visible Infrared Spec-
troscopic Imager (AVIRIS) over Indian, U.S.A. The AVIRIS wavelength range is between
0.4 µm and 2.5 µm with a spatial resolution of 20 m. After removing 24 bands that cannot
be reflected by water, the remaining bands were used for the study. Given the experimental
requirements, the final image size selected was 144 × 144 × 200.

4.1.2. Local Dataset

The dataset of Ningxia Sand Lake [59] was acquired by the WFV4 multispectral imager
on the Gaofen-1 (GF1) satellite and the AHSI hyperspectral imager on the Gaofen-5 (GF5)
satellite over Ningxia Sand Lake. The WFV4 wavelength range is 0.45–0.89 µm, the spatial
resolution is 16 m, and the size of the acquired multispectral image is 12,000 × 13,400.
The wavelength range of AHSI is 0.4–2.5 µm, the spatial resolution is 30 m, it consists of
330 bands, and the size of the acquired hyperspectral image is 2774 × 2554. After removing
187 bands with high noise again, the remaining bands are used as the research object.
The experimental images were intercepted at the same position as the acquired multispectral
and hyperspectral images, and the final selected image sizes were 254 × 254 × 3 for the
HR-MSI and 254 × 254 × 143 for the LR-HSI, respectively.
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4.2. Experimental Setup
4.2.1. Experimental Environment

Eight algorithms, CNMF [18], Hysure [21], FUSE [22], SCOTT [25], IRSR [45], STEREO [47],
BTD [54], and SCLL1 [58], were selected as comparison tests. Among them, SCOTT and
STEREO are based on the Tucker and CPD models to solve the MHF problem, respectively;
the BTD and SCLL1 are based on the BTD model to solve the MHF problem. Considering
the different experimental environments of each algorithm, it is often difficult to achieve
the effect in the original literature by directly adopting the parameter settings of the
original literature under the current experimental environment, so this paper optimizes the
parameters of other algorithms under the current experimental environment. Specifically,
standard normally distributed pseudo-random numbers are used as initialization values for
all algorithms, and the optimal parameter values are selected through ablation experiments;
the hyperspectral decomposition threshold in the CNMF experiments is set to θH = 10−2,
the multispectral decomposition threshold is set to θM = 10−2, and the outer recirculation
decomposition threshold is set to θO = 10−4. The value of the weighting parameter in
STEREO is set to λ = 10−5. The regularization parameter is set to λ = 10−3 and θ = 10−3

in SCLL1, and the parameters of the other algorithms that are not mentioned in the original
text are used to set the parameters. The CPU in the experimental equipment is Intel(R)
Xeon(R) Gold 6154; the RAM size is 256G. The operating system is 64-bit Windows 10.
The experimental platform is Matlab R2017b.

4.2.2. Degradation Model

The local datasets are acquired using multispectral and hyperspectral sensors in the
acquisition process to directly obtain the HR-MSI and LR-HSI, respectively. However,
the standard dataset is different in that it is a hyperspectral dataset acquired by a hyperspec-
tral sensor and lacks a corresponding multispectral dataset to perform fusion experiments.
Therefore, the standard dataset is generally used as a reference image when fusion exper-
iments are being performed, and the HR-MSI and LR-HSI used in the experiments are
obtained from it by degradation, respectively. In this paper, the degradation model follows
the literature [22,32,68] and strictly follows the Wald agreement. The process of acquiring
the LR-HSI is such that the standard dataset is fuzzed using a 9 × 9 Gaussian kernel and
sampled at 4-pixel intervals. The process of acquiring the HR-MSI is referred to in the
literature [47]. At last, noise is added for the LR-HSI and HR-MSI.

4.3. Numerical Evaluation Indicators

In order to evaluate the differences between the algorithms proposed in this paper and
the comparison algorithms in further detail, it is necessary to evaluate them with the help
of numerical evaluation metrics, in addition to direct observation of the HRHS quality and
difference images of each algorithm. In recent years, many evaluation metrics have emerged
with the continuous improvement of the algorithms, but metrics such as the peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [69], correlation coefficient (CC), universal
image quality index (UIQI) [70], root mean squared error (RMSE), Erreur Relative Globale
Adimensionnelle de Synthese (ERGAS) [71], spectral angle mapper (SAM) [72], and TIME,
which appear in the literature [4,17], are widely used, and they can comprehensively assess
the superiority of the algorithms in terms of spatial information, spectral information,
and algorithm efficiency. The specific details of these evaluation metrics are described in
detail in our separate work [59]. Among these, the larger the PSNR value, the better the
image quality; the closer the SSIM, CC, and UIQI values are to one, the better the quality
of the HRHS fusion; the closer the values of the RMSE, ERGAS, SAM, and TIME are to 0,
the better the fusion effect. Detailed definitions follow:

The peak signal-to-noise ratio (PSNR) evaluates the level of image distortion or noise.
The general situation of PSNR is between 30 dB and 50 dB. In the ideal case, it is expected
to be as high as possible, with ∞ representing the optimal value. It should be specifically
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noted that when the PSNR is more than 30 dB, it is difficult for the human eye to see the
difference between the fused image and the reference image. The definitions are as follows.

PSNR(Y ,YS ) =
1

NS

NS

∑
i=1

PSNR(Yi,YSi) (26)

The structural similarity (SSIM) is used to calculate the structural similarity between
the HRHS and the reference image in the spatial domain [69]. The SSIM ranges from −1 to
1. When the two images are identical, the SSIM value is equal to one. The definitions are
as follows.

SSIM(Y ,YS ) =
1
M

M

∑
i=1

(
2Y i,YSi + c1

)(
2σY i ,YSi

+ c2

)
[(
Y i
)2

+
(
YSi
)2

+ c1

](
σ2
Y + σ2

YS
+ c2

) (27)

The correlation coefficient (CC) describes the degrees of spectral likeness with respect
to the objective image, as well as the fusion image. The CC is based on a scale from −1
to 1. The closer the CC is to one, the higher their positive correlation. The definitions are
as follows.

CC(Y ,YS ) =

NW
∑

i=1

NH
∑

j=1

{
[Y(i, j)− AVEY ] •

[
YS(i, j)− AVEYS

]}
√

NW
∑

i=1

NH
∑

j=1
[Y(i, j)− AVEY ]

2 •
NW
∑

i=1

NH
∑

j=1

[
YS(i, j)− AVEYS

]2 (28)

The universal image quality index (UIQI) [70] is specifically used to detect the average
correlation between the reference image and the fused image. If the fused image is closer
to the reference image, the UIQI value is closer to a value of one, which means a better
reconstruction effect. The definitions are as follows.

UIQI(Y ,YS) =
1
M

M

∑
i=1

4σ2
Y iYSi

• Y i,YSi(
σ2
Yi
+ σ2
YSi

)[(
Y i
)2

+
(
YSi
)2
] (29)

The root mean squared error (RMSE) is an important index describing the root mean
squared error between each band of the reference image and the fused image. If the
fused image is closer to the reference image, the RMSE value will be closer to a value of 0.
The definitions are as follows.

RMSE(Y ,YS) =

√
‖Y ,YS‖2

F
NW NH NS

(30)

The Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) [71] is an im-
portant measure of the global quality and spectral variability of the reconstructed image.
If ERGAS is closer to a value of 0, the reconstruction effect will be better. The definitions
are as follows.

ERGAS(Y ,YS) =
100

s

√√√√ 1
NS

NS

∑
i=1

MSE(Y ,YS)

MEAN(YS)
(31)

The spectral angle mapper (SAM) [72] is a metric used to measure the magnitude of
the angle between the pixel spectra of the source image and the fused image. If the SAM
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value is closer to a value of 0, the two images match more, and the similarity is higher.
The definitions are as follows.

SAM(Y ,YS) =
1

NW NH

NW NH

∑
i=1

arccos
(Y ,YS)

‖Yi‖2 • ‖YSi‖2
(32)

where Yi and YSi are the i-th band of the initial and fused images, and AVEY and AVEYS

are the average pixel values of the initial and fusion images, respectively. Y i and YSi are
the mean values of Yi and YSi, respectively. σi, σ2

i , and σ2
i,j are used to express the standard

deviation, variance, and covariance, respectively. ci is a constant. Here, the larger the
value of PSNR, the closer the SSIM, CC, and UIQI values are to 1, and the closer the RMSE,
ERGAS, and SAM values are to 0, indicating a better fusion effect.

The signal-to-noise ratio (SNR) is the ratio of signal to noise in an image. A high
signal-to-noise ratio is reflected in a clean and noise-free image, while a low signal-to-noise
ratio makes the image rough and noisy, and the image quality is not translucent and has
insufficient contrast. The definitions are as follows.

SNR =
Signal
Noise

(33)

4.4. Classification Accuracy Evaluation

Here, we examine the effect of the HRHS on the pixel-level classification task. The
fused images obtained by each fusion algorithm contain 11,781 labeled samples with
the sample categories of Asphalt, Meadows, Trees, Painted Metal Sheets, Self-Blocking
Bricks, and Shadows, and the amount for each sample categories is 2705, 5195, 1089, 1338,
1250, and 204, respectively. The fused images are used as the dataset for the classification
algorithm, and 1% of the random points of each category of labeled samples is used as
training samples, and the remaining 99% of the random points is used as test samples.
Then, 1.5% of each category is taken as the validation set. The classification results of each
HRHS were evaluated using three metrics: the overall accuracy (OA), average accuracy
(AA), and kappa coefficient (κ). Detailed definitions are as follows.

The overall classification accuracy (OA) refers to the ratio of the number of correctly
categorized image elements to the total number of categories in an HRHS.

The kappa coefficient (κ) is an index to evaluate the degree of agreement or accuracy
between the classification results and the actual features and is calculated as follows:

κ =

N
g
∑

i=1
wii −

g
∑

i=1
(wi+w+i)

N2 −
g
∑

i=1
(wi+w+i)

(34)

where g is the total number of categories, i.e., the total amount of columns in the confusion
matrix; wii is the total amount of correct classification, i.e., the count of the pixels on row
i and column i of the confusion matrix; wi+ and w+i are the total pixel counts of i rows
and i columns, respectively; and N indicates the total amount of pixels to be used for
accuracy estimation.

The average categorization accuracy (AA) indicates the average value of each accuracy
for each category.

4.5. Model Parameter Selection
4.5.1. Selection of the Parameters λ and η

The parameters appearing in the model can affect the effectiveness of the fusion
algorithm. For the regularization parameter λ and the smoothing parameter η that appear,
a reasonable choice is made by ablation experiments. This is completed as follows: Firstly,
λ and η are randomly selected for the experiments to roughly estimate the interval of better
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results. Secondly, we fix the value of one of the parameters and assign a regular value to
the other parameter, observing the changes in the evaluation indicators, such as the PSNR,
and finding the better value. Finally, the optimal solution is found around the better value.
With the above ideas, the parameter selection process for the Pavia University dataset is
given, as shown in Figures 6 and 7. By fixing one parameter, the other parameter is scaled
down 10 times each time; it was observed that the change in the PSNR and other indexes
in the graph was found when λ = 0.01, η = 0.001, the evaluation indexes reached the
optimum, and the algorithm fusion effect was the best. (Note: Other datasets selected the
parameter values by this method).

(a) (b) (c)

Figure 6. Different λ values of the indicators. (a) Different λ values of PSNR. (b) Different λ values
of SSIM, CC, and UIQI. (c) Different λ values of RMSE, ERGAS, and SAM.

(a) (b) (c)

Figure 7. Different η values of the indicators. (a) Different η values of PSNR. (b) Different η values of
SSIM, CC, and UIQI. (c) Different η values of RMSE, ERGAS, and SAM.

4.5.2. Rough Estimation of the Ranks L and R

For the LL1 fusion-based algorithm, the ranks L and R of the potential factors affect
the overall performance of the algorithm. The selection process regarding the ranks L and
R of the Pavia University dataset and the Indian Pines dataset are listed here, regarding the
data in the experiments are the average of ten independent experiments conducted.

4.5.3. Estimation of L and R on Pavia University Dataset

Regarding the rough estimates of the ranks L and R in the experiments on the Pavia
University dataset, as shown in Figure 8, the graphs show the changes in the evaluation
metrics, such as the PSNR, SSIM, and CC, for different ranks of L. The L-value is estimated
by fixing the rank R. Set R = 25 here. The L-value grows at a rate of 5 per increase from
10. It is clearly observed from Figure 8a that the PSNR values vary more significantly for
L in the [10, 30] range. The PSNR change remained essentially flat in the [30, 45] range.
In Figure 8b, L is in the [10, 20] range where the three indicators SSIM, CC, and UIQI change
more significantly. In summary, it can be roughly estimated that the optimal value of rank
L is around L = 30.
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(a) (b) (c)

Figure 8. Evaluation metrics for different L values under the Pavia University dataset. (a) Different L
values of PSNR. (b) Different L values of SSIM, CC, and UIQI. (c) Different L values of RMSE, ERGAS,
and SAM.

Figure 9 shows the graphs of the variation of evaluation metrics, such as the PSNR,
SSIM, and CC, for different ranks of R in the Pavia University dataset. Fix the rank L to
estimate the R-value, set L = 35, and the R-value grows at a rate of 5 per increase from 10.
As seen in Figure 9a, the PSNR values increase rapidly with R in the [10, 15] range; there
is a slow change in the PSNR during the [15, 30] range; and the PSNR values remained
essentially flat in the [30, 45] range. In Figure 9b,c, when R in the [10, 15] range, the three
test metrics of the SSIM, CC, and UIQI improve more significantly, while the RMSE and
SAM remain basically stable. In Figure 9c, there is a significant increase in the ERGAS
values in the range [10, 25]. In the rest of the ranges, all of the tested metrics have basically
leveled off without any major improvement. In summary, it can be roughly estimated that
the optimal value of the rank R is around R = 25.

(a) (b) (c)

Figure 9. Evaluation metrics for different R values under the Pavia University dataset. (a) Different
R values of PSNR. (b) Different R values of SSIM, CC, and UIQI. (c) Different R values of RMSE,
ERGAS, and SAM.

4.5.4. Estimation of L and R on Indian Pines Dataset

Regarding the rough estimates of the ranks L and R in the Indian Pines dataset
experiment, as shown in Figure 10, the graphs show the changes in the evaluation metrics,
such as the PSNR, SSIM, and CC, for different ranks of L. Fix the rank R to estimate L.
Initialize R = 25. The rank L grows from five at a rate of five per increase. The variation of
PSNR values was observed from Figure 10a where the PSNR values are more significantly
improved with L in the [10, 30] range. The PSNR appears to decrease in the [30, 35] range
but not significantly. In the [35, 40] range, it is more stable. In Figure 10b,c, L is in the interval
of [5, 20]. The test indexes, such as the SSIM and CC, have more obvious improvements,
and, in summary, the optimal value of the rank L can be roughly estimated to be around
L = 20.
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(a) (b) (c)

Figure 10. Evaluation metrics for different L values under the Indian Pines dataset. (a) Different L
values of PSNR. (b) Different L values of SSIM, CC, and UIQI. (c) Different L values of RMSE, ERGAS,
and SAM.

Figure 11 shows the graphs of the changes in the evaluation metrics, such as the
PSNR, SSIM, and CC, for different ranks of R on the Indian Pines dataset. Fixing the
rank L estimates R. By initializing L = 30, the rank R grows at a rate of five per increase
starting from five. Observe the change in the PSNR values from Figure 11a where the
PSNR values were most significantly enhanced by R in the [5, 10] range. The PSNR shows
more pronounced upward and downward fluctuations in the [10, 30] range but largely
maintains an upward trend. In Figure 11b,c, R has a more significant improvement in the
test metrics, such as SSIM and CC, in the [5, 10] range. In the rest of the ranges, the effect is
not significantly improved. In summary, an inappropriate choice of the rank R suppresses
the experimental effect of the fusion algorithm, so the optimal value of the rank R is roughly
estimated to be around R = 10.

(a) (b) (c)

Figure 11. Evaluation metrics for different R values under the Indian Pines dataset. (a) Different
R values of PSNR. (b) Different R values of SSIM, CC, and UIQI. (c) Different R values of RMSE,
ERGAS, and SAM.

4.5.5. Signal-To-Noise Ratio Selection

The signal-to-noise ratio (SNR) is also one of the important factors affecting the
fusion results of algorithms. The SNR of each algorithm is different, and it is necessary
to select an SNR that all algorithms can “accept” to avoid the phenomenon of comparing
the optimal and non-optimal results. The selected SNRs (unit: dB) range from [15, 40]
with a 5 dB interval. All experiments were conducted using the Pavia University dataset.
The experimental results are shown in Figure 12. The values of the SNR range is [15, 30].
Evaluation indicators, such as the PSNR, SSIM, and CC, were significantly improved. In the
range [30, 40], all evaluation indicators tend to be stable. This shows that the performance
of all algorithms is maximally released when SNR = 30 dB.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Performance comparison of all algorithms under different SNRs. (a) PSNR of different
algorithms. (b) SSIM of different algorithms. (c) CC of different algorithms. (d) UIQI of different
algorithms. (e) RMSE of different algorithms. (f) ERGAS of different algorithms. (g) SAM of different
algorithms. (h) Icons.

4.6. Regularization Validity Discussion

A 2D-CNBTD was proposed in previous work [55], but the algorithm is not perfect
and also suffers from low algorithm efficiency, long running time, and noise/artifacts.
Therefore, based on the above considerations, a new algorithm (JSSLL1) is proposed in
this paper. As shown in Table 1, the numerical evaluation metrics of the three algorithms,
BTD, 2D-CNBTD, and JSSLL1, are given on the Pavia University dataset, Indian Pines
dataset, and NingXia Sand Lake dataset, respectively. The better values are indicated in
bold, and the time optimum is noted as 0 s. Other evaluation metrics, such as the PSNR
and SSIM, are described in Section 4.3. Among these, the PSNR is used to evaluate the
image distortion; the SSIM and UIQI evaluate the spatial features of the fused images;
the CC, RMSE, and other metrics are used to evaluate the spectral features of the fused
images. From Table 1, it can be seen that the spatial feature metrics SSIM and UIQI of
2D-CNBTD and JSSLL1 are greatly improved compared with those before improvement.
The CC, RMSE, and SAM metrics of the spectral features are also significantly improved.
The PSNR is significantly improved as well, which can effectively remove noise from the
images. The experimental results of 2D-CNBTD and JSSLL1 on the Pavia University dataset
and the NingXia Sand Lake dataset show that the difference between these in the spatial
and spectral feature indexes is not obvious; on the NingXia Sand Lake dataset, the PSNR
value of JSSLL1 is better; on the Indian Pines dataset, each piece of data for JSSLL1 is closer
to the optimal value. In summary, the JSSLL1 algorithm can effectively suppress noise, is
suitable for more complex environments, has a lower computational complexity, and can
achieve the goal in the least amount of time.

Table 1. Algorithm improvement before and after the value comparison table.

Dataset Pavia University Indian Pines NingXia Sand Lake

Algorithms BTD 2D-CNBTD JSSLL1 BTD 2D-CNBTD JSSLL1 BTD 2D-CNBTD JSSLL1

PSNR(∞) 35.71 40.86 40.12 25.38 32.42 33.79 36.97 39.49 42.39
SSIM(1) 0.8764 0.9632 0.9652 0.7436 0.9328 0.9515 0.9753 0.9434 0.9261

CC(1) 0.9705 0.9932 0.9927 0.7091 0.8962 0.9338 0.9960 0.9976 0.9978
UIQI(1) 0.8354 0.9321 0.9341 0.4067 0.6949 0.7565 0.9390 0.9634 0.9518

RMSE(0) 0.0222 0.0104 0.0109 0.0306 0.0127 0.0112 50.57 50.362 34.84
ERGAS(0) 0.5454 0.2679 0.2819 0.4431 0.1530 0.1204 0.0882 0.0639 0.0647

SAM(0) 0.0957 0.0558 0.0551 0.0850 0.0336 0.0261 0.0436 0.0309 0.0338
Time(0/s) 80.94 89.68 44.07 7.26 11.62 5.53 64.79 73.44 43.12
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4.7. Standard Dataset Experimental Results and Discussion

This section shows the experimental results of the eight fusion algorithms on the Pavia
University dataset and the Indian Pines dataset. The experimental results include visual
images of the fusion results, difference images, and the numerical results of evaluation metrics.

4.7.1. Pavia University Dataset Experimental Results and Discussion

Through the above experiments, the parameters of the Pavia University dataset are set
as: λ = 0.01, η = 0.001, and SNR = 30 dB. Due to the specificity of the model in this paper,
the estimation and selection of the rank can be “overestimated”, so the roughly estimated
ranks R and L are slightly adjusted upwards and set to: L = 35, R = 25. The algorithm
superiority was evaluated by observing the visualized images. For the Pavia University
dataset, the three bands 61, 25, and 13 were selected as the red, green, and blue bands,
respectively, and fused to generate pseudo-color images. The HRHS is shown in Figure 13.
Figure 13a shows the original image of the Pavia University dataset. In order to see the
differences in HRHSs more clearly, the red box part in each HRHS image is enlarged, and
the enlarged part is shown in the upper right corner. The difference images of all algorithms
are shown in Figure 14.
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Figure 13. HRHSs of all algorithms on the Pavia University dataset.

(a) CNMF (b) Hysure (c) FUSE (d) SCOTT (f) STEREO (g) BTD (h) SCLL1 (i) Proposed(e) LRSR

Figure 14. Pavia University dataset difference image.

As can be seen in the enlarged part shown in Figure 13, compared with the reference
image, some spatial information is lost in the HRHS image of CNMF; a large number of
blurred blocks and noise appear in the fusion result of SCOTT, and the spatial information
is seriously missing; the fusion results of SCLL1 and the BTD are clearer; no blurred blocks
and noise are seen, but some spatial information is lost. The HySure and STERE fusion
results in a low loss of spectral and spatial information; no noise and blurred blocks are seen
in the fusion results of the algorithm proposed in this paper, and the spatial information is
also preserved.

Figure 14 shows the difference images obtained after the difference between the target
image and the fused image. Among these, the difference images of CNMF, Hysure, FUSE,
LRSR, and SCLL1 have a lot of texture information; SCOTT has less texture information;
the difference images of STEREO, the BTD, and the algorithm of this paper are more similar



Remote Sens. 2023, 15, 4610 20 of 28

and do not see more texture information, but, in comparison, STEREO and the BTD still
have some building outline information.

When the PSNR is greater than 30 dB, it is difficult to observe the difference in the
images with the naked eye, and the algorithm needs to be evaluated in terms of both the
spectral and spatial features with the help of some evaluation metrics. The evaluation
indexes of the Pavia dataset are shown in Table 2. As can be seen from the data in the table,
the metrics describing the spectral and spatial information, the SSIM, CC, RMSE, ERGAS,
and SAM of the algorithm in this paper, are closer to the optimal values, and only the UIQI
is slightly inferior to the CNMF algorithm, which means that the algorithm in this paper
performs the best in terms of spatial information, spectral information, image contrast,
and brightness in the process of reconstructing images. In terms of the PSNR values, this
paper’s algorithm can effectively reject noise. Under the same number of iterations and in
the same environment, the running time of this paper’s algorithm, compared with the BTD
and SCLL1, has been significantly improved.

Table 2. Performance for Pavia University Dataset.

Algorithms CNMF Hysure FUSE SOCTT LRSR STEREO BTD SCLL1 JSSLL1

PSNR(∞) 36.56 36.39 31.29 28.42 29.87 39.40 35.71 36.19 40.12

SSIM(1) 0.9627 0.9606 0.9240 0.7884 0.8929 0.9545 0.8764 0.9290 0.9652

CC(1) 0.9867 0.9853 0.9562 0.9458 0.9358 0.9913 0.9705 0.9795 0.9927

UIQI(1) 0.9343 0.9331 0.8818 0.7123 0.8299 0.9168 0.8354 0.8937 0.9341

RMSE(0) 0.0159 0.0169 0.0288 0.0314 0.0350 0.0120 0.0222 0.0198 0.0109

ERGAS(0) 0.4165 0.4395 0.7370 0.7415 0.7652 0.3086 0.5454 0.4528 0.2819

SAM(0) 0.0621 0.0684 0.0852 0.1051 0.1067 0.0643 0.0957 0.0932 0.0551

Time(0/s) 6.41 148.4 1.40 3.83 59.11 6.22 80.94 70.71 44.07

4.7.2. Pavia University Dataset Classification Experimental Results and Discussion

Image classification is one of the important application scenarios for high-resolution
hyperspectral images. Acquiring high-resolution hyperspectral images is another impor-
tant purpose of image fusion. A high-quality fused image will make the classification
experiment “half the work”. The experimental data contain information about buildings,
vegetation, roads, bare soil, and other features. Therefore, a lightweight spectral–spatial
convolutional network (LS2CM) [73] with a low complexity and few network parameters
was chosen to perform classification experiments on the fused images from Pavia Univer-
sity, as well as the original images for each algorithm. A 3 × 3 deep convolutional (Conv)
filter was used for the experiments, and a filter with a convolution kernel of 1 × 1 was
chosen for spectral feature extraction. A 3× 3 filter was chosen for spatial feature extraction.
All other parameter settings in this paper follow the literature [73]. Each experiment was
repeated ten times. The results of the classification experiments on the Pavia dataset are
shown in Table 3.

Table 3. Classification Performance for Pavia University Dataset.

Algorithms CNMF Hysure FUSE SOCTT STEREO BTD SCLL1 JSSLL1 Original Image

KAPPA×100 96.52±1.66 96.27±0.88 94.40±7.07 94.90±5.08 97.78±1.00 97.71±2.13 94.99±5.00 97.30±2.36 97.93±1.51
OA(%) 97.50±1.21 97.32±0.62 95.89±5.31 96.24±3.87 98.40±0.71 98.36±1.51 96.40±3.54 98.08±1.65 98.51±1.09
AA(%) 95.52±1.91 95.66±1.67 95.43± 3.64 93.66±5.50 97.09±1.69 97.52±1.35 94.56±4.86 97.03±1.90 97.20±3.08

As shown in Table 3, the HRHS image classification results of each algorithm are
shown by the evaluation index. It should be specifically noted here that the HRHS of CNMF,
Hysure, and the other algorithms are obtained by downsampling the original image, so
the closer the classification result is to the original image, the better the classification result
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will be. Therefore, compared with other algorithms, the HRHS classification result data
of the algorithms in this paper, STEREO and the BTD, are closer to the reference image;
the HRHS image classification effects of CNMF and Hysure are the second, and the HRHS
image classification effects of FUSE, SCOTT and SCLL1 are the worst.

4.7.3. Indian Pines Dataset Fusion Experiment Results and Discussion

The parameters for the Indian Pines dataset are set to λ = 0.01, η = 0.001, and
SNR = 35 dB. Due to the specificity of the model in this paper, the estimation and selection
of the rank can be “overestimated”, so the roughly estimated ranks R and L are slightly
adjusted upward and set to L = 25, R = 10. Here, the three bands 61, 25, and 13 are
selected as the red, green, and blue bands, respectively, and fused to generate pseudo-color
images. The HRHS is shown in Figure 15, and Figure 15a shows the original image of the
Indian Pines dataset. To see the differences in the HRHS more clearly, the red-boxed part
of each HRHS plot is enlarged, and the enlarged part is shown in the upper right corner.
The difference images for all algorithms are shown in Figure 16.
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Figure 15. HRHSs of all algorithms on the Indian Pines dataset.
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Figure 16. Indian Pines dataset difference image.

As can be seen in the enlarged part shown in Figure 15, compared with Figure 14a,
the HRHS of CNMF appears distorted; the HRHS of Hysure, SCOTT, STEREO, and the BTD
has a large fuzzy block and noise with serious loss of spatial information. The HRHS of
FUSE, SCLL1, and this paper’s algorithm is clear; neither noise nor fuzzy block are seen,
and the loss of spatial information is less.

Figure 16 shows the difference images of each algorithm on the Indian Pines dataset.
Among these, the difference images of CNMF, Hysure, FUSE, SCOTT, LRSR, the BTD,
and SCLL1 show a lot of spatial texture, indicating that there is a serious loss of spatial
information in the HRHS obtained by the above algorithms; the difference images of
STRTEO and the algorithms in this paper do not show more spatial texture, indicating that
the HRHS images of these two algorithms are closer to the reference image.

The data in Table 4 show that among the metrics describing the spectral and spatial
information, the UIQI, CC, RMSE, ERGAS, and SAM of this algorithm are closer to the
optimal values, and only the SSIM is slightly inferior to the SCLL1 algorithm, indicating that
this algorithm loses less spatial and spectral information in the process of reconstructing
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images, and the HRHS fused images are closer to the original dataset. In terms of the PSNR,
this algorithm can better suppress noise; meanwhile, compared with the BTD and SCLL1,
the running time of this algorithm is shorter.

Table 4. Performance for Indian Pines Dataset.

Algorithms CNMF Hysure FUSE SOCTT LRSR STEREO BTD SCLL1 JSSLL1

PSNR(∞) 27.55 30.44 31.24 27.76 26.90 26.27 25.38 32.08 33.79
SSIM(1) 0.9356 0.9078 0.9259 0.8586 0.8670 0.8166 0.7436 0.9551 0.9515

CC(1) 0.8175 0.8768 0.8793 0.7727 0.7754 0.8255 0.7091 0.8953 0.9338
UIQI(1) 0.6437 0.6438 0.6650 0.4804 0.4458 0.6800 0.4067 0.7298 0.7565

RMSE(0) 0.0241 0.0196 0.0167 0.0215 0.0264 0.4253 0.0306 0.0119 0.0112
ERGAS(0) 0.2736 0.2160 0.1873 0.2707 0.7754 0.0200 0.4431 0.1540 0.1204

SAM(0) 0.0664 0.0496 0.0401 0.0537 0.1793 0.3365 0.0850 0.0312 0.0261
Time(0/s) 2.73 47.44 0.75 0.58 31.54 4.05 7.26 23.85 5.72

4.8. Local Dataset Fusion Experimental Results and Discussion

The Ningxia Sand Lake dataset was acquired by two high-resolution satellites over
the Sand Lake successively, and, here, the original dataset has been aligned and corrected
by ENVI 5.3 software. By experimental verification, λ and η are not changed. R and L are
set as R = 20, L = 30. Then, the three bands, 59, 38, and 20, are selected as the red, green,
and blue bands, respectively, and fused to generate pseudo-color images. The HRHS is
shown in Figure 17. Figure 17a,b show the HR-MSI and LR-HSI acquired by the satellites,
respectively. In order to see the HRHS differences of each algorithm more clearly, each
red boxed part of the HRHS plot is enlarged, and the enlarged part is shown in the upper
right corner.

(a)  MSI (b) HSI (c) CNMF (d) FUSE

(e) SCOTT (f) STEREO (g) BTD (h) Proposed

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

0 50 100 150 200

1500m 1500m 1500m 1500m

scale bar

Figure 17. HRHSs of all algorithms on the Ningxia Sand Lake dataset.

As can be seen from the enlarged part in Figure 17, compared with the reference image,
the HRHS of CNMF and STEREO showed distortion. The presence of a great number of
fuzzy blocks and noise in the HRHS images of SCOTT and STEREO, shows that their spatial
information was lost in the fusion process; the HRHS of FUSE and the BTD showed a small
number of blurred blocks. In comparison, the HRHS of the algorithm in this paper was
clearer; neither noise nor blurred blocks were seen, and less spatial information was lost.

The Hysure and SCLL1 algorithms show outliers when experimenting on the NingXia
Sand Lake dataset, and the LRSR algorithm also requires downsampling of the collected
dataset for local dataset experiments, which is referred to as “pseudo-fusion”, while the
algorithm in this paper directly fuses the two images. Therefore, these three algorithms
are not compared. The numerical data of the other algorithms are shown in Table 5. Bold
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means the best value. Among the indicators describing the spatial and spectral information,
the UIQI, CC, RMSE, ERGAS, and SAM of the algorithms proposed in this paper are closer
to the optimal values, and the SSIM is a little smaller than the BTD numerical indicators.
This means that the algorithm in this paper can retain the spatial structure and spectral
information in LR-HSI and HR-MSI images well during the process of reconstructing HRHS
images; the PSNR value is also the highest, which shows that the proposed algorithm also
performs well in suppressing noise.

Table 5. Performance for Ningxi Shahu Lake Dataset.

Algorithms CNMF FUSE SOCTT STEREO BTD JSSLL1

PSNR(∞) 13.57 36.20 20.44 5.52 36.97 42.385
SSIM(1) 0.1649 0.9037 0.2383 0.2988 0.9753 0.92605

CC(1) 0.4650 0.9953 0.8690 0.8818 0.9960 0.9978
UIQI(1) 0.1773 0.9230 0.3617 0.3125 0.9390 0.9518

RMSE(0) 1067.9 114.44 374.84 922.06 50.57 34.8429
ERGAS(0) 0.8250 0.0780 0.3282 0.8229 0.0882 0.0648

SAM(0) 0.2505 0.0702 0.1746 0.3341 0.0436 0.0338
Time(0/s) 27.54 1.91 8.26 19.82 64.79 43.12

4.9. Analysis of Algorithm Complexity

The computational complexity of this model primarily involves matrix operations and
element-wise computations. To calculate the complexity of the model, we can analyze the
computational cost of each term and sum them up.

Each term in the model involves both matrix operations and element-wise computa-
tions. Specifically, the model consists of the following components:

First term: 1
2

∥∥∥∥YH −
R
∑

r=1
(P1ArBT

r PT
2 ) ◦ cr

∥∥∥∥2

F
. Second term: 1

2

∥∥∥∥YM −
R
∑

r=1
(ArBT

r ) ◦ (P3cr)

∥∥∥∥2

F
.

Regularization term: λ
R
∑

r=1

√(
L
∑

l=1

√
‖arl‖2

2 + ‖brl‖2
2 + η2

)2

+ ‖cr‖2
2 + η2.

For each term, we can separately consider the computational complexity of matrix
operations and element-wise computations.

The first term involves matrix multiplication, element-wise multiplication, and sum-
mation. The most time-consuming part is the matrix multiplication. Assuming YH has
dimensions H ×W, Ar and Br have dimensions H × K and W × K, and P1 and P2 are
dimension-adaptation matrices. The matrix multiplication (P1ArBT

r PT
2 ) has a complexity

of approximately O(HWK), followed by element-wise multiplication and summation with
a complexity of O(HW).

The second term is similar to the first term, involving matrix multiplication, element-
wise multiplication, and summation. Assume YM has dimensions H ×W, Ar and Br have
dimensions H × K and W × K, and P3 is a dimension-adaptation matrix. The matrix multi-
plication (ArBT

r ) has a complexity of O(HWK), followed by element-wise multiplication
and summation with a complexity of O(HW).

The regularization term involves element-wise operations such as squaring, square
root, summation, and multiplication. Assuming each vector arl , brl , and cr has a dimension
of K, the computational complexity for each r is approximately O(K), resulting in a total
complexity of O(RK).

Therefore, adding up the complexities of these three components, the overall compu-
tational complexity of the model is approximately O(HWK + HW + RK).

5. Summary

In this paper, a coupled non-negative block-term tensor decomposition model based
on joint-structured sparsity is proposed for estimating HRHSs. A hierarchically structured
regularization scheme is adopted to fully consider the unknown nature of the tensor rank,
the long running time of the algorithm, the sparsity of the abundance matrix, and the



Remote Sens. 2023, 15, 4610 24 of 28

scaling/counter-scaling effects that occur in the fusion model when the block-term tensor
decomposition model is used to reconstruct the HRHS. Firstly, the sparsity of the abundance
matrix is ensured, and the scaling phenomenon in the model is countered by superimposing
the abundance matrix on the chunk matrix and adding the L2,1-norm; secondly, the counter-
scaling effect in the model is suppressed by adding the L2-norm to each endmember vector;
finally, the chunk matrix and the endmember matrix are reweighted and coupled, adding a
L2,1-norm number, making it possible to select the appropriate regularization parameters to
overestimate the tensor rank when the rank is unknown, thereby facilitating the elimination
of the abundance matrix and the corresponding endmember matrix. To address the above
facts, this paper conducts experiments based on standard and local datasets and solves the
algorithmic model using the extended IRLS method. The experimental results show that the
algorithm proposed in this paper performs well on both spatial and spectral information,
in terms of both the visual sensory and numerical comparisons, and its fusion results are
closer to the reference image. There are still some limitations in this paper, for example,
the performance of the algorithm depends on the choice of multiple preset parameters and
hyperparameters, such as the order of the matrix factorization, regularization parameters,
etc. Different parameter settings may lead to different results and careful parameter tuning
is required. Due to multiple matrix operations, element-wise operations, and iterative
optimization, the computational complexity of the algorithm is high. This can be time-
consuming when dealing with large amounts of data. In future work, we hope to further
reduce the running time of the algorithm without compromising its overall performance.
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The following abbreviations are used in this manuscript:

MHF Multispectral and hyperspectral image fusion
HRHS High spatial resolution hyperspectral image
LR-HSI Low-resolution hyperspectral image
HR-MSI High-resolution multispectral image
HSR Hyperspectral super-resolution
PAN Panchromatic image
CPD Canonical polyadic decomposition
TV Total variational
PAO Proximal alternating optimization
ADMM Alternating directional multiplier method
SNR Signal-to-noise ratio
PCA Principal component analysis
PSNR Peak signal-to-noise ratio
SSIM Structural similarity
CC Correlation coefficient
UIQI Universal image quality index
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RMSE Root mean squared error
ERGAS Erreur Relative Globale Adimensionnelle De Synthese
SAM Spectral angle mapper

Appendix A. Symbol Definition

Upper- and lowercase bold letters are used to represent the vector and matrix, respec-
tively. The higher-order tensor is denoted by Y . For a tensor Y , Y(n) denotes its nth order
expansion. ⊗ denotes the Kronecker product. The Khatri–Rao product is denoted by � in
its general version and by �c in the columnar version. ◦ denotes the outer product. The su-
perscript T indicates a transpose. The unit matrix of order is denoted by IN . The L1-norm,
Euclidean, mixed L2,1-norm, and Frobenius norm numbers are, respectively, denoted by
‖∗‖1, ‖∗‖2, ‖∗‖2,1, and ‖∗‖F. R denotes the complex number field.

Appendix B. Algorithm Convergence Discussion

L2 parametric regularization itself is a common method to prevent overfitting of the
model, and the L2,1 parametric is a hybrid parametric between the L1 parametric and the
L2 parametric, which not only has the property of the L2 parametric to prevent model
overfitting but also has the sparse facilitation of the L1 parametric to select the important
features and discard the unimportant ones. Regarding this paper, the fusion model is
shown in Equation (17). The three factors A, B, and C in this model with their associated
minimization problems are Equations (20), (22) and (24).

Regarding the general IRLS [66], the expression is as follows:

xk+1 = arg min
x

1
2
‖b− Rx‖2

2 +
λ

2

n

∑
i=1

x2
i√

xk+2
i + η2

(A1)

The two reweighting matrices can be derived by comparing Equations (20), (22) and (24)
with Equation (A1), respectively. The first matrix O1 is composed of the inverse of the
summation terms external to the regularized terms in model Equation (17), which is the
joint weighted A, B block; the second matrix O2 is composed of the inverse of the terms
internal to the summation of the regularized terms in Equation (17), which is used to
balance the corresponding columns of Ar and Br. Here, the scheme of a hierarchical
IRLS structure is generated. As the iterative process progresses, O1 and O2 gradually
move closer to the direction with smaller weight parameters (i.e.: decaying weights), thus
avoiding overfitting. The conjugate gradient algorithm is a method between the fastest
descent method and the Newton method, which overcomes the disadvantage of the slow
convergence of the fastest descent method and avoids the problem that the Newton method
needs to store and calculate the Hessian matrix and find the inverse. Therefore, we choose
the CG algorithm to complete the solution of the three factors A, B, and C to ensure that
each factor is convergent.
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