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Abstract: Change detection with heterogeneous remote sensing images (Hete-CD) plays a significant
role in practical applications, particularly in cases where homogenous remote sensing images are
unavailable. However, directly comparing bitemporal heterogeneous remote sensing images (HRSIs)
to measure the change magnitude is unfeasible. Numerous deep learning methods require substantial
samples to train the module adequately. Moreover, the process of labeling a large number of samples
for land cover change detection using HRSIs is time-consuming and labor-intensive. Consequently,
deep learning networks face challenges in achieving satisfactory performance in Hete-CD due to the
limited number of training samples. This study proposes a novel deep-learning framework for Hete-
CD to achieve satisfactory performance even with a limited number of initial samples. We developed
a multiscale network with a selected kernel-attention module. This design allows us to effectively
capture different change targets characterized by diverse sizes and shapes. In addition, a simple yet
effective non-parameter sample-enhanced algorithm that utilizes the Pearson correlation coefficient is
proposed to explore the potential samples surrounding every initial sample. The proposed network
and sample-enhanced algorithm are integrated into an iterative framework to improve change
detection performance with a limited number of small samples. The experimental results were
achieved based on four pairs of real HRSIs, which were acquired with Landsat-5, Radarsat-2, and
Sentinel-2 satellites with optical and SAR sensors. Results indicated that the proposed framework
could achieve competitive accuracy with a small number of samples compared with some state-of-
the-art methods, including three traditional methods and nine state-of-the-art deep learning methods.
For example, the improvement rates are approximately 3.38% and 1.99% compared with the selected
traditional methods and deep learning methods, respectively.

Keywords: land cover change detection; HRSIs; deep learning neural network; very small
training samples

1. Introduction

Land cover change detection (LCCD) using remote sensing images involves comparing
the bitemporal images and extracting the land cover change [1,2], such as the land cover
change before and after some land cover change events, such as a landslide or wildfire
events. In this study, the task of land cover change detection on the earth’s surface was
accomplished by comparing the images that cover the same geographical area but were
acquired at different dates. LCCD using remote sensing images can capture large-scale land
changes on the earth’s surface [3]. The land cover change information plays a vital role in
landslide and earthquake inventory mapping [4–6], environmental quality assessment [7–9],
natural resource monitoring [10,11], urban development decision-making [12–14], crop
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yield estimation [15], and other applications [16]. Therefore, LCCD with remote sensing
images is attractive for practical applications [16–19].

Over the past decades, various LCCD methods have been developed. These methods
can be divided into two major groups based on the type of bitemporal images used [20]:
change detection with homogeneous remote sensing images (Homo-CD) and change
detection with heterogeneous remote sensing images (Hete-CD). The details of each group
were reviewed as follows:

Homo-CD indicates that the images used for LCCD are homogeneous data acquired
with the same remote sensors, possess similar spatial-spectral resolution, and exhibit
consistent reflectance signatures [16]. Accordingly, the images can be directly compared
to determine the magnitude of the change and acquire land cover change information.
Researchers have proposed several methods for Homo-CD. One of the most popular
methods is the contextual information-based method [19], such as the sliding window-
based approach [21], the mathematical model-based method [22], and the adaptive region-
based approach [23,24]. Deep learning methods for Homo-CD, such as convolutional
neural networks [25–27] and fully convolutional Siamese networks [28,29], have also
been widely used. Many deep learning networks have been developed with multiscale
convolution [30,31] and deep feature fusion [32,33] to cover more ground targets and
utilize deep features. Moreover, change trend detection with multitemporal images has
been attractive and popular in recent years [17,34,35]. Although various change detection
methods have been developed and have showcased excellent performance, demonstrating
their feasibility and advantages for Homo-CD, two major drawbacks persist: Deep learning
neural network training requires considerable samples, and preparing a large number of
training samples is labor-intensive and time-consuming.

Homogeneous images may be unavailable in numerous application scenarios due to
the physical limitations of remote sensing sensors. For example, optical satellite images
are typically unavailable for detecting land cover change caused by nighttime wildfires or
floods [20]. Nevertheless, pre-event optical images are easily obtained with satellites. In
addition, the image quality of optical satellite images is easily affected by weather [36,37].
Therefore, to address the limitations of Homo-CD in practical applications, Hete-CD is
proposed and has gained popularity in recent years [38].

In contrast with Homo-CD, the images used for Hete-CD are heterogeneous remote
sensing images (HRSIs). The HRSIs have an advantage in complementing the insignificance
of homogeneous images, such as an optical image reflecting the appearance of ground
targets by visible, near-infrared, and short-wave infrared sensors. Consequently, the
illumination and atmospheric conditions significantly affect the optical image quality.
Meanwhile, a synthetic aperture radar (SAR) image depicts the physical scattering of
ground targets. The appearance of a target in a SAR image depends on its roughness and
microwave energy wavelength. When an optical image is available prior to a night flood
or landslide, a SAR image is an alternative after a disaster because it is independent of
visual light and weather conditions [39]. Accordingly, immediate assessment of the damage
caused by natural disasters using optical and SAR images is possible in certain urgent cases.
The superiority of Hete-CD increases the corresponding demand for practical engineering.

Various methods have been promoted for Hete-CD in recent years. The most popular
approach to Hete-CD focused on exploring the shared features and measuring the similarity
between the shared features and bitemporal HRSIs. Wan et al. [40] explored the statistical
features of multisensor images for LCCD. Lei et al. [41] extracted the adaptive local structure
from HRSIs for Hete-CD. Sun et al. [42] improved the adaptive structure feature based
on sparse theory for Hete-CD. Moreover, techniques such as image regression [43–45],
graph representation theory [46–50], and pixel transformation [51] can be effectively used
to investigate the mutual features needed to carry out change detection tasks with HRSIs.
Although considerable traditional methods and their applications have demonstrated the
feasibility and advantages of using HRSIs in LCCD, these algorithms are typically complex,
and their optimal parameter involves trial-and-error experiments.
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However, the aforementioned traditional methods aim at exploring the features that
are focused on describing the pixel’s relationship [52,53]. In recent years, deep learning
techniques have been promoted and widely used in the fields of computer vision [54] and
change detection [55]. Particularly, deep learning techniques have been frequently used
to analyze deep features from HRSIs and make them comparable for change detection.
Zhan et al. [56] proposed a log-based transformation feature learning network for Hete-CD
with the goal of transforming heterogeneous images into similar ones. The experiments
with four datasets verified the feasibility and advantages of the log-based transformation
feature learning network [56]. Encoders and decoders can explore the deep shared features
of bitemporal heterogeneous images for change detection. Wu et al. [57] developed a
commonality auto-encoder for learning common features for Hete-CD. The experimental
results with five pairs of real heterogeneous datasets clearly demonstrated the advantages of
the proposed approach. Furthermore, generative adversarial networks used two networks
competing against each other in the form of bitemporal heterogeneous images with the
goal of learning the shared features of the pairwise images [48]. Niu [58] presented a
conditional generative adversarial network for Hete-CD and achieved satisfactory detection
performance with optical and SAR images. Although some applications have shown that
deep learning techniques can learn deep features from HRSIs to be comparable, the deep
learning-based Hete-CD methods typically necessitate many training samples.

The challenges of Hete-CD were summarized as follows: (1) Direct comparison of
bitemporal HRSIs is not feasible for change detection; (2) several existing deep learning
approaches face challenges in terms of achieving satisfactory performance with a small
number of training samples; (3) labeling training samples is necessary for deep learning-
based methods; however, it is time-consuming and labor-intensive. We developed a novel
framework for change detection using HRSIs with a limited initial sample set to address
the challenges of Hete-CD. The major contributions of the proposed framework can be
briefly summarized as follows:

1. A novel deep-learning framework is designed for Hete-CD. This simple framework
offers several advantages in improving detection accuracy with a small number of
initial samples. The deep learning framework’s simple yet competitive performance
is attractive and preferred for practical engineering.

2. A non-parameter sample-enhanced algorithm is proposed to be embedded into a
neural network. In particular, this algorithm explores the potential samples around
each initial sample using a non-parameter and iterative approach. Although this
idea was verified by Hete-CD with HRSIs in this study, it may be useful for other
supervised remote sensing image applications, such as land cover classification, scene
classification, and Homo-CD.

The remainder of this paper is organized as follows: Section 2 presents the details of
the proposed framework. Section 3 presents the experiments and the related discussion.
Section 4 provides the conclusion.

2. Methods

In this section, we provided a detailed description of the proposed framework for
Hete-CD, including an overview and backbone of the proposed neural network, a non-
parameter sample-enhanced algorithm, and an accuracy assessment. Every part is detailed
in the following section. It is worth noting that the proposed approach was realized with
the Pytorch 1.9 software, Python 3.8 was used for coding, the version of the OpenCV library
is 4.6, and our code has been released on GitHub, which can be accessed by clicking on the
link in the abstract section.

2.1. Overview

The motivation behind this study was to achieve change detection in Hete-CD with a
limited number of samples. Accordingly, a novel framework was designed here to achieve
the objective. Figure 1 depicts the flowchart of the proposed framework, which has four
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major parts, including an overview of the proposed approach, a proposed deep-learning
neural network, a non-parameter sample-enhanced algorithm, and an accuracy assessment.
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The overview of the proposed framework indicated that the framework iteratively
generated a change detection map, and the final detection map was outputted when the
iteration was terminated. The framework was initialized with a small number of samples,
and the initial training sample set was amplified using a proposed nonparametric sample-
enhanced algorithm in every iteration. The details of the termination condition of the
proposed framework are presented in the following section.

To clarify this concept, the matched pixels for changed and unchanged classes between
three adjacent iterations were defined in Equation (1) as follows:∣∣∣ML

k−1,k −ML
k,k+1

∣∣∣ ≤ ε (1)

ML
k−1,k =

count
(

ML
k−1 ↔ ML

k

)
W × H

(2)

ML
k,k+1 =

count
(

ML
k ↔ ML

k+1

)
W × H

(3)

where in L ∈ {0, 1}, 0 and 1 denote the unchanged and changed classes, respectively. W
and H denote the width and height of an input image. ML

k−1,k and ML
k,k+1 are the similarity

measurements in terms of the k-th classification map and (k− 1)th-classification map for
the L-class, and they can be calculated by using Equations (2) and (3), respectively. “<—>”
represents the matched pixels with the same label, including the changed and unchanged
labels. For example, if the pairwise pixels at position (i,j) were marked with the “changed”
or “unchanged” label in ML

k and ML
k−1, then the pairwise pixels were defined as “matched”.

Equation (1) demonstrated the similarity between the detection map from the (k − 1)th
and kth and kth and (k + 1)th iterations. Moreover, ε was a small constant, and it was
fixed at 0.0001 in our proposed framework. The training sample was dynamically adjusted
in the iterative process. For example, if the change class satisfies Equation (1), then the
corresponding changed sample will not be enhanced in the next iteration. Moreover,
Equation (1) will be checked again in every iteration. Equation (1) indicated that the
iteration of the proposed framework was terminated when the difference between the
matched ratio among the (k − 1)th, kth, and (k + 1) detection maps was less than ε for the
unchanged and changed classes.

In addition to the overview of the proposed framework, the two major parts were
the proposed deep learning neural network and the non-parameter sample-enhanced
algorithm. The details are presented as follows:
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2.2. Proposed Deep-Learning Neural Network

Different ground targets were performed with varying sizes in remote sensing images,
and distinguishing a target, such as a lake or a building, required an appropriate scale
from the human visual perspective [59,60]. Accordingly, three aspects were considered
in the proposed neural network, as shown in Figure 1. First, the bitemporal images were
concatenated into one image and fed into three parallel branches. Each branch contained
two convolution layers and one multiscale module. Every convolution layer in each
branch had a different kernel size. The objective of this operation was to learn multiscale
features for describing the various targets with different sizes. Second, a selective kernel
(SK) attention module [61] was used to adaptively adjust its receptive field size based on
multiple scales of the input information, with the aim of guiding the module to learn a
selective scale for a specific target. After that, six convolutional layers with a 3× 3 kernel
size were used. The SK-attention was also utilized to smooth the detection noise further.
Finally, the proposed neural network was activated by using the Sigmoid function.

The proposed neural network was trained with 20 epochs for one iteration in the entire
framework and used to predict one change detection map. When the training samples
were enhanced, the proposed neural network was trained again with the new sample set.
During the training, a widely used loss function named cross-entropy was adopted, and
argmax(·) was utilized for prediction.

Non-Parameter Sample-Enhanced Algorithm

Labeling training samples is widely recognized to be time-consuming and labor-
intensive, and a sufficient number of samples are required to train a deep learning model
effectively [62]. Therefore, a non-parameter sample-enhanced algorithm was proposed and
embedded in our proposed framework. The details of the sample-enhanced algorithm are
presented as follows:

Here, Xij and Yij represented the image blocks with 16× 16 pixels of the pre-event and
post-event, respectively. Xij and Yij were defined as the known samples. The neighboring
image blocks around the known sample position (i, j) were selected as the potential training
samples. Every potential sample was overlapped by a quarter with the known sample. In
this study, the correlation between Xij and Yij was measured by the Pearson correlation
coefficient (PCC), as follows:

P
(
Xij, Yij

)
=

∣∣∣∣∣E
[(

xij − µ
(

xij
))(

yij − µ
(
yij
))]

δ
(
xij
)
δ
(
yij
) ∣∣∣∣∣,

where E(·) is an expectation; xij and µ
(
xij
)

represent the pixel within the spatial domain of
Xij and the mean of these pixels in terms of gray value, respectively; σ(·) is the standard
deviation of the pixels within Xij; and P

(
Xij, Yij

)
reflects the linear correlation between the

pixels of the samples from the HRSIs. The label of the samples around the known sample
pair Xij Yij is distinguished as follows based on the definition:

L
(

St1
ij , St2

ij

)
=

1, i f P
(

St1
ij , St2

ij

)
≤ P1(Xij, Yij

)
0, i f P

(
St1

ij , St2
ij

)
≥ P0(Xij, Yij

) ,

where L denotes the sample’s label; L = 1 and L = 0 denote the changed and unchanged
classes. Therefore, P1(·) and P0(·) denote the correlation relationship similarity between
the pairwise image blocks (Xij and Yij) which are the known samples, and the central pixel
of the known sample image blocks at the position (i, j) are the changed and unchanged
labels. In addition, t1 and t2 denote the samples extracted from the bitemporal images
that were acquired at date-t1 and date-t2, respectively. The defined rules indicated that
when the label of the known sample was “changed” and if the correlation between the
pairwise neighboring potential samples (St1

ij and St2
ij ) was less than or equal to that of the
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known sample (Xij and Yij), then the label of the pairwise neighboring potential sample
will be marked as “changed”. By contrast, when the label of the known sample was
“unchanged” and if L

(
St1

ij , St2
ij

)
≥ P0(Xij, Yij

)
, then the label of the pairwise neighboring

potential sample will be marked as “unchanged”. Based on this definition, the initial sample
set with a limited size was gradually amplified during the iteration, and the enhanced
sample set was re-used to train the proposed neural network to generate the preferred
detection performance.

These PCC-based rules were effective for investigating potential samples around each
known sample with regard to the following intuitive assumptions: (1) PCC can measure
the correlation between two datasets from different modalities; (2) Around a sample with a
changed label, the lower correlation between pairwise heterogonous image blocks indicates
a lower possibility of change between them; (3) Around a sample with an unchanged label,
the higher correlation between the pairwise heterogonous image blocks indicates a higher
possibility of change between them.

2.3. Accuracy Assessment

Nine widely used evaluation indicators are used in our study to investigate perfor-
mance quantitatively. The details are summarized in Table 1. Here, four variables are
defined to clarify the referred indicators: True positive (TP) refers to the number of accu-
rately detected changed pixels; true negative (TN) is the number of accurately detected
unchanged pixels; false positive (FP) is the number of inaccurately detected changed pixels;
and false negative (FN) is the number of inaccurately detected unchanged pixels.

Table 1. Quantitative accuracy evaluation indicators for each experiment.

Evaluation Indicators Formula Definition

False alarm (FA) FA = FP
TN + FP

FA is the ratio between the falsely changed and
unchanged pixels of the ground truth.

Missed alarm (MA) MA = FN
TP + FN

MA is the ratio between the falsely unchanged
and changed pixels of the ground truth.

Total error (TE) TE = FP + FN
TP + TN + FP + FN

TE is the ratio between the summary of falsely
changed and unchanged pixels and the total

pixels of the ground map.

Overall accuracy (OA) OA = TP + TN
TP + TN + FP + FN

OA is the accurately detected pixels between
the total pixels of the ground map.

Average accuracy (AA) AA =
(

TP
TP + FN + TN

TN + FP

)
/2

AA is the mean of accurately detected changes
and accurately unchanged ratios.

Kappa coefficient (Ka)

P0 = TP + TN
TP + TN + FP + FN

Pe =
(TP + FP) × (TP + FN) + (FN + TN) × (FP + TN)

(TP + TN + FP + FN)2

Ka = P0 − Pe
1 − Pe

Ka reflects the reliability of the detection map
by measuring inter-rater reliability for the

changed and unchanged classes.

Precision (Pr) Pr = TP
TP + FP

Pr is the ratio between the accurately detected
and total changed pixels in a detention map.

Recall (Re) Re = TP
TP + FN

Re is the ratio between the accurately detected
and total changed pixels in the ground

truth map.

F1-score (F1) F1 = 2× precision × recall
precision + recall

F1 is the harmonic mean of precision and recall.
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3. Experiments

Two experiments are designed here to verify the superiority and performance of our
proposed framework for Hete-CD. The first experiment aims to compare the proposed
approach with state-of-the-art methods with four pairs of real HRSIs to verify the feasibility
and advantages of the proposed approach. The second experiment focused on revealing
the relationship between the number of initial samples and the detection accuracy of the
proposed approach. The experiments are performed on four pairs of actual HRSIs. The
detailed descriptions of the experiments are presented in the following section.

3.1. Dataset Description

Four pairs of HRSIs are used for the experiments. In Figure 2, these images refer
to water body change, building construction, floods, and wildfire change events. The
image acquired before the occurrence of the change event is defined as a “pre-event image”.
Meanwhile, the image acquired after the occurrence of the change event is defined as a
“post-event image”. The details of each image pair are detailed as follows:

Dataset-1: This dataset contained different optical images acquired from various
sources. The pre-event image was acquired by Landsat-5 in September 1995 and exhibited
a size of 300× 400× 1 pixels with 30 m/pixel. The post-event image was acquired in July
1996 and clipped from Google Earth; its size was 300× 400× 3 pixels with 30 m/pixel. This
type of pairwise HRSI was easily available. Here, these images were used to detect the
expansion area of the Sarindia (Italy) Lake.

Dataset-2: This dataset contained a SAR pre-event image acquired with the Radarsat-2
satellite in June 2008 and an optical post-event image extracted from Google Earth in
September 2012. The sizes of the HRSIs were 593× 921× 1 and 593× 921× 3 pixels with
8 m/pixel resolution. The change event was the building construction located in Shuguang
Village, China.

Dataset-3: This dataset included SPOT Xs-ERS and SPOT images for the pre-event and
post-event, respectively. The pre-event and post-event images were acquired in October
1999 and October 2000, before and after a flood over Gloucester, U.K. The size of these
images was 990× 554 pixels with a 15 m/pixel resolution. The pre-event image and post-
event image have one and three bands, respectively. In particular, the ERS image reflected
the roughness of the ground before the flood, and the multispectral SPOT HRV image
described the color of the ground during the flood. The detection task aimed at calculating
the change areas by comparing the bitemporal heterogonous images.

Dataset-4: This dataset contained two images acquired by using different sensors
(Landsat-5 TM and Landsat-8) over Bastrop County, Texas, USA, for a wildfire event on
4 September 2011. The size of the bi-temporal images was 1534 × 808 × 3 pixels and
30 m/pixel. The modality difference between the bi-temporal images lay in the pre-event
image, which was acquired by Landsat-5 and composed of 4–3–2 bands, and the post-event
image, which was obtained by Landsat-8 and composed of 5–4–3 bands.

Furthermore, the pre-processing operations for each dataset, including radiation cor-
rection, resampling, and co-registration, have been achieved by the owner of the datasets.
Dataset-1 to Dataset-4 are open-accessible datasets widely used for evaluating the per-
formance of change detection with heterogeneous remote sensing images, and the pre-
processing operations have been conducted before release. Additional details, including the
acquiring platform and the preprocessing steps for the datasets, can be found in reference [20].
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3.2. Experimental Setup

In the experiments, nine state-of-the-art change detection methods, including three
traditional methods and six deep learning methods, were selected for comparison. The
details are presented as follows:

(i) In the first part of the experiments, the three relatively new and highly cited related
methods were as follows: The first method, named adaptive graph and structure
cycle consistency (AGSCC) (https://github.com/yulisun/AGSCC, accessed on 1 May
2023) [45], focused on exploring the shared structural features of the bitemporal HRSIs.
The explored shared structural features were comparable for change detection. The
second method, named graph-based image regression and MRF segmentation method
(GIR-MRF) (https://github.com/yulisun/GIR-MRF, accessed on 1 May 2023) [50],
aimed at learning the shared features via graph-based image regression. The third
method, called the sparse constrained adaptive structure consistency-based method
(SCASC) (https://github.com/yulisun/SCASC, accessed on 1 May 2023) [42], at-
tempted to improve the adaptive structural extraction efficiency for Hete-CD. These
studies [42,45,50] were typical in the field of change detection with HRSIs. Accord-
ingly, these studies were adopted for comparison with our proposed framework.
Based on the comparisons, the parameters of the selected methods [42,45,50] were the
same as those used in the original studies. Twelve unchanged samples (six pairs) and
changed samples (six pairs) were randomly selected from the ground reference map
for framework initialization in our proposed framework.

(ii) The second part of the experiments aimed at verifying the advantages and feasibil-
ity of the proposed framework while comparing it with some state-of-the-art deep
learning methods. The first method, named fully convolutional Siamese difference
(FC-Siam-diff) [28], was an extension of UNet. The second method, named crosswalk
detection network (CDNet) [55], aimed at learning the change magnitude between
the bitemporal images through a cross-convolution strategy. The experimental results
based on four datasets clearly demonstrated the robustness and superiority of the
proposed CDNet. The selected method, called feature difference convolutional neural
network (FDCNN) [26], conducted convolutions on the feature difference map and
obtained the binary change detection map. A deeply supervised image fusion net-
work (DSIFN) [63] concentrated on exploring highly representative deep features of
bi-temporal images through a fully convolutional two-stream architecture for LCCD
with HRSIs. A cross-layer convolutional neural network (CLNet) was first proposed
for LCCD with HRSIs to learn the correlation between the bi-temporal images at
different features. The four experimental applications clearly demonstrated the supe-
riority of the proposed approach [27]. In addition, a multiscale fully convolutional
network (MFCN) was constructed for the ground land cover change area with various
shapes and sizes [30]. The following parameters are set for each network: learning
rate = 0.0001, batch size = 3, and epochs = 20. All the selected deep learning methods
used the same training samples randomly clipped and extracted from the ground
reference map to guarantee comparative fairness. Moreover, the quantity of training
samples for the state-of-the-art deep learning methods is equal to the number of
enhanced samples when the iteration of our proposed framework is terminated.

(iii) The ratio between the training samples, validation samples, and testing samples
was about 2:1:7. The number of initial samples for each approach and dataset was
12 pairs. The initial samples for each dataset were randomly obtained based on the
ground reference.

3.3. Results

The experimental results of the four pairs of HRSIs were obtained according to the
above-mentioned parameter setting. The details are as follows:

(i) Comparisons with traditional methods: The visual performance of AGSCC [45], GIR-
MRF [50], and SCASC [42] is presented in Figure 3a–c, respectively. In comparison

https://github.com/yulisun/AGSCC
https://github.com/yulisun/GIR-MRF
https://github.com/yulisun/SCASC
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with the results based on our proposed framework, Figure 3d shows that our proposed
framework achieved the best detection performance with the fewest false alarm
(green) and missed alarm (red) pixels. The corresponding quantitative results in
Table 2 further supported the conclusion from the visual observation comparisons.
For example, the proposed framework achieved 99.04%, 98.75%, 96.77%, and 97.92%
in terms of OA for the four datasets. These values were the best among the results
from AGSCC [45], GIR-MRF [50], SCASC [42], and our proposed framework.

(ii) Comparisons with deep learning methods: We further verified the robustness of
the proposed framework by comparing it with some state-of-the-art deep learning
methods. The detection maps presented in Figures 4–7 are acquired by using different
deep-learning methods for the four datasets. These visual comparisons indicated
that the proposed framework performed better with fewer false and missed alarms.
During the removal of the sample-enhanced algorithm from the entire proposed
framework, as denoted by “Proposed-” in Tables 3–6, the improvement was achieved
compared with that of the other approaches for the same datasets. For example, the
proposed approach obtained the best OA = 99.04% and the based FA = 0.33%. In
comparison with the results based on the proposed approach without the proposed
sample enhancement approach, the improvement of the proposed approach coupled
with the sample-enhanced algorithm was approximately 2.0% in terms of OA for
Dataset-1. Multiscale information extraction and selective kernel attention in the
promoted neural network were complementary to learning more accuracy in our
proposed framework. The following quantitative comparisons in Tables 3–6 further
supported the visually observed conclusion.

Table 2. Quantitative comparison between the three traditional methods and our proposed framework
for Hete-CD with four actual datasets.

Dataset Methods OA Kappa AA FA MA TE Precision Recall F-Score

Dataset-1

AGSCC [45] 95.66 0.66 84.08 2.575 29.26 4.341 66.07 70.74 68.33
GIR-MRF [50] 95.43 0.6746 88.34 3.492 19.83 4.573 61.95 80.17 69.89

SCASC [42] 94.38 0.595 83.41 3.951 29.23 5.624 55.94 70.77 62.49
Proposed framework 99.04 0.9201 94.9 0.33 9.861 0.964 95.04 90.14 92.52

Dataset-2

AGSCC [45] 98.24 0.7732 83.03 0.2824 32.06 1.76 92.14 67.94 78.21
GIR-MRF [50] 98.18 0.81 92.58 1.25 13.60 1.82 77.18 86.40 81.53

SCASC [42] 97.9 0.741 83.84 0.6554 31.67 2.097 83.56 68.33 75.18
Proposed framework 98.75 0.9097 95.6 0.4129 9.392 0.762 91.13 91.61 91.37

Dataset-3

AGSCC [45] 95.33 0.7904 90.73 3.165 15.37 4.669 78.98 84.63 81.71
GIR-MRF [50] 93.6 0.7386 91.84 5.824 10.5 6.4 68.35 89.5 77.51

SCASC [42] 94.75 0.7704 90.77 3.952 14.5 5.252 75.25 85.5 80.05
Proposed framework 96.77 0.9466 96.87 0.4602 5.805 1.049 96.36 94.2 95.27

Dataset-4

AGSCC [45] 95.81 0.8652 91.38 0.7504 16.5 2.297 92.6 83.5 87.81
GIR-MRF [50] 95.8 0.888 95.16 1.377 8.305 2.037 88.29 91.7 89.96

SCASC [42] 95.27 0.9058 95.09 0.8823 8.931 1.633 91.96 91.07 91.51
Proposed framework 97.92 0.9607 97.75 0.3272 4.168 0.713 97.11 95.83 96.47

Table 3. Quantitative comparison among the different methods for Dataset-1.

Methods OA Kappa AA FA MA TE Precision Recall F-Score

FC-Siam-diff [28] 97.05 0.7603 87.79 1.53 22.90 2.95 78.12 77.10 77.61

CDNet [34] 97.37 0.7687 85.29 0.78 28.64 2.63 86.61 71.36 78.25

FDCNN [26] 95.36 0.6658 87.42 3.43 21.73 4.64 61.78 78.27 69.05

DSIFN [63] 97.30 0.7807 88.91 1.42 20.76 2.70 79.80 79.24 79.52

CLNet [27] 97.11 0.7553 86.02 1.19 26.76 2.89 81.31 73.24 77.06
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Table 3. Cont.

Methods OA Kappa AA FA MA TE Precision Recall F-Score

MFCN [30] 97.41 0.7921 89.97 1.46 18.59 2.59 79.81 81.41 80.60

Proposed- 97.83 0.808 87.00 0.52 25.48 2.17 91.02 74.52 81.95

Proposed 99.04 0.9201 94.9 0.33 9.861 0.964 95.04 90.14 92.52
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(a) FC-Siam-diff [28], (b) CDNet [34], (c) FDCNN [26], (d) DSIFN [63], (e) CLNet [27], (f) MFCN [30],
(g) proposed-, and (h) proposed (CC: correctly changed, UC: unchanged, FD: false detection, and
MD: missed detection).
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Figure 7. Detection maps acquired by using different deep learning approaches for #4-Dataset:
(a) FC-Siam-diff [28], (b) CDNet [34], (c) FDCNN [26], (d) DSIFN [63], (e) CLNet [27], (f) MFCN [30],
(g) proposed-, and (h) proposed (CC: correctly changed, UC: unchanged, FD: false detection, and
MD: missed detection).
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Table 4. Quantitative comparison among the different methods for Dataset-2.

Methods OA Kappa AA FA MA TE Precision Recall F-Score

FC-Siam-diff [28] 97.05 0.6378 75.80 0.37 48.03 2.47 86.68 51.97 64.98

CDNet [34] 97.32 0.845 93.16 0.77 12.91 1.26 83.32 87.09 85.16

FDCNN [26] 94.58 0.6308 93.07 3.99 9.87 4.20 51.02 90.13 65.16

DSIFN [63] 97.51 0.7893 83.90 0.11 32.10 1.37 96.23 67.90 79.62

CLNet [27] 97.95 0.8195 87.59 0.33 24.49 1.36 91.29 75.51 82.66

MFCN [30] 97.65 0.7909 91.99 1.28 14.73 1.87 75.48 85.27 80.08

Proposed- 98.12 0.807 84.76 0.06 30.42 1.40 98.10 69.58 81.41

Proposed 98.75 0.9097 95.6 0.4129 9.392 0.762 91.13 91.61 91.37

Table 5. Quantitative comparison among the different methods for Dataset-3.

Methods OA Kappa AA FA MA TE Precision Recall F-Score

FC-Siam-diff [28] 92.25 0.7657 95.85 6.15 2.16 5.57 67.31 97.84 79.76

CDNet [34] 93.62 0.8618 92.28 1.20 14.23 2.51 89.59 85.77 87.64

FDCNN [26] 94.64 0.9081 98.28 2.05 1.39 1.91 86.10 98.61 91.93

DSIFN [63] 93.46 0.8926 98.48 2.63 0.40 2.27 83.11 99.60 90.61

CLNet [27] 89.74 0.6618 84.04 4.10 27.83 6.37 67.76 72.17 69.90

MFCN [30] 95.87 0.8962 92.36 0.31 14.97 1.95 97.26 85.03 90.73

Proposed- 95.88 0.9033 95.45 1.21 7.89 1.93 90.80 92.11 91.45

Proposed 96.77 0.9466 96.87 0.4602 5.805 1.049 96.36 94.2 95.27

Table 6. Quantitative comparison among the different methods for Dataset-4.

Methods OA Kappa AA FA MA TE Precision Recall F-Score

FC-Siam-diff [28] 86.67 0.5282 86.74 11.84 14.68 11.97 45.30 85.32 59.18

CDNet [34] 96.21 0.9126 93.27 0.18 13.29 1.39 98.06 86.71 92.03

FDCNN [26] 94.88 0.8541 95.00 2.25 7.76 2.74 82.28 92.24 86.97

DSIFN [63] 96.82 0.9476 97.24 0.48 5.03 0.91 95.59 94.97 95.28

CLNet [27] 92.38 0.542 70.03 0.11 59.83 6.07 97.57 40.17 56.91

MFCN [30] 97.5 0.9372 96.55 0.56 6.34 1.14 95.09 93.66 94.37

Proposed- 97.75 0.9508 96.87 0.32 5.95 0.88 97.17 94.05 95.58

Proposed 97.92 0.9607 97.75 0.33 4.168 0.713 97.11 95.83 96.47

3.4. Discussion

The novelty of the proposed approach lies in promoting a novel way to improve
the change detection performance of LCCD with HRSIs. Accordingly, a novel sample
augmentation algorithm for change detection with HRSIs was proposed to achieve this
objective. The proposed approach allowed us to obtain a satisfactory change detection
map with a small initial training sample set for practical applications. Here, two aspects of
the training samples for the proposed framework are discussed and analyzed to promote
further use and understanding of this framework, as follows:

(i) Relationship between the initial and the final samples: According to Section 2, the
proposed framework was initialized with a small number of training samples, which
were iteratively amplified at every iteration. Accordingly, observing the relationship
between the initial and final samples helps us understand the balancing ability for
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unchanged and changed classes in our proposed framework. Figure 8 shows that the
quantity of samples for the changed and unchanged classes is equal for initialization.
When the iteration of the proposed framework was terminated, the number of samples
for the unchanged and changed classes was automatically adjusted to be different
because the size of the area was distinct in an image scene. Detecting them with an
unequal sample is beneficial for balancing their detection accuracies. Figure 8 also
demonstrates that the relationship between the initial and final samples is nonlinear.
For example, for the unchanged and changed samples of Dataset-1, when the initial
samples for the unchanged class increased from three to four pairs, its final samples
decreased from 56 pairs to 33 pairs. Moreover, different datasets exhibit the relation-
ship between the initial and final samples for our proposed framework. Therefore,
determining the suitable quantity of samples for initializing the proposed framework
may involve conducting trial-and-error experiments in practical applications.
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(ii) Relationship between the initial samples and detection accuracies: The observation
results indicated that the detection accuracy initially decreased with the increment
of the initial samples for some datasets (Figure 9). Moreover, the accuracy increased
and appeared to be a state with a small variation. For example, the OA for Dataset-2
and -4 decreased when the initial samples increased from three pairs to four pairs,
and then it increased and vibrated within [96.72%, 98.75%] and [96.05%, 97.92%],
respectively. Some explored samples may be marked with missed labels, which
negatively affected the learning performance. However, the sample with missed
labels becomes the minority in the total enhanced sample set with the increment
of the initial training samples. Consequently, an uncertain relationship may cause
detection accuracy variation when training our proposed framework with the sample
set. The observation illustrated in Figure 9 indicates the proposed approach can
explore samples. However, the detection accuracy did not always linearly improve
with the number of samples. This phenomenon is due to the distinct variability,
spectral homogeneity, and uncertainty of each dataset.
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4. Conclusions

In this study, a novel deep learning-based framework is proposed to achieve change
detection with heterogeneous remote sensing images when the training samples are limited.
The result showed that improving detection accuracy via sample augmentation is feasible.
The proposed framework is a combination of a novel multiscale neural network and a novel
non-parameter sample-enhanced algorithm in iterative progress to achieve satisfactory
detection performance with a small number of initial training samples. The advantages of
the proposed framework are summarized as follows:

(i) Advanced detection accuracy is obtained with the proposed framework. The compar-
ative results with four pairs of actual HTRSIs indicated that the proposed framework
outperforms three traditional cognate methods in terms of visual performance and
nine quantitative evaluation metrics.

(ii) Iteratively training deep learning neural networks with a non-parameter sample-
enhanced algorithm is effective in improving detection performance with limited
initial samples. This work is the first to combine a non-parameter sample-enhanced
algorithm with a deep learning neural network for iteratively training the neural
network with the enhanced training samples from every iteration. The experimental
results and comparisons demonstrated the feasibility and effectiveness of the recom-
mended sample-enhanced algorithm and training strategy for our proposed framework.

(iii) A simple, robust, and non-parameter framework is preferred and acceptable for
practical engineering applications. In addition to the small number of initial training
samples for initialization, the proposed framework has no parameters that require
hard tuning. This characteristic can be easily applied to practical engineering.

The Hete-CD aims at exploring the shared feature in multi-module images and mea-
suring the change magnitude to achieve the land cover change detection task. It is an
important supplement for change detection with homogeneous RSIs and proposes an
approach that is robust to various datasets and that is preferred for practical applications.
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Although the proposed framework offers some advantages and may be helpful for any
other classification and land use application with remote sensing images, the widespread
application with large areas and other types of change events should be further investigated.
In our future study, we will focus on collecting more types of HTRSIs, and multiclass change
detection will be considered.
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