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Abstract: Satellite products have mediocre performance in precipitation estimation, while rain
gauges are incapable of describing continuous spatial precipitation distributions. To obtain spatially
continuous and accurate precipitation data, this paper proposes a two-step scheme incorporating
environmental variables, satellite precipitation estimations, and rain gauge observations for the
calibration of satellite precipitation data. First, the GPM data are downscaled from 0.1◦ to 0.01◦

based on the seasonal RF models to minimize the spatial differences between the satellite estimations
and the rain gauge observations. Secondly, the fusion model combining ConvLSTM and CBAM
explores the spatiotemporal correlation of downscaled satellite precipitation data with environmental
co-variables and ground-based observations to correct GPM precipitation. The integrated scheme
(CBAM-ConvLSTM) is applied to acquire monthly precipitation at a spatial resolution of 0.01◦ over
Hanjiang River Basin from 2014 to 2018. Comparative analyses of model-based satellite products
with in situ observations show that model-based precipitation products have a high-resolution spatial
distribution along with high accuracy, which combines the advantages of in situ observations and
satellite products. Compared to the original GPM product, the evaluation metric values of the merged
precipitation products all improved: the RMSE decreased by 31% while the CC increased from 0.55 to
0.69, the bias decreased from about 25% to less than 1.8%, and the MAE decreased by 27.8% while
the KGE increased from 0.28 to 0.52. This two-step scheme provides an effective way to derive a
high-resolution and accurate monthly precipitation product for humid regions.

Keywords: precipitation bias correction; satellite product; GPM; convolutional block attention
module; convolutional long short-term memory

1. Introduction

As a fundamental component of the terrestrial and hydrological cycle, precipitation
is essential in hydrology, meteorology and ecology [1–4]. Owing to the spatiotemporal
unevenness and variation of precipitation [5], obtaining accurate and high resolution
precipitation data remains a great challenge. Furthermore, the quality of hydrological
models is heavily reliant upon the quality of input data [6]. Thus, high-resolution and
accurate precipitation data are necessary in many aspects, whereas traditional rainfall
measurements mainly rely on rain gauges; the uneven distribution of gauges leads to
difficulties in depicting precipitation distribution over areas with sparse rainfall stations.

Since the 1980s, satellite-based products are becoming an effective alternative for
spatiotemporal precipitation estimates, facilitated by the boom in remote sensors and mea-
surement technologies. With the different retrieval algorithms or satellite sources, there are
some mainstream satellite precipitation products available around the world. For instance,
the Tropical Precipitation Measurement Mission (TRMM) and the Global Precipitation
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Measurement Mission [7] (GPM, the successors of TRMM), developed by National Aero-
nautics and Space Administration (NASA) and Japanese Aerospace Exploration Agency
(JAXA), provide [8,9] the TRMM Multi-satellite Precipitation Analysis (TMPA) [8,10] and
Integrated Multi-satellite Retrievals (IMERG) [9] products, respectively. The [7] Global
Precipitation Satellite Mapping (GSMaP) [10] is also a high-resolution global precipita-
tion product developed by JAXA under the GPM program. In Europe, satellite-derived
precipitation products from the Satellite Application Facility on Support to Operational
Hydrology and Water Management (H-SAF) [11] are widely used. The Fengyu series
satellite developed by China also provide precipitation products for East Asia [12]. How-
ever, certain limitations of satellite-based products have also been gradually made evident.
For instance, most satellite-based precipitation products have large systematic biases and
random errors compared to ground-based rainfall station observations [13]. Moreover,
most satellite precipitation products have a relatively coarse spatial resolution and cannot
be utilized directly for small-scale hydrological research [14,15]. Precipitation observations
from rain gauge and remote sensing are complementary. Therefore, combining rain gauge
observations with satellite precipitation products can produce spatiotemporal maps of
precipitation with high resolution.

Over the past decade, calibrating satellite precipitation estimations with ground-based
observations has become a prevalence to reduce the errors and improve the accuracy of
satellite precipitation products. However, due to the large differences in spatial resolution
between satellite precipitation data and in situ observations, the direct fusion of these two
precipitation data has resulted in a bias near the boundary between the two continuous
grids of satellite precipitation data [16]. In addition, several studies have stated that satellite
products are often highly biased in time and space compared to in situ observations [17,18].
To address these issues, some studies have suggested that the satellite-based precipitation
data need to be downscaled to match the scales of the ground observation sources before
fusion [19]. A study has integrated three satellite-based products (GPM, CMORPH and
GSMaP) with a high-density rainfall station network to create a highly accurate daily
precipitation product [20]. Chen et al., (2020) [21] merged four downscaled satellite-based
products with in situ observations based on the Geographically Weighted Ridge Regression
(GWRR) method.

Traditional multi-source precipitation fusion methods are mainly based on mathe-
matical concepts such as weighted averaging and regression to deal with the errors of
precipitation products. These methods include probability matching methods [16], sta-
tistical bias correction [22], the kriging method [23], geo-graphically weighted regression
(GWR) [24], etc. Nevertheless, the above methods are usually under restricted hypotheses
and generally consider only spatial or temporal factors without incorporating both effects.
In contrast, deep learning models are able to handle complicated nonlinear relations among
variables without restricting mathematical hypotheses because of their great ability to learn
and generalize. With the flourishing development and widespread use of machine learning,
these algorithms have also been applied in precipitation downscaling and multiple sources
merging. Among them, random forests (RF) can handle the complex non-linear relation-
ships between variables because they are insensitive to covariance between variables and
minimize the overfitting problem [25]. Thus, a random forest algorithm has great potential
in downscaling satellite precipitation data. Shi et al., (2015) [26] applied the random forest
model to monthly scale TRMM precipitation data and found that the downscaling results
based on random forest achieved a higher accuracy than those based on linear regression
methods and exponential regression methods. Jing et al., (2016) [27] spatially downscaled
yearly TRMM (3B43 V7) precipitation data in the Tibetan Plateau region by RF and support
vector machine (SVM), respectively, and found that the random forest-based downscaling
results had better performance. A fusion model combining the Convolutional Neural
Network (CNN) and the Long Short-Term Memory (LSTM) network for satellite and gauge
precipitation outperformed the original TRMM daily products in China [28]. The fusion
model used in this paper is based on the Convolutional LSTM network (ConvLSTM) pro-
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posed by Shi et al., (2015) [29]. The ability of ConvLSTM to capture both the temporal
correlation of time-series data and the spatial distribution characteristics of data has been
proved, and this network has been consequently used in rainfall nowcasting [30,31].

Moreover, the correction and analysis of precipitation data are still great challenges
owing to the lack of robustness and stability of time series. A neural network extracts
the information by convolutional operations, and each feature has a different influence in
the neural network [32]. Therefore, introducing an attention mechanism in deep learning
networks can simplify the model and speed up the computation. In the literature, the
importance of attention has been studied and demonstrated [33–35]. Among the various
attention mechanism modules that have been proposed, the Convolutional Block Atten-
tion Module (CBAM) [35] has been tested to achieve better results plugging at CNNs
(Convolutional Neural Networks) than attentional mechanisms that focus only on chan-
nels [34]. Incorporating the strengths of the above models, a hybrid model integrating
ConvLSTM and CBAM is applied to better implement the analysis and correction of satellite
precipitation sequences.

The main objective of this study is to develop a downscaling–merging framework
based on RF, ConvLSTM and CBAM and to generate high-resolution monthly precipitation
data with high accuracy by merging satellite- and gauge-based data. To address these
concerns, two steps are implemented: firstly, the GPM_3IMERGDF monthly precipitation
is spatially downscaled based on an RF model. Secondly, downscaled GPM precipitation
data are merged with in situ observations by the ConvLSTM network to acquire monthly
high-resolution precipitation estimations. In addition, in order to emphasize the crucial
features at different periods and locations on GPM images, a Convolutional Block Attention
Module (CBAM) is placed at the ConvLSTM architectures. In conclusion, the validity of the
downscaling–merging model is tested by comparing it with other comparative methods
using merged GPM estimations and rain gauge observations.

2. Study Area and Data Source
2.1. Study Area

The Hanjiang River, with a total length of 1532 km, is the largest tributary of the
Yangtze River, flowing through five provinces: Shaanxi, Gansu, Sichuan, Henan and Hubei.
As shown in Figure 1, the Hanjiang River Basin, with the area of 159,000 km2, is located
in south of central China, at 30◦4′~34◦11′N and 106◦5′~114◦18′E [36]. The altitude of the
river basin is ranging from 9 to 3466 m, lower in the southeastern region. The distribution
of precipitation is strongly uneven, varying with longitude, latitude and altitude. The
Hanjiang River Basin is in the region of the subtropical monsoon with a mild and humid
climate. Precipitation in the basin is abundant: the annual average is about 870 mm, with
above 3/4 falling from May to October, indicating a large inter-annual variation.

2.2. Datasets

The ground observation data used in this study were provided by a dense network of
rain gauges in the Hanjiang River Basin, maintained by the Ministry of Water Resources.
Daily precipitation from a total of 222 in situ gauges between March 2014 and February
2018 were retrieved from the hydrological yearbook of China. The distribution and location
of the dense rain gauges is shown in Figure 1.

The V06 final IMERG daily precipitation product (GPM_3IMERGDF) with a spatial
resolution of 0.1◦ × 0.1◦ is used in this study. The Global Precipitation Measurement (GPM)
Mission is deployed by The National Aeronautics and Space Administration (NASA) and
the Japan Aerospace and Exploration Agency (JAXA) in 2014 [7]. The level 3 merged
product, Integrated Mulit-satellite Retrievals for GPM (IMERG), is the merging of GPM
Microwave Imager (GMI) retrievals, partner radiometers and infrared (IR)-based observa-
tions with monthly surface precipitation. The GPM data are in netCDF format and contain
mainly precipitation and spatiotemporal information related to the precipitation.
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Figure 1. Study area and location of 222 rain gauges in the Hanjiang basin.

The Normalized Difference Vegetation Index (NDVI), the Digital Elevation Model
(DEM) data and the Land Surface Temperature (LST) data are used for modelling the
correlation between precipitation and environmental variables. The Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors on the Terra satellite provide monthly NDVI
data at a spatial resolution of 1 km × 1 km. NDVI values generally below 0.0 in areas
with coverage of water bodies, snowfield and deserts. To remove the effects of snow and
water, the original monthly NDVI under 0.0 is regarded as missing measurements and
interpolated using the moving window method. The night and day LST data derive from
MOD11A2, which is developed by the NASA Land Processes Distributed Active Archive
Center (LPDAAC). The LST data are at a temporal resolution of eight days and a spatial
resolution of 1 km× 1 km. DEM data with a spatial resolution of 90 m are acquired from the
Resource and Environment Science and Data Centre of the Chinese Academy of Sciences
for mainland China, and the slope and aspect are calculated based on the DEM. All datasets
involved in this study cover the period March 2014 to February 2018 and a brief description
is available in Table 1.

Table 1. Overall information of precipitation data and other involved data.

Dataset Description Spatial Resolution Temporal Resolution Source

GPM_IMERGE V06 Final run 0.1◦ 0.5 hourly https://pmm.nasa.gov/
(accessed on 14 September 2023)

NDVI MOD13A3 1 km Monthly https://lpdaac.usgs.gov/
(accessed on 14 September 2023)

LST MOD11A2 1 km 8-day https://lpdaac.usgs.gov/
(accessed on 14 September 2023)

DEM SRTM 90 m - http://www.resdc.cn/
(accessed on 14 September 2023)

RH
17 meteorological

stations

- Daily https://data.cma.cn/
(accessed on 14 September 2023)

T - Daily https://data.cma.cn/
(accessed on 14 September 2023)

In situ observations 222 rain gauges - Daily -

https://pmm.nasa.gov/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
http://www.resdc.cn/
https://data.cma.cn/
https://data.cma.cn/
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3. Methodology

This section describes the downscaling–merging method developed as a two-step
procedure (Figure 2): (1) spatial downscaling based on the RF model, and (2) satellite
and gauge precipitation data fusion based on Convolutional LSTM and CBAM. The aim
is to obtain satellite precipitation estimations with high spatial resolution and improved
accuracy. Then, the evaluation method of merged precipitation data and the metrics used
are presented.
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3.1. Downscaling of GPM Based on RF

Random forests (RFs), firstly proposed by Breiman (2001) [25], are ensemble learning
algorithms based on decision trees. As ensemble classifiers, RFs are more robust than
individual decision trees. The RF extracts multiple subsets from the original training dataset
based on the Bootstrap Aggregating (Bagging) [37,38] approach and builds corresponding
decision trees using covariate input for model training. The final predictions are determined
by averaging outputs (for regression) or voting (for classification). The unselected samples
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(Out-of-bag, OOB) can be used to rank the importance of the covariates involved in the
modelling [39]. Random forests can predict multiple factors and fit non-linear relationships,
hence performing well in downscaling meteorological data such as precipitation and
temperature [40,41].

Studies have pointed out that strong interactions exist among precipitation and en-
vironmental variables at both annual and monthly scales, whereas such interactions are
lacking at the daily scale [27,42]. Therefore, four RF [43] models were developed to spatially
downscale the GPM data at different seasons. The seasonal GPM precipitation data at
spatial resolution of 0.01◦ × 0.01◦ were subsequently decomposed to a monthly scale. The
main steps are as follows:

1. Data processing: To maintain consistency with the resolution of GPM precipitation
data, selected environmental variables (nighttime and daytime LST, NDVI, topo-
graphic data including DEM, slope and aspect) were resampled to a spatial resolution
of 0.01◦ × 0.01◦ and 0.1◦ × 0.1◦ by bilinear interpolation. Based on the climatic
characteristics of the Hanjiang River Basin, twelve months were equally divided into
four seasons, of which March is the beginning of spring. Precipitation (GPM and in
situ observation daily data) and environmental variables (nighttime and daytime LST,
NDVI) were accumulated into seasonal data.

2. Downscaling model construction: Separated RF models were developed for different
seasons and were, respectively, trained by seasonal GPM precipitation, geographical
location (latitude and longitude), NDVI, LST, and the terrain feature dataset (DEM,
slope and aspect) at 0.1◦ × 0.1◦ spatial resolution. The 0.01◦ × 0.01◦ environmental
variables were fed into the developed regression model to obtain seasonal GPM
precipitation with 0.01◦ × 0.01◦.

3. Residuals’ correction: Model residuals were calculated and then interpolated using
a tensor spline function to obtain residuals at 0.01◦ × 0.01◦. The residuals were
consequently used to correct for downscaled precipitation results.

4. Seasonal GPM precipitation decomposition: The high-spatial-resolution GPM pre-
cipitation was decomposed based on the ratio of month to season data, with the
hypothesis that the ratio remains constant [42].

3.2. Merging of GPM and Gauge Observations Based on ConvLSTM and CBAM

ConvLSTM (Convolutional LSTM) [29] is a hybrid variant of the LSTM. Since the input
to an LSTM is a one-dimensional tensor, it cannot capture spatial features. ConvLSTM, on
the other hand, uses convolutional operators rather than matrix multiplication to input
states and state-to-state transitions. ConvLSTM can therefore not only obtain temporal
relationships but also extract spatially correlated features such as convolutional layers, and
has been shown to be effective in many applications [44–46].

Four structures are specific to ConvLSTM: The cell state is used to store the accumu-
lation of past information. The forget gate, f, determines how much of the cell state at
the previous moment is retained to the current time. The input gate, i, determines how
much information of the network input is saved to the cell state at the current time, and
the output gate, o, determines how much information the cell state outputs. H, C and X
represent the hidden state, and the cell output and inputs of each timestamp, separately.
The main equations for ConvLSTM are as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)
ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f )
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct−1 + bo)
Ht = ot ◦ tanh(Ct)

(1)

where ∗ and ◦ represent the convolution operation and the Hadamard product, respectively.
σ is the sigmoid activation function.
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The Convolutional Block Attention Module (CBAM) [35] is a feed-forward convo-
lutional neural network attention module to focus on important features and suppress
unnecessary ones. CBAM sequentially applies channel and spatial attention modules.
CBAM calculates the weight map of an intermediary feature map given by a ConvLSTM
network in the channel and spatial dimensions. The attention map is then multiplied by the
input feature map to refine the adaptive features. The CBAM process can be summarized
as follows:

F′ = MC(F)⊗ F
F
′′
= MS(F′)⊗ F

′′ (2)

where⊗ represents the multiplication operation. MC(F) and MS(F′) are the channel attention
map and spatial attention map separately. F, F′ and F

′′
are the feature map at input, after

channel attention and output correspondingly.
Average-pooling and max-pooling are applied to spatial and channel feature maps,

respectively, and the resulting descriptors are forwarded into a multi-layer perceptron
(MLP) with a hidden layer and then concatenated to the convolution layer. The channel
attention and spatial attention are computed as

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

MS(F′) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (4)

where f7×7 is the convolution operation and σ is sigmoid activation function.
A schematic diagram of the satellite sub-grid extraction method is shown in Figure 3.

A CBAM-ConvLSTM network was used to build the GPM and gauge data fusion model.
The structure and hyper-parameter design of the CBAM-ConvLSTM deep fusion model
are shown in Figure 4a:

1. All input datasets including in situ precipitation observations, downscaled GPM data
and surface environmental variables (NDVI, LST, DEM) were normalized.

2. The 5 × 5 sub-grids were extracted from the satellite grid to represent the spatial
distribution of precipitation at the current rain gauge, centered on the nearest grid of
222 rain gauges.

3. The training data corresponding to the satellite grid data and ground observation data
in time and space were established. The image size of input variables is 5 × 5 × 5 × 5
(image size is 5 × 5, number of channels is 5). A time step (T) of 5 and a kernel of
3 × 3 were chosen. The epoch and learning rate of the established CBAM-ConvLSTM
network were 100 and 0.001, respectively. The number of units in ConvLSTM was set
to 8. To avoid overfitting, a regularization method (Dropout, parameter set to 0.25)
was applied. Dense represents a fully connected layer, followed by the number of
convolution kernels, with ‘elu’ as the activation function. The fused precipitation
over the entire study area was obtained by feeding grid data into the fusion model to
obtain precipitation at each grid point location.

4. The model performance was evaluated using 10-fold cross-validation, dividing the
222 rain gauges into 10 parts, each of which will be tested. The mean of all tested rain
gauges was used as the assessment result.
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3.3. Evaluation Criteria

To qualitatively assess the performance of downscaled and CBAM-ConvLSTM-based
fusion products against in situ observations, all datasets from 222 rain gauges were parti-
tioned into training and testing datasets on a ratio of 9:1 by 10-fold cross-validation. The
model performance at each rain gauge station was assessed by the average of ten training
models. The metrics used to calculate the accuracy of precipitation estimations include ME,
r, Bias, KGE [47], RMSE and MAE. The equations and the optimums of evaluation metrics
are expressed in Table 2.
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Table 2. Summary of the evaluation indicators of precipitation products.

ID Indicators Abbreviation Equation Optimum

1 Mean error ME ME = ∑n
i=1 (Si−Gi)

n 0

2 Correlation coefficient CC CC = ∑n
i=1 (Si−S)(Gi−G)√

∑n
i=1(Si−S)2

√
∑n

i=1(Gi−G)2
1

3 Relative bias Bias Bias = (∑n
i=1 Si−∑n

i=1 Gi
∑n

i=1 Gi
)× 100% 0

4 Kling–Gupta efficiency KGE KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 1

5 Root mean square error RMSE RMSE =

√
∑n

i=1 (Si−Gi)
2

n
0

6 Mean absolute error MAE MAE = ∑n
i=1|Si−Gi |

n 0

Note: Si indicates the ith values of satellite-based estimations (original GPM, RF product and RF-ConvLSTM
product) and Gi indicates the ith values of gauge observation; n represents total amount of simulated and observed
data; and S and G are the corresponding mean values of Si and Gi, respectively. β and γ refer to the ratio of
standard deviation and mean index of satellite and gauge precipitation data, respectively. H is the number of
rainfall events captured by satellite as well as gauge observations; M is the amount of rainfall events missed by
satellite observations; F is the number of precipitation events erroneously identified by satellite observations.

4. Results
4.1. Performance of RF-Based Downscaling Models

The predictive performance of the downscaled models is evaluated using the 10-fold
cross-validation method. CC, RMSE and ME of the original GPM data at 0.1◦ × 0.1◦

spatial resolution with precipitation predicted by the RF models during 2014 to 2017
were calculated (Table 3). CC values are all greater than 0.99, indicating that the model
predicted data fit well with the original GPM data. Most of the RMSEs are less than 30 mm,
and the ME are less than 6 mm. Moreover, the values of ME are all greater than zero,
indicating that models have slightly overestimated the precipitation values. Overall, RF
models show strong prediction ability on independent datasets and the environmental
variables are greatly associated with precipitation. Therefore, downscaling regression
models constructed based on the RF can be applied to the spatial downscaling of GPM
precipitation data.

Table 3. Accuracy assessment of original GPM data and RF models predicted precipitation.

Metrics Seasons 2014 2015 2016 2017

CC

Spring 0.996 0.997 0.997 0.996
Summer 0.997 0.995 0.997 0.992
Autumn 0.992 0.995 0.993 0.992
Winter 0.997 0.997 0.997 0.996

RMSE (mm)

Spring 21.06 21.01 27.8 30.43
Summer 30.95 30.31 46.59 38.9
Autumn 28.05 17.24 19.05 37.66
Winter 8.7 6.95 11.05 10.55

ME (mm)

Spring 0.96 1.88 1.65 3.18
Summer 1.7 1.58 3.18 2.25
Autumn 3.17 1.08 1.9 5.97
Winter 0.13 0.52 0.2 0.5

4.2. Performances of Merged Precipitation Products

The correlation of GPM and three model-based (RF, ConvLSTM and CBAM-ConvLSTM)
precipitation estimations versus in situ observations on a monthly scale is shown in Figure 5.
The correlation coefficients between GPM-based precipitation estimates (GPM, RF, ConvL-
STM and CBAM-ConvLSTM) and the rain gauge data range from 0.69 to 0.85, suggesting
a relatively strong correlation between four GPM-based products and rain gauge data,
while both GPM and model-based products underestimated precipitation. As seen in
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Figure 5a,b, the distribution of original GPM and RF data is similar and more discrete at
the points of high precipitation, which indicates that higher precipitation leads to higher
bias. In addition, the RF model did not provide a significant improvement in its accuracy
during downscaling. Compared with RF-downscaled GPM, the accuracy of precipitation
estimations is improved after being merged with the in situ observations. The performance
of CBAM-ConvLSTM was the optimum among the four GPM-based products with the
closest points to the 1:1 line.
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Figure 5. Scatter plots of (a) the original GPM, (b) the downscaled precipitation (RF), the merged
precipitation by (c) the ConvLSTM model (ConvLSTM) and (d) the ConvLSTM model with the CBAM
attention module (CBAM-ConLSTM). The red dash line is the auxiliary line with slope 1.

The spatial distribution of original GPM and downscaled–merged precipitation prod-
ucts (ConvLSTM and CBAM-ConvLSTM) for the August of each year (2014–2018) is shown
in Figure 6. As can be seen, the spatial consistency of the GPM is poor due to its low
resolution and the lack of continuity transitions in precipitation data between different
regions. The fused GPM product maintains the spatial distribution of the original GPM
data while greatly enhancing details of precipitation maps. The distribution of satellite
precipitation data is more continuous and the transition between rainy and no-rain areas is
smoother. This improvement is especially obvious for the uneven precipitation distribution
regions. When fused with rain gauge data, the GPM monthly precipitation is significantly
corrected in two aspects. Foremost, for almost all precipitations, the original GPM tends to
underestimate the precipitation, and the fusion process calibrated the GPM monthly pre-
cipitation to some extent. For example, for August 2014 precipitation, the GPM estimations
underestimated precipitation in the north and east regions of Hanjiang River Basin, and the
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fusion process contributed to a notable increase in precipitation in these parts of the study
area. Second, the fusion results also illustrate the detail of rainfall distribution. For instance,
in August 2016, the original GPM showed almost no precipitation in the central region
of the Hanjiang River Basin, whereas the fused data showed precipitation covering the
area. In both model-based data, CBAM-ConvLSTM outperformed ConvLSTM. ConvLSTM
showed underestimation in the western part of the Hanjiang River Basin in both August
2015 and August 2017, and showed occasional overestimated precipitation grids in the
southern (August 2014) and northeastern (August 2016) parts of the study area.
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4.3. Accuracy Assessment of Merged Precipitation Product

In order to assess the performance of the models, quantitative evaluation of the
monthly original GPM data and three model-based GPMs involved in the downscaling–
merging procedure against the 222-rain-gauge datasets is presented in Table 4. Among
the statistics of four GPMs, mean value of CC, bias, KGE, RMSE and MAE for CBAM-
ConvLSTM is 0.69, 1.79%, 0.52, 26.30 and 20.37, respectively, testifying to the best perfor-
mance of the CBAM-ConvLSTM model followed by ConvLSTM, GPM and RF. Similar
quantitative results of the RF and GPM reveal that the accuracy of the downscaled GPM
was substantially similar to that of original GPM during the entire study period, which is
in agreement with the results shown in Figure 5. In general, ensemble merging models
including ConvLSTM and CBAM-ConvLSTM outperform GPM and RF given the increases
of KGE and CC as well as the decreases of bias, MAE and RMSE. Furthermore, CBAM-
ConvLSTM reduced by 12.1% and 13.9% in MAE and RMSE of ConvLSTM, respectively,
while increasing its CC by 11.3%. Hence, CBAM has led to a moderate improvement
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compared to the ConvLSTM, which is due to the fact that the attention module captured
important information from the feature map.

Table 4. The mean metrics of the GPM and model-based products against rain gauge dataset.

Data Type ME (mm) CC Bias KGE RMSE (mm) MAE (mm)

GPM 14.13 0.55 24.94% 0.28 38.13 28.21

RF 15.13 0.55 27.89% 0.25 38.73 28.95

ConvLSTM −0.47 0.62 5.84% 0.42 30.54 23.16

CBAM-ConvLSTM −4.05 0.69 1.79% 0.52 26.30 20.37

Figure 7 illustrates the model performance of RF, ConvLSTM and CBAM-ConvLSTM
at relative bias, CC, KGE and RMSE at seasonal and monthly scale. Boxplots of the original
GPM metrics are also shown for comparison. In the monthly scale, the performance of
CBAM-ConvLSTM is optimal with the highest median KGE and CC values among four
products, indicating that GPM merging with environmental co-variables and rain gauge
data develops the performance of GPM. Especially in summer seasons, when precipitation
occurs most frequently, the CBAM-ConvLSTM is superior to other precipitation products.
Additionally, the median values of metrics and dispersion of the boxplots for GPM and RF
are similar at both monthly and seasonal scales, emphasizing that the RF model captures
the major information of GPM precipitation during downscaling. However, the boxplots
of CBAM-ConvLSTM in winter show a wider dispersion and a relative low KGE value,
whereas RMSE is smaller. This unstable performance of the merging model is associated
with the high bias of original GPM and the lack of precipitation data for the training
period in winter. On the other hand, NDVI contributes less to the model due to the lower
vegetation cover in winter. Despite the weak correlations and high bias between merged
products and in situ observations in winter, the overall performance of ensemble merging
models based on deep learning is doing better than the original and downscaled GPM.
Moreover, three model-based products capture the temporal variability of precipitation.

In addition, Taylor plots were shown to visually compare in situ observations, original
GPM precipitation estimates, downscaled GPM precipitation estimates, and downscaled–
fused precipitation estimates at a monthly scale (Figure 8). In the Taylor diagram, a
better performance is indicated if the point representing monthly precipitation estimates
is closer to the point representing gauge observations. Figure 8 confirms that the accu-
racy of RF-based downscaled GPM and original GPM were similar, while the integrated
fusion scheme based on RF and CBAM-ConvLSTM decreased the error of monthly pre-
cipitation. Significantly, the standard deviation of ConvLSTM and CBAM-ConvLSTM has
slightly decreased compared to the in situ observations, which is in line with the results of
Chen et al., (2020) [19]. This decrease is attributed to the discontinuous spatial distribution
of the precipitation data provided by the rain gauge observations, whereas the precipitation
distribution of the fused GPM data is spatially continuous.

Three monthly precipitation products (GPM, ConvLSTM and CBAM-ConvLSTM)
were further compared on their capability of capturing the variations of precipitation at
rain gauge locations. Figure 9 shows such a comparison for CC, MAE and RMSE at the
rain gauge locations. As shown in Figure 9, most of the CC-values ranged from 0.6 to
0.8, especially in the upper reaches of the Hanjiang River Basin, where the CC of most
locations are greater than 0.7. This indicates that the GPM data are in relatively strong
correlations with the ground based observations. After fusion with the in situ observations,
the CC of the ConvLSTM are more than 0.75 for most of the locations, and the CC of the
CBAM-ConvLSTM are greater than 0.9 at most of stations, and these locations are mainly
distributed in the upper Hanjiang River Basin. Compared with CBAM-ConvLSTM, the
MAEs of GPM and ConvLSTM are higher than 20 mm at most locations. In contrast,
the MAE of CBAM-ConvLSTM decreased significantly and was less than 20 mm at most
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locations. Additionally, there are obvious regional variations in the distribution of the MAE
values, and the areas with higher values are mainly located in the southeastern part of the
Hanjiang River Basin, which is also an area of lower elevation. The spatial pattern of RMSE
is similar to that of MAE, with the RMSE values of GPM and ConvLSTM being larger than
25 mm at most locations. Meanwhile, CBAM-ConvLSTM shows a significant decrease in
RMSE at almost all locations, with those values less than 25 mm at most locations. As
expected, CBAM-ConvLSTM has better performance than GPM and ConvLSTM: CBAM-
ConvLSTM significantly increases CC and decreases MAE and RMSE compared to GPM,
indicating that the consistency between the model-based precipitation data and the rain
gauge data is significantly improved while the error is reduced.
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5. Discussion

Overall, the diversity of topography and precipitation types in the study area provides
a basis for a comprehensive evaluation of the proposed downscaling–merging scheme.
Three crucial factors for the downscaling–merging modeling are the choice of time scale,
environmental variable selection, and methods of accessing the correlation among satellite,
gauge precipitation and environmental variables. First, choosing an appropriate time scale
is a necessary precondition for modeling. Typically, the interaction between precipitation
and environmental variables is not strong at the daily scale. Hence, some studies have
spatially downscaled precipitation data from a monthly scale [48], but they are limited
to specific months, e.g., the month when vegetation grows. This is explained by the fact
that the strong connection between precipitation and environmental variables exists only
during these months. A 2- or 3-month delay in vegetation response to precipitation has
been reported in some findings, suggesting that seasonal time scale analysis can explain
the effect of vegetation on precipitation. Second, unlike some spatial downscaling studies,
this study introduces latitude and longitude as supporting co-variables, and comparative
analyses show that the introduction of geographic location significantly enhances the
ability of RF model to explain precipitation variability. A similar situation was found
by Bryan et al., (2002) [49] and Price et al., (2000) [50], who pointed out the important
relationship between precipitation and geographic location. In addition, terrain interacts
with precipitation in a sophisticated way. Although topography tends not to disturb
precipitation on plains with small spatial differences in elevation [51], mountains not only
have a lifting effect on airflow, but also have a blocking effect on airflow. Land surface
temperature has a significant effect on precipitation, but the relative importance of daytime
and nighttime LST on precipitation varies, with the importance of LST at night being
relatively high [52]. Moreover, nighttime LST also has a greater influence on precipitation
than other land surface environmental variables in humid regions [27]. Therefore, both
LST at night and day are used for modelling. Other environmental variables, including
atmospheric variables or land use, also have an impact on precipitation. As discussed
above, downscaling of low-resolution satellite precipitation data relies on high-resolution
environmental variables, and the calibration of satellite precipitation with rain gauge data
also relies on environmental variables with strong correlations. However, there are fewer
high-resolution environmental variables that are reliable in practical studies. In addition,
the models developed are inherently spatially variable and therefore cannot use categorical
variables (e.g., data such as vegetation coverage and land use). Under these considerations,
four environmental variables are used to construct downscaling and fusion models. The
accuracy assessment results suggest that the accuracy of the model based GPM data is
well maintained before and after the downscaling–merging process, indicating that the
environmental co-variables selected for modeling are rational.

The downscaling of GPM precipitation data by RF-based downscaling model provides
an effective solution to the issue of deviation between the discontinuous precipitation
background field (rain gauge data) and satellite grid data [16]. It is observed from the
results that the accuracy of downscaled precipitation data through RF model was slightly
improved compared with the GPM product. The satellite precipitation data distribution is
more continuous due to a better spatial scale match between downscaled GPM data and rain
gauge data, and the downscaling process has a certain smoothing effect. Therefore, the RF
models used to downscale the GPM precipitation data alleviates the problem of boundary
bias, and is conducive to the production of high-resolution precipitation distribution maps,
which plays a role in improving the accuracy of the fusion results.

Many studies have applied GWR and Kriging or their improved methods [21,24,53,54]
to implement the fusion of satellite precipitation estimations and in situ observations.
Different from previous studies, this study introduces ConvLSTM to construct a fusion
scheme along with a machine learning algorithm (RF) in the downscaling process. In
particular, with the introduction of the CBAM module, the accuracy of the fusion model is
improved on both spatial and temporal scales and the results show that the accuracy of
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merged precipitation data at the monthly scale is significantly improved. Above all, the
proposed machine learning-based downscaling–merging method is considered valuable
and effective.

6. Conclusions

A downscaling–merging scheme is proposed to produce a high-quality monthly
precipitation dataset with a spatial resolution of 0.01◦ in the Hanjiang River Basin. This
method involves two steps: First, downscaling is performed with RF models. Subsequently,
correcting the GPM data by merging the GPM data and in situ observations with CBAM-
ConvLSTM. The main findings are as follows:

1. The downscaling algorithm based on RF models significantly refined the spatial reso-
lution of GPM precipitation and maintains a moderate accuracy. Due to the improved
spatial resolution, the spatial mismatch between downscaled precipitation data and
rain gauge data is reduced, which improves its consistency with in situ observa-
tions. This reduces the error and provides a good basis for subsequent precipitation
data fusion.

2. Considering the spatiotemporal relation between ground-based observations and
satellite-based precipitation, a fusion model introducing ConvLSTM for merged
precipitation data was proposed. The accuracy of the fused GPM is evaluated and
the assessment results reveal that the accuracy of GPM is significantly improved after
GPM data are fused with in situ observations. Compared with the original GPM,
RMSE and MAE of the fused precipitation products were down by 19.9% and 17.9%,
respectively. The bias was reduced to within 6%, and the CC and KGE were improved
from 0.55 and 0.28 to 0.62 and 0.42, respectively.

3. The performance of the fused precipitation product was further enhanced with the
introduction of the CBAM module. Compared to the original GPM, the RMSE of
the fused precipitation product with the addition of the attention mechanism were
reduced by 31% and the MAE of those decreased by 27.8%, respectively. Compared
with ConvLSTM, the bias was reduced to within 2%, and the CC increased to 0.69 and
the KGE rose to 0.52.

4. The downscaling step mitigates the bias problem caused by discontinuous precipita-
tion background fields and provides the foundation for the fusion step. The monthly
precipitation products achieved by the scheme maintained the original spatial infor-
mation of the satellite data and significantly refined the spatial detail, portraying a
continuous and accurate distribution of the satellite precipitation data. The improve-
ment was particularly noticeable for areas of uneven precipitation distribution.

Adequate quality and high-resolution precipitation data are very meaningful for
hydrological as well as meteorological analysis. Because of their characteristics, satellite-
based products capture the cyclical patterns and regional distribution of precipitation. They
provide a distribution map of precipitation, but are less accurate than rain gauge data. In
this study, the vegetation index, topography, geographic location and surface temperature
were taken as the main factors affecting precipitation, and a downscaling–fusion regression
model was constructed. However, other factors including density of rain gauges and
atmospheric circulation also have impact on precipitation, and according to the type of
precipitation and the associated physical processes, other covariates can be considered in
merging process for further study.
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