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Abstract: In the field of autonomous driving and robotics, 3D object detection is a difficult, but
important task. To improve the accuracy of detection, LiDAR, which collects the 3D point cloud of a
scene, is updated constantly. But the density of the collected 3D points is low, and its distribution is
unbalanced in the scene, which influences the accuracy of 3D object detectors in regards to object
location and identification. Although corresponding high-resolution scene images from cameras
can be used as supplemental information, poor fusion strategies can result in decreased accuracy
compared with that of LiDAR-point-only detectors. Thus, to improve the detection performance
for the classification, localization, and even boundary location of 3D objects, a two-stage detector
with density-and-sparsity feature aggregation, called DASANet, is proposed in this paper. In the first
stage, dense pseudo point clouds are generated with images from cameras and are used to obtain the
initial proposals. In the second stage, two novel feature aggregation modules are designed to fuse
LiDAR point information and pseudo point information, which refines the semantic and detailed
representation of the feature maps. To supplement the semantic information of the highest-scale
LiDAR features for object localization and classification, a triple differential information supplement
(TDIS) module is presented to extract the LiDAR-pseudo differential features and enhance them in
spatial, channel, and global dimensions. To increase the detailed information of the LiDAR features
for object boundary location, a Siamese three-dimension coordinate attention (STCA) module is
presented to extract stable LiDAR and pseudo point cloud features with a Siamese encoder and
fuse these features using a three-dimension coordinate attention. Experiments using the KITTI
Vision Benchmark Suite demonstrate the improved performance of our DASANet in regards to the
localization and boundary location of objects. The ablation studies demonstrate the effectiveness of
the TDIS and the STCA modules.

Keywords: 3D object detection; multi-sensor feature aggregation; triple differential information
supplement; Siamese three-dimension coordinate attention

1. Introduction

The subject of 3D object detection is a hot research topic in computer vision, which
plays a significant role in autonomous driving, robot navigation, virtual reality, etc. Its
primary objective is to determine an object’s location, identify its category, and provide
the object’s range and orientation in 3D space. Cameras and LiDARs are commonly used
sensors for 3D object detection. Cameras collect high-resolution RGB images of scenes, but
these images lack depth information, while LiDARs collect point clouds that include depth
information, but this information is sparse and unevenly distributed. Based on these two
kinds of data, many 3D object detectors have been designed in recent years.

The detectors based on cameras include 2D-regression-based detectors [1–7] and
pseudo-point-based detectors [8–10]. The pseudo-point-based detectors need to estimate
the depth for RGB images and generate pseudo point clouds. Then 3D objects are detected
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with these point clouds. Although pseudo-point-based detectors need only images from
cameras to generate dense points, the pseudo point clouds are not stable, which influences
their 3D detection accuracy.

At the same time, numerous 3D detectors based on LiDAR have been proposed. With the
different representations of point clouds, there are three types of detectors, i.e., voxel-based
detectors [11–18], point-based detectors [19–22], and voxel-point-based detectors [23–25]. The
voxel-based detectors partition the point clouds into distinct voxel grids and employ a 3D
convolutional network to extract features, then perform detection using the voxel features.
The point-based detectors use point-cloud networks [26–28] to directly extract features
from point clouds and perform detection. The voxel-point-based detectors fuse voxel
features and point features to perform detection. Although point clouds from LiDAR
have better stability, these detectors are unable to obtain sufficient information in scenes
using only their sparse point clouds, decreasing their object detection accuracy. We use 3D
point clouds in the KITTI dataset as an example, and these are collected using a 64-beam
Velodyne LiDAR. Figure 1 shows the histogram of these point clouds, including the number
of object points and the corresponding detection accuracies at different distances. It can be
seen that in a distance of more than 30 m, the LiDAR point number of an object is so small
that it is difficult for the state-of-the-art LiDAR-point detector Voxel-RCNN to accurately
detect the object. However, the corresponding image information can be considered as a
beneficial supplement. 
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[33–36] use images of scenes directly in the detection process. The former restricts detec-
tion regions in point clouds through images, and the latter utilizes image features and 
view features of point clouds to generate 3D bounding boxes. These detectors use only the 
2D space information of images and image features from a 2D convolutional neural net-
work [37], and their performance is not satisfactory. Thus, the image information is ex-
plored further, especially the 3D space information from images, which is used to enrich 
LiDAR point information [38–42]. Figure 1 shows the 3D detection performance of our 
DASANet based on this strategy, which is noticeably better than that of the LiDAR-point 
detector. 
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detection. The overall process of the DASANet is summarized in Algorithm A1 in Appendix A. 
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The detectors based on both LiDAR point clouds and their images have been researched
widely. The image-region-proposal detectors [29–32] and multi-view detectors [33–36] use
images of scenes directly in the detection process. The former restricts detection regions
in point clouds through images, and the latter utilizes image features and view features
of point clouds to generate 3D bounding boxes. These detectors use only the 2D space
information of images and image features from a 2D convolutional neural network [37],
and their performance is not satisfactory. Thus, the image information is explored further,
especially the 3D space information from images, which is used to enrich LiDAR point
information [38–42]. Figure 1 shows the 3D detection performance of our DASANet based
on this strategy, which is noticeably better than that of the LiDAR-point detector.

In this work, the pixel depths in the images are estimated to generate pseudo point
clouds of the scenes, and we design two aggregation modules to improve the semantic
and boundary description ability of the LiDAR point features for objects. Based on these
aggregation modules, i.e., the triple differential information supplement (TDIS) module
and the Siamese three-dimension coordinate attention (STCA) module, we propose a
novel two-stage 3D detector called DASANet. In the first stage, a LiDAR point cloud
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and its pseudo point cloud are used to generate initial proposals for the two modules of
the second stage. In the TDIS module, to improve the classification and localization of
objects, the difference between high-scale LiDAR features and their corresponding pseudo
features is computed to obtain differential features with semantic information, and then the
LiDAR features are supplemented with the stable differential features in spatial, channel,
and global dimensions. To improve the boundary location of the objects, in the STCA
module, a Siamese encoder is used to extract the LiDAR features and the stable pseudo
point features; then, for detailed information enhancement, a three-dimension coordinate
attention fuses the two kinds of features along the channel dimension, capturing their
long-range dependencies [43] in 3D space. The final detection inference is based on the
outputs of these modules.

In summary, our paper makes the following key contributions:

1. The novel triple differential information supplement (TDIS) module is designed to
improve the feature description ability of object location and identification. In this
module, the subtraction operation and three feature enhancement operations are
used to obtain stable pseudo semantic features, which can supplement the LiDAR
high-scale features with semantic information.

2. The novel Siamese three-dimension coordinate attention (STCA) module is designed
to improve the boundary location of the 3D bounding box. In this module, a Siamese
sparse encoder is used to extract the stable features from LiDAR and pseudo point
clouds. Then, the three-dimension coordinate attention is designed to fuse each
LiDAR feature and its corresponding pseudo point feature, according to their 3D
space coordinates.

3. We conducted comprehensive experiments using a KITTI dataset to evaluate the
performance of our DASANet. The results show that our network achieves significant
improvement; specifically, for the objects with less than 100 points, the improvement
is up to 15.59% in AP3D40.

2. Related Works
2.1. LiDAR-Based 3D Detector

For the data from LiDAR, there are three types of detectors for detecting a 3D object:
voxel-based detectors, point-based detectors, and point-voxel detectors.

The voxel-based detectors convert point clouds into regular 3D or 2D layouts and
achieve 3D detection using a network frame of 2D detectors. VoxelNet [11] partitions the
space into 3D grids, groups the non-empty voxel points, and encodes the point features
as voxel features. Subsequently, convolutional networks are utilized to extract features
and predict the bounding boxes. SECOND [12] introduces sparse convolution [44,45]
instead of conventional convolution in VoxelNet to accelerate its computational speed.
PointPillars [13] divides the 3D space into pillars, encodes point features as non-empty
pillar features, assembles them into pseudo images, and then employs 2D convolutional
networks for high-speed detection. SA-SSD [14] adds precise point-level task auxiliary
networks to assist the backbone network for 3D detection. Voxel-RCNN [16] uses SECOND
as the RPN and designs voxel pooling to aggregate one-stage features and refine RPN
predicted boxes to improve detection accuracy. Pyramid-RCNN [17] designs a pyramid-
ROI to improve the features for the second stage. VoTr [18] uses sparse transformers instead
of sparse convolutions to construct feature extraction networks.

The point-based detectors directly input the point cloud into the point feature ex-
traction network and predict the bounding boxes for each point. VoteNet [21] uses Point-
Net++ [27] to extract the features and predicts the bounding boxes using surface point
voting. PointRCNN [19] uses PointNet++ to construct a network for prediction point
segmentation and foreground point box prediction. PointGNN [20] transforms the point
cloud into a graph and inputs it into a graph convolutional neural network for feature
extraction. CenterPoint [22] extends CenterNet [46] to the 3D space to achieve anchor-free
3D object detection based on key point prediction.
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The point-voxel detectors combine voxels and points to improve the detection per-
formance. STD [23] uses point networks in the first stage and encodes features into voxel
features in the second stage to refine bounding box prediction. PV-RCNN [24] and PV-
RCNN++ [25] use voxel networks in the first stage and add point features for prediction in
the second stage.

Due to the sparsity and unbalance distribution of the point clouds, the detectors based
on LiDAR do not perform well in regards to long-distance and occluded objects. In the
corresponding images, objects have a large number of pixels, which can be used to improve
the detection performance.

2.2. LiDAR-Camera-Based 3D Detector

LiDAR-camera-based 3D detectors, which include image-region-proposal detectors,
multi-view detectors, and LiDAR-pseudo-point detectors, use images as an additional
information resource to detect 3D objects.

The image-region-proposal detectors restrict 3D object detection within the back-
projection areas of the proposal regions in the images. F-PointNet [29] leverages 2D
detectors to drive 3D detection. It employs PointNet to estimate the frustum area associated
with each 2D detection box and uses it to predict the corresponding 3D bounding box.
PointPainting [32] utilizes a 2D segmentation network to acquire RGB foreground data and
incorporates relevant semantic information into the point clouds to enhance the accuracy
of 3D detection.

The multi-view detectors use multiple views of a point cloud and its corresponding
images as input data for object detection. AVOD [33] inputs RGB images and BEV features
into the FPN [47] to obtain full resolution feature maps. After data level fusion and ROI
level fusion, class labels and 3D-box regression parameters are obtained. MV3D [34] first
generates 3D ROIs using RPN on the BEV and then deeply fuses the BEV features, LiDAR
front-facing features, and image features to obtain the regression results. CLOCs [35] use
the geometric and semantic consistency of objects to promote each other and to reduce the
occurrence of both false and missed detection. FusionRCNN [36] designs a second-stage
transformer mechanism to achieve fusion between image features and 3D point features.

The LiDAR-pseudo-point detectors project images into 3D space to supplement the
LiDAR point cloud for 3D object detection. MVP [39] unprojects image points near projec-
tions of the 3D points in the range of a 2D box to generate pseudo points. Focals Conv [40]
introduces focal sparse convolution, which uses positional importance to obtain accurate
features and improve 3D detection performance. VFF [41] maintains cross-modal consis-
tency with enhanced image-feature-rays in the voxel field and uses the ray-wise fusion
for 3D detection. SFD [42] uses deep completion networks [48,49] to obtain dense pseudo
points, and in the second stage, improves the results of 3D object detection by neighbor
searching in images and 3D grid attention in 3D space.

Compared with image-region-proposal and multi-view detectors, the LiDAR-pseudo-
point detectors utilize image information and LiDAR point information more deeply and
achieve better detection results, which also alleviates image information perturbations in
camera-only detectors [50]. We adopt the concept of LiDAR-pseudo-point detectors to
propose a novel 3D detection network.

3. Methodology

Using the pseudo point clouds, which inherit the information from RGB images to
densify the space information, two aggregation modules are designed in our 3D object
detector, DASANet. The triple differential information supplement (TDIS) module is used
to improve the object location and identification ability. The Siamese three-dimension
coordinate attention (STCA) module is used to improve the object boundary location
ability. In this section, we will present our DASANet in detail, specifically the two feature
aggregation modules.
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3.1. Architecture

The architecture overview of our DASANet is shown in Figure 2. In this network,
depth completion [48] is first used with the LiDAR point clouds and their corresponding
images to generate dense point clouds in the LiDAR coordinate system [51,52], which
include pseudo points. Then, two sparse convolution networks with different weights
extract the LiDAR 3D feature maps and the pseudo 3D feature maps, with the regular
voxels divided from the LiDAR point clouds and pseudo point cloud [11], respectively.
With the concatenated feature maps from their highest-scale feature maps, a region proposal
network (RPN) [53] is used to generate initial 3D proposals, i.e., ROIs. To enhance the
semantic information load of the features in each ROI for further determination of their
class label and location, the two highest-scale feature maps from each sparse convolution
networks are interpolated onto the grids of the ROIs, based on the Manhattan distance [16],
and the new ROI features are input into the proposed TDIS module to generate semantic-
supplemented features. Meanwhile, to enhance the boundary localization ability of the
features, the ROI LiDAR points and the ROI pseudo points cropped from the two kinds
of point clouds [19,24] are input into the designed STCA module to generate local-refined
features. Finally, with their concatenated feature maps, the initial proposals are further
refined to generate the bounding box predictions using the detection head, which comprises
one shared MLP and two output MLPs for classification and regression.
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Figure 2. Overview of the proposed DASANet, which is a 3D object detector with two stages. In the
first stage, given an RGB image, two groups of 3D feature maps are extracted from the corresponding
LiDAR point cloud and the generated pseudo-LiDAR point cloud to obtain the initial proposals. In
the second stage, the proposed TDIS module and the STCA module are used to obtain fused features
with more abundant semantic representation and the detailed information for 3D object detection.
The overall process of the DASANet is summarized in Algorithm A1 in Appendix A.

3.2. TDIS Module

In 3D object location, LiDAR point clouds play an important role. This is because
the point clouds collected by an active sensor exhibit good stability and can reflect, to
a certain degree, the structural information of 3D objects. However, LiDAR points are
produced by the reflection of laser beams, which have a fixed angular resolution, and the
density of the laser beams decreases with the increase in distance and the enlargement
of the view field; thus, the point clouds show a sparse and even unbalanced distribution,
which leads to unsatisfactory detection results. In our network, their corresponding RGB
images, which possess a uniform information load distribution to describe each captured
object, are used to produce dense pseudo points. For the LiDAR point clouds, their pseudo
point clouds can supplement structural information, whose feature maps can then be used
to improve the classification and location performance. But their estimated space depths
lack stability; thus, we select their two highest-scale feature maps, which are comparatively
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stable, to generate the inputs of our TDIS module. With the interpolation operation, a
linear mapping and the channel dimension concatenation operation [16], the flattened ROI
feature maps of the LiDAR points and pseudo points are obtained and are first input into
a subtraction operation in the TDIS module. The subtraction operation can remove the
redundant information from the LiDAR features in the ROI features of the pseudo points to
generate differential features. Then, for the differential features, three feature enhancement
operations—spatial dimension, channel dimension, and global dimensions—are used to
generate more stable semantic feature maps. Finally, the spatial feature maps, the channel
feature maps, and the global features supplement the ROI features of the LiDAR points
to produce semantic-supplemented feature maps. The architecture of the TDIS module is
shown in Figure 3.
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and all-element sum of FD and FSp, FCh, and FGo to obtain the semantic-supplemented feature
map FT .

With the LiDAR ROI feature map FS and the pseudo ROI feature map FP, which are
obtained by flattening the 3D features of each channel in the original 3D feature map into
a one-dimensional vector, as inputs, the differential feature map FD is computed using
element subtraction. The calculation process of each element is described by Equation (1).

FD(i, j) = FP(i, j)− FS(i, j) (1)

where FD(i, j), FP(i, j), and FS(i, j) denote the feature at the channel i and in the location j
of the feature map FD, FP, and FS, which all have C channels and N locations.

Then, the feature map FD is used to obtain three stable semantic feature maps by three
feature enhancement operations in the spatial dimension, channel dimension, and global
dimensions, which are followed by corresponding feature supplementation operations. To
enhance the feature map in the spatial dimension, the FD is weighted by all N learnable
spatial weight matrices WSp

l in WSp, and then all the elements in each weighted feature
map are added up as Equation (2).

FSp(l) =
C

∑
i=1

N

∑
j=1

WSp
l (i, j)FD(i, j) l = 1, 2, . . . , N (2)
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where all FSp(l) can be used to compose a one-dimensional raw vector
[
FSp(l)

]
, i.e., the

spatial feature map FSp. To obtain the spatial-supplemented feature map FT
Sp, each element

of FSp is added to the corresponding element of FS on all the C channels, which can be
described by Equation (3).

FT
Sp = FS + AChFSp (3)

where ACh is a C-dimension column vector whose elements are all ones.
To enhance the feature map in the channel dimension, the FD is weighted by all

C-learnable channel weight matrices WCh
k in WCh, and then all the elements in each

weighted feature map are added up as Equation (4).

FCh(k) =
C

∑
i=1

N

∑
j=1

WCh
k (i, j)FD(i, j) k = 1, 2, . . . , C (4)

where all FCh(k) can be used to compose a one-dimensional column vector
[
FCh(k)

]
, i.e.,

the channel feature map FCh. To obtain the spatial-channel-supplemented feature map
FT

Sp−Ch, FCh is added to FT
Sp along the channels at their all spatial locations, which can be

described by Equation (5).

FT
Sp−Ch = FT

Sp + FChASp (5)

where ASp is an N-dimension row vector whose elements are all ones.
To enhance the feature map in global dimensions, the FD is weighted by a learnable

global weight matrix WGo, and then these are added to obtain the global feature FGo as
Equation (6).

FGo =
C

∑
i=1

N

∑
j=1

WGo(i, j)FD(i, j) (6)

To obtain the semantic-supplemented feature map FT , FGo is added to each element of
FT

Sp−Ch, which can be described by Equation (7).

FT = FT
Sp−Ch + FGoA (7)

where A is an all-one matrix with the same size of FS.
In the TDIS module, the three semantic feature maps are computed using the same

operation, but the spatial feature enhancement operation adds the same feature values
to the corresponding spatial locations for all channels of FS, the channel feature enhance-
ment operation adds the same feature values to the corresponding channels for all spatial
locations of FS, and the global feature enhancement operation adds one feature value to
each element of FS. Thus, during training, WSp, WCh, and WGo are optimized with spatial
information, channel information, and global information, respectively.

3.3. STCA Module

Compared with the high-scale features, which contain semantic information for classi-
fication and location, the low-scale features contain detailed information, such as the edges
and surfaces of objects, and even the shapes of their local structures [54]. In object detection
tasks, most networks [16,17,19] use only high-scale features to obtain the classification and
regression of bounding boxes results, which leads to inaccurate object ranges and bound-
aries. To improve the boundary localization ability, we design the Siamese three-dimension
coordinate attention (STCA) module, which takes the LiDAR points and the pseudo points
cropped from the ROIs as inputs to obtain the elaborate low-scale features. In this module,
the Siamese sparse encoder, which has two identical architecture networks with shared
weights, extracts the features from two ROI point clouds at the same time. Because the
features of the two feature maps extracted by the Siamese encoder are similar, the features
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from the sparse LiDAR points that are not easy to change will affect the features from the
pseudo points, improving its stability. With the channel concatenation of the two feature
maps, the three-dimension coordinate attention (TCA) is designed to fuse these feature
maps along the channel dimension, capturing the long-range dependencies along each of
three spatial directions. For example, the TCA highlights the channels of the input feature
maps and outputs position-sensitive attention feature maps.

Figure 4 shows the architecture of the STCA module, which consists of the Siamese
sparse encoder and the three-dimension coordinate attention. In the Siamese sparse encoder,
with the LiDAR point cloud PS and the pseudo point cloud PP cropped in an ROI as inputs,
a weight-shared two-layer MLP is used to preliminarily extract two groups of point features.
Then, these point features are divided into two groups of voxel grids, with adaptive size
based on ROIs, to obtain 3D grid features [11]. Finally, the 3D grid features are fed into
a weight-shared sparse convolution network with two submanifold convolution layers
and one villain sparse convolution layer to generate the output feature maps FES and FEP,
corresponding to PS and PP [44,45].
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Figure 4. Overview of the STCA module, which consists of two parts (a Siamese sparse encoder
and a three-dimension coordinate attention). With PS and PP as inputs, the Siamese sparse encoder
outputs the feature maps FES and FEP. Then, the concatenated feature map FC is input into the TCA
to obtain the local-refined feature map FA.

With the channel concatenation of FES and FEP, the concatenated feature map FC is
input into the TCA, as shown in Figure 5. In the squeeze step, three spatial coordinates
in the spatial dimension, which correspond to the x direction, the y direction, and the
z direction, are taken into account. Thus, the global average pooling is expanded to 3D
feature maps and implemented to the feature planes along each spatial coordinate, and the
pooling outputs of the channel c in the channel dimension at length x, width y, and height
z can be formulated as

αX(x, c) =
1

W × H

H

∑
k=1

W

∑
j=1

FC
c (x, j, k) (8)

αY(y, c) =
1

L × H

H

∑
k=1

L

∑
i=1

FC
c (i, y, k) (9)

αZ(z, c) =
1

L × W

W

∑
j=1

L

∑
i=1

FC
c (i, j, z) (10)

where L, W, and H denote the length, width, and height of FC, respectively, and FC
c denotes

the feature map of the channel c in FC.
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Figure 5. Pipeline of the TCA. In the squeeze step, αX , αY , and αZ are output by the global average
pooling along the x direction, y direction, and z direction, respectively, maintaining their channel
dimensions. Then, two convolution operations are used to obtain the attention weights corresponding
to three spatial coordinates, i.e., gX , gY , and gZ. Finally, the feature of each spatial location is weighted
along the channels to obtain the local-refined feature map FA.

To generate attention weights gX, gY, and gZ in three spatial coordinates, 1 × 1
convolution operations are first implemented to the aggregated feature maps. But, for
objects on the road, their distributions are parallel with the surface of the road, which
means that objects in the x direction and the y direction have similar distribution properties
for object detection, and their distributions in the height z direction are specific by contrast.
Thus, the same convolutional transformation function ConvXY is used in both the x direction
and the y direction, while another convolutional transformation function ConvZ is used in
the z direction. Then, three different 1 × 1 convolutional transformation functions, Convg

X ,
Convg

Y, and Convg
Z, are used to separately transform the intermediate feature maps. This

process can be formulated as

gX = σ
(

Convg
X

(
δ
(

ConvXY

(
αX
))))

(11)

gY = σ
(

Convg
Y

(
δ
(

ConvXY

(
αY
))))

(12)

gZ = σ
(

Convg
Z

(
δ
(

ConvZ

(
αZ
))))

(13)

where ConvXY and ConvZ output a feature map with 1/16 the number of channels of the
input feature map; Convg

X, Convg
Y, and Convg

Z output a feature map with the same number of
channels as FC; δ denotes the ReLU activation function; and σ denotes the sigmoid function.

Finally, the local-refined feature map FA is computed with the attention weights
corresponding to three spatial coordinates, obtaining more accurate long-range dependence
information in the spatial dimension. This process can be formulated as

FA(i, j, k, c) = FC(i, j, k, c) + FC(i, j, k, c)× gX(i, c)× gY(j, c)× gZ(k, c) (14)

3.4. Network Training
3.4.1. Auxiliary Head

During the training, two identical auxiliary heads are designed to be attached at the end
of the TDIS module and the STCA module, in parallel with the detection head, improving the
optimization direction and further accelerating the network convergence [14,42]. As shown in
Figure 6, the auxiliary head consists of three two-layer MLPs, whose structure is same as
the detection head, and the first MLP network takes the vector flattened from FT and FA.
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The other two MLPs are parallel, which predict the class labels and regression parameters
of the bounding boxes for training.
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Different from the detection head, which is input with the concatenated feature maps
of the TDIS module and the STCA module, the auxiliary heads are attached to the two
modules directly. Thus, during the training, when the back propagation from the detec-
tion head optimizes the TDIS module and the STCA module in balance, the auxiliary
heads, which provide a specific effect on the corresponding module, provide individual
optimization branches to the two modules in the optimization process, which improves
the optimization ability of our network. During testing, the auxiliary heads are removed,
without computational load, for network inference.

3.4.2. Loss Function

Our network DASANet is trained with a two-stage loss function, which consists of
the RPN loss function LRPN for the first stage, and the RCNN loss function LRCNN for the
second stage. The overall loss function L can be described by Equation (15).

L = LRPN + LRCNN (15)

where LRPN is used to optimize the classification scores and the regression parameters
of the RPN predicted boxes, which improves the detection performance of the ROIs [16].
LRCNN consists of three loss function, i.e., a detection head loss Ldet and two identical
auxiliary head losses Laux1 and Laux2, which are represented by Equation (16).

LRCNN = Ldet + λ1Laux1 + λ2Laux2 (16)

where λ1 and λ2 are the weights of Laux1 and Laux2. Ldet optimizes the output of the
detection head to improve the detection performance of the final predicted boxes. Laux1
and Laux2 optimize the outputs of the two auxiliary heads mentioned in Section 3.4.1 to
upgrade the optimization ability and convergence speed of the network. Ldet, Laux1, and
Laux2 all consist of a classification loss and a regression loss. The classification loss is the
binary cross-entropy loss [55]. In Ldet, the regression loss is the sum of the smooth L1 loss
and the GIOU loss [56], which optimizes the IOU of the predicted boxes for the detection
head and their eight vertexes. In Laux1 and Laux2, the regression loss is simply the smooth
L1 loss, which optimizes the encoded predicted boxes for the auxiliary head.

4. Experiments

In this section, we first introduce the dataset, metrics, and implementation details of
our DASANet. Then, 3D detection and BEV detection experiments are used to evaluate the
DASANet compared with fourteen state-of-the-art networks, and ablation experiments are
conducted to verify the effectiveness of the TDIS and STCA modules in our network.
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4.1. Datast and Evaluation Metrics
4.1.1. Dataset

The KITTI dataset [51,52] is a wide used autonomous driving dataset. The KITTI
3D/BEV object detection benchmark of this dataset, which contains 3D point cloud and
RGB image data, is used in our experiments. The KITTI dataset consists of 7481 samples
for training and 7518 samples for testing; in each sample, we use one 3D point cloud and
a 1242 × 375 RGB image, collected by a 64-beam Velodyne LiDAR and a color camera
with a resolution of 1392 × 512. For cars, as the compared category in our experiments,
in all 3D-point-cloud scenes for training, there are 14,357 3D bounding boxes used as
labels, and in each image for training, up to 15 cars are visible. For evaluation, we divide
the training samples into a training split, with 3712 samples, and a validation split, with
3769 samples [51].

4.1.2. Metrics

We conduct experiments using the car as our category, an object which provides the
most labels in the KITTI dataset. Every bounding box is classified into one of three difficulty
levels: easy, moderate, and hard. These levels are defined based on their bounding box
heights, their occlusion levels, and their truncation levels. An object with a bounding
box height of more than 40 pixels, is fully visible, and shows less than 15% truncation is
classified into the easy level. An object with a bounding box height of more than 25 pixels,
is partly occluded, and exhibits less than 30% truncation is classified into the moderate
level. An object with a bounding box height of more than 25 pixels, is difficult to see, and
shows less than 50% truncation is classified into the hard level. We modify the average
precision (AP) with an IOU threshold of 0.7 to evaluate the compared networks on the
validation split. AP with N recall positions is calculated as Equation (17).

AP =

N
∑

i=1
Precision(i)

N
(17)

where N denotes the number of the recall sample positions in the Precision-Recall curve,
Precision(i) denotes the precision at the recall sample position i, which is determined by
the class confidence threshold, and Precision = TP/(TP + FP), TP denotes true positive
prediction, and FP denotes false positive prediction. In the 3D detection experiments,
AP3D11 and AP3D40 are calculated using 11 and 40 recall positions for the validation split.
And, in the BEV detection experiments, the corresponding APBEV11 and APBEV40 are
calculated using 11 and 40 recall positions. The KITTI dataset provides the labels of the
training samples for training and validation, but the testing result is obtained by uploading
the detection results on a testing split to the KITTI online server, which is calculated by the
official metrics [52].

4.2. Implementation Details

In our network, TWISE [48] is used to generate depth maps with their official weights.
After the depth maps are converted using transformation matrices [51,52] to generate
pseudo point clouds in the LiDAR coordinate system, we set the range of each point cloud
from 0 to 70.4 m along the x-direction, from −40 m to 40 m along the y direction, and
from −3 m to 1 m along the z direction, then divide the LiDAR point clouds and pseudo
point clouds into [0.05 m, 0.05 m, 0.1 m] voxels The maximum number of divided voxels
is 16,000 during training and 40,000 during evaluation, which guarantees that each voxel
contains up to 5 LiDAR points and 15 pseudo points. In our network, we set each anchor
size at [1.6 m, 3.9 m 1.46 m] and each angle to [0 rad, π/2 rad]. During training, at the
first stage, the anchors whose IOU, with ground truth, is greater than 0.6 are considered as
positive samples, the ones whose IOU, with ground truth, is less than 0.45 are considered
as negative samples, and the rest of the anchors are ignored. A total of 512 ROIs sampled
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from 9000 proposals are fed into the second stage during training, and 100 ROIs sampled
from 2048 proposals are fed into second stage during testing. For inference, a confidence
threshold of 0.3 and an IOU threshold of 0.1 are applied.

Moreover, some data augmentation methods are used during training, including
random flipping with a probability of 50%, random world and local rotation with a range
from −π/4 rad to π/4 rad, random world scale with a proportion from 0.95 to 1.05, random
local noising, and ground truth sampling [12] on the LiDAR point clouds and pseudo
point clouds.

We implement the DASANet on OpenPCDet [57], which is a PyTorch framework
for 3D point cloud detection. The Adam optimizer is used to update the weights of our
network, with a learning rate of 0.01 and the OneCycle learning rate control strategy. We
train the detector for 40 epochs with a batch size of four. All training and testing are
implemented on the Ubuntu operating system, with an Intel i9-11900KF CPU (64 RAM)
and a NVIDIA 3090 GPU card (24 G memory).

4.3. Comparison Experiments

To validate the performance of our DASANet, the fifteen networks are used for compar-
ison on the KITTI validation set, namely SECOND [12], PointPillars [13], PointRCNN [19],
SA-SSD [14], PV-RCNN [24], Voxel-RCNN [16], Pyramid-RCNN [17], MV3D [34], Point-
Painting [32], F-PointNet [29], Focals Conv [40], CLOCs [29], VFF [41], FusionRCNN [36],
and SFD [42].

Table 1 shows the AP3D11 and AP3D40 results for 3D detection, and Table 2 shows
the APBEV11 and APBEV40 results for bird’s-eye-view (BEV) detection. In Table 1, Our
DASANet outperforms all the other networks in AP3D40 for all difficulty levels, which
is a more accurate metric. And in AP3D11, although the DASANet trails behind the best
network SFD for the moderate level, it achieves the best performance for both the easy
and hard levels. Especially, for the LiDAR-based two-stage detector Voxel-RCNN, the
DASANet surpasses the state-of-the-art network by +3.28% in the AP3D11 for mAP and
+3.42% in the AP3D40 for mAP. Meanwhile, for the SFD, the DASANet surpasses the best
network by +0.21% in the AP3D11 for mAP and +0.14% in the AP3D40 for mAP. In Table 2,
Our DASANet achieves the best performance in APBEV11 and APBEV40 for all difficulty
levels. For the Voxel-RCNN, the DASANet surpasses the state-of-the-art network by +1.61%
in the APBEV40 for mAP. And for the SFD, the DASANet surpasses the best network by
+0.31% in the APBEV40 for mAP.

Table 1. Car 3D detection performance of different networks using the KITTI validation set. In
modality, L denotes LiDAR, L + C denotes LiDAR and camera, and - denotes that the corresponding
metric is not provided by the original paper.

Networks Modality
AP3D11 AP3D40

Easy Moderate Hard Easy Moderate Hard

SECOND L 88.61 78.62 77.22 - - -
PointPillars L 86.62 76.06 68.91 - - -
PointRCNN L 88.88 78.63 77.38 - - -

SA-SSD L 90.15 79.91 78.78 - - -
PV-RCNN L - - - 92.57 84.83 82.69

Voxel-RCNN L 89.41 84.52 78.93 92.38 85.29 82.26
Pyramid-RCNN L 89.37 84.38 78.84 - - -

MV3D L + C 86.55 78.10 76.67 - - -
PointPainting L + C 88.38 77.74 76.76 - - -

F-PointNet L + C 83.76 70.92 63.65 - - -
Focals Conv L + C - - - 92.26 85.32 82.95

CLOCs L + C - - - 92.78 85.94 83.25
VFF L + C 89.51 84.76 79.21 92.47 85.65 83.38
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Table 1. Cont.

Networks Modality
AP3D11 AP3D40

Easy Moderate Hard Easy Moderate Hard

FusionRCNN L + C 89.90 86.45 79.32 - - -
SFD L + C 89.74 87.12 85.20 95.47 88.56 85.74

DASANet L + C 90.69 86.52 85.48 95.63 88.68 85.87

Table 2. Car BEV detection performance of different networks using the KITTI validation set. In
modality, L denotes LiDAR, L + C denotes LiDAR and camera, and - denotes that the corresponding
metric is not provided by the original paper.

Networks Modality
APBEV11 APBEV40

Easy Moderate Hard Easy Moderate Hard

SECOND L 89.96 87.07 79.66 - - -
PointPillars L 88.35 86.10 79.83 - - -
PointRCNN L 89.78 86.19 85.02 - - -

SA-SSD L - - - 95.03 91.03 85.96
PV-RCNN L - - - 95.76 91.11 88.93

Voxel-RCNN L - - - 95.52 91.25 88.99
MV3D L + C 86.55 78.10 76.67 - - -

F-PointNet L + C 88.16 84.92 76.44 91.17 84.67 74.77
Focals Conv L + C - - - 94.45 91.51 91.21

CLOCs L + C - - - 93.05 89.80 86.57
VFF L + C - - - 95.65 91.75 91.39
SFD L + C - - - 96.24 92.09 91.32

DASANet L + C 90.50 89.26 88.58 96.39 92.42 91.77

Furthermore, we also submitted the detection result of our DASANet for the KITTI
test set to the KITTI online server. As shown in Table 3, our DASANet only trails behind the
SFD in APBEV40 for the easy and moderate levels. But for AP3D40, which directly relates to
3D detection results, the DASANet achieves the best performance for all difficulty levels.
Specifically, our DASANet surpasses the Voxel-RCNN by +2.09% in the APBEV40 for mAP
and +2.46% in the AP3D40 for mAP. And the DASANet surpasses the best network SFD
+0.59% in the APBEV40 for mAP and +0.85% in the AP3D40 for mAP.

The visualization results in Figures 7–10 demonstrate that our DASANet outperforms
the state-of-the-art Voxel-RCNN network in both the global location and boundary location
of objects. For example, the Voxel-RCNN identifies the background, which consist of a
complex background, as an object in Figure 7 and ignores a 69 m distance car in Figure 8.
In contrast, with depth completion information, the TDIS module in the DASANet can
supplement semantic information to improve the object location, thus the DASANet avoids
false classification in Figure 7 and locates a long-distance object correctly. Figure 9 shows
the detection situation of a partly occluded car. Compared with the Voxel-RCNN, the STCA
module in the DASANet provides more local structure information in its output feature
maps; thus, DASANet can infer a more correct bounding box than the Voxel-RCNN for the
first car on the right in Figure 9. In Figure 10, which shows a large scene with the presence
of cars, it can be seen that our DASANet avoids false detection and missed detection and
provides bounding boxes consistent with the ground truth.
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Table 3. Car 3D and BEV detection performance of different networks using the KITTI test set. In
modality, L denotes LiDAR, L + C denotes LiDAR and camera. The best results are bolded. - means
that the data was not provided by the original paper.

Networks Modality
AP3D40 APBEV40

Easy Moderate Hard Easy Moderate Hard

SECOND L 85.29 76.60 71.77 90.98 87.48 84.22
PointPillars L 82.58 74.31 68.99 90.07 86.56 82.81
PointRCNN L 86.96 75.64 70.70 92.13 87.39 82.72

SA-SSD L 88.75 79.79 74.16 95.03 91.03 85.96
PV-RCNN L 90.25 81.43 76.82 94.98 90.65 86.14

Voxel-RCNN L 90.90 81.62 77.06 94.85 88.83 86.13
Pyramid-RCNN L 88.39 82.08 77.49 92.19 88.84 86.21

MV3D L + C 74.97 63.63 54.00 86.62 78.93 69.80
PointPainting L + C 82.11 71.70 67.08 92.45 88.11 83.36

F-PointNet L + C 82.19 69.79 60.59 91.17 84.67 74.77
Focals Conv L + C 90.55 82.28 77.59 92.67 89.00 86.33

CLOCs L + C 89.16 82.28 77.23 92.21 89.48 86.42
VFF L + C 89.50 82.09 79.29 - - -

FusionRCNN L + C 88.12 81.96 77.53 - - -
SFD L + C 91.73 84.76 77.92 95.64 91.85 86.83

DASANet L + C 91.77 84.98 80.21 95.50 91.69 88.89

4.4. Ablation Study

In order to verify the effectiveness of the proposed TDIS and STCA modules, ablation
studies are conducted on the KITTI validation set. Based on the baseline, the Voxel-RCNN,
the TDIS module (+TDIS), the STCA module (+STCA), and the dual modules (+TDIS
+STCA) are evaluated in regards to performance, computational load, and inference speed.
Moreover, experiments in different situations (i.e., different distances, different occlusion
levels, and different numbers of points in the ground-truth bounding boxes) are conducted
to validate the performance of the dual modules (+TDIS +STCA).

Ablation for the TDIS and STCA modules in the DASANet. As shown in Table 4,
both the TDIS and the STCA modules can improve performance compared with that of
the baseline. For the dual module, although its improvement in APBEV40 for the easy level
is less than that of two single modules, it achieves obvious improvement in all the other
metrics, which is the result of the fusion of the semantic and detailed information.

The visualization comparisons are shown in Figure 11. The TDIS module can avoid
the two false bounding boxes, which are predicted by baseline. Compared with the partly
enlarged 3D point images of the object, the STCA module can make accurate boundary
predictions, whose bounding box is consistent with the ground truth. The network with
dual modules inherits the advantages from the TDIS module and the STCA module.

Ablation for computational load and inference speed. In Table 5, the parameter
quantity (Params) and floating operations (FLOPs) for the computational load, along with
the inference speed (FPS), are shown. Both the TDIS and the STCA modules cause a
significant increase in the parameter quantity, and even the parameter quantity of the dual
modules is about eight times that of the baseline. However, the floating operations did
not show significant growth. For inference speed, the network with dual modules slows
down to 10.5 Hz, which is still higher than the Velodyne sampling rate of 10 Hz. Thus, our
DASANet can satisfy real-time requirements in practice.
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Improvement +3.25 +3.39 +3.21 +0.87 +1.17 +2.78 

The visualization comparisons are shown in Figure 11. The TDIS module can avoid 
the two false bounding boxes, which are predicted by baseline. Compared with the partly 
enlarged 3D point images of the object, the STCA module can make accurate boundary 
predictions, whose bounding box is consistent with the ground truth. The network with 
dual modules inherits the advantages from the TDIS module and the STCA module. 

Figure 10. Visualization comparison of the proposed DASANet and the Voxel-RCNN in a large scene.
Green boxes, blue boxes, and yellow boxes indicate the ground-truth, the DASANet prediction, and
the Voxel-RCNN prediction, respectively.

Table 4. Comparison of ablation performance using the KITTI validation set. The improvement
denotes the difference from the baseline.

Networks
AP3D40 APBEV40

Easy Moderate Hard Easy Moderate Hard

Baseline 92.38 85.29 82.66 95.52 91.25 88.99

+TDIS 93.31 86.15 83.60 96.48 91.93 89.51
Improvement +0.93 +0.86 +0.94 +0.96 +0.68 +0.52

+STCA 93.58 86.16 85.06 96.57 91.81 91.24
Improvement +1.20 +0.87 +2.40 +1.05 +0.56 +2.25

+TDIS +STCA 95.63 88.68 85.87 96.39 92.42 91.77
Improvement +3.25 +3.39 +3.21 +0.87 +1.17 +2.78

Ablation in different situations. In Table 6, the AP3D40 and APBEV40 are shown for
different distances. Our DASANet achieves improvements of +5.08% in AP3D40 for mAP
and +4.54% in APBEV40 for mAP, and for the AP3D40 at more than 40 m, the improvement
is up to +8.42%. This is because long-distance objects do not contain enough LiDAR points
to show, and the pseudo points are an effective supplement for 3D detection. In Table 7,
AP3D40 and APBEV40 are shown for different occlusions; level 0 denotes the object that
can be fully seen, level 1 denotes the object that can be partly seen, and level 2 denotes the
object that is almost invisible. The DASANet achieves improvement of +2.52% in AP3D40
for mAP and +2.22% in APBEV40 for mAP, and for level 2, the improvement is up to +4.7%
in AP3D40. This indicates that the added pseudo point information can positively influence
the final inference. For different number of points in the ground-truth bounding box, the
effect of pseudo point information is directly shown in Table 8 by AP3D40 and APBEV40.
The DASANet achieves the improvements of +9.13% in AP3D40 for mAP and +3.29% in
APBEV40 for mAP. Specifically in the situation of 0–100 points, the improvement for the 3D
AP of the objects reaches an amazing +15.59%.
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Table 5. Ablation comparisons of computational load and inference speed on the KITTI validation set.

Networks Params (M) FLOPs (G) FPS (Hz)

baseline 6.9 22.7 25.2
+TDIS 26.2 28.0 14.5
+STCA 30.8 27.9 12.7

+TDIS +STCA 55.2 30.9 10.5

Table 6. Comparisons using the KITTI validation set for different distances. The improvement
denotes the difference from the baseline.

Networks
AP3D40 APBEV40

0 m–20 m 20 m–40 m 40 m-Inf 0 m–20 m 20 m–40 m 40 m-Inf

Baseline 92.11 74.99 13.85 95.49 86.50 25.64

+TDIS +STCA 95.01 78.91 22.27 98.05 88.05 35.14

Improvement +2.90 +3.92 +8.42 +2.56 +1.55 +9.50
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Table 7. Comparisons using the KITTI validation set for different occlusion levels. Level 0, 1, and 2
denote that the object is fully visible, the object is partly occluded, and the object is difficult to see,
respectively. The improvement denotes the difference from the baseline.

Networks
AP3D40 APBEV40

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2

Baseline 54.70 67.40 51.59 57.66 74.68 64.97

+TDIS +STCA 55.29 69.66 56.29 58.10 77.68 68.20

Improvement +0.59 +2.26 +4.70 +0.44 +3.00 +3.23

Table 8. Comparisons using the KITTI validation set for different numbers of points in the GT
bounding boxes. points. The improvement denotes the difference from the baseline.

Networks
AP3D40 APBEV40

<100p 100 p–200 p >200 p <100 p 100 p–200 p >200 p

Baseline 40.98 75.18 95.35 53.13 84.92 97.71

+TDIS +STCA 56.57 85.38 96.96 56.57 90.87 98.19

Improvement +15.59 +10.20 +1.61 +3.44 +5.95 +0.48

5. Conclusions

In this paper, we proposed the novel LiDAR-camera 3D detection network called
DASANet. In order to aggregate features with semantic information and detailed informa-
tion, we designed the TDIS module and the STCA module. In the TDIS module, the LiDAR
features are supplemented with pseudo-point semantic information in three dimensions.
In the STCA module, the LiDAR and pseudo point features from the Siamese encoder are
fused by the three-dimension coordinate attention to enhance the detailed information.
Experiments using the KITTI dataset show that our DASANet outperforms fifteen 3D
detection networks. Although the DASANet can meet real-time requirement, the increase
in its network size leads to an increase in computational load. In subsequent work, we will
explore a phase fusion to construct a lightweight network.
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Appendix A

Algorithm A1: the overall process of the proposed DASANet

Input: Giving a LiDAR point cloud L and its corresponding RGB Image I
Output: 3D bounding boxes’ coordinates Bco and their classifications Bcl

Stage one:
1: compute space depths Sd of the pixels in I with depth completion;
2: generate a pseudo-LiDAR point cloud LD with I and Sd;
3: divide L and LD into two groups of regular voxels VL and VD;

https://www.cvlibs.net/datasets/kitti/
https://www.cvlibs.net/datasets/kitti/


Remote Sens. 2023, 15, 4587 21 of 23

Algorithm A1: Count.

4: extract 3D feature maps C1~C4 and P1~P4 from VL and VD with two different sparse
convolution networks;

5: concatenate C4 and P4 to generate initial proposals R with a region proposal network;
Stage two:

6: for each box ri in R do
7: get LiDAR ROI feature map FS and pseudo ROI feature map FP in ri by interpolating C3, C4

and P3, P4 with the manhattan distance;
8: get LiDAR point cloud PS and pseudo point cloud PP within ri by cropping L and LD;
9: input FS and FP into the TDIS module to generate a semantic-supplemented feature map FT ;
10: input PS and PP into the STCA module to generate a local-refined feature map FA;
11: concatenate FT and FA to generate the box’s refined coordinates Bco

i and its classification Bcl
i

with MLPs;
12: end for
13: return 3D bounding boxes’ coordinates Bco and their classifications Bcl .
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