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Abstract: This study presents a reliable classification of walking pedestrians and animals using a
radar operating in the millimeter waves (mmW) regime. In addition to the defined targets, additional
targets were added in an attempt to fool the radar and to present the robustness of the proposed
technique. In addition to the classification capabilities, the presented scheme allowed for the ability to
detect the range of targets. The classification was achieved using a deep neural network (DNN) archi-
tecture, which received the recordings from the radar as an input after the pre-processing procedure.
Qualitative detection was made possible due to the radar’s operation at extremely high frequencies
so that even the tiny movements of limbs influenced the detection, thus enabling the high-quality
classification of various targets. The classification results presented a high achievable accuracy even
in the case where the targets attempted to fool the radar and mimicked other targets. The combi-
nation of the use of high frequencies alongside neural-network-based classification demonstrated
the superiority of the proposed scheme in this research over the state of the art. The neural network
was analyzed with the help of interpretable tools such as explainable AI (XAI) to achieve a better
understanding of the DNN’s decision-making process and the mechanisms via which it was able to
perform multiple tasks at once.

Keywords: micro-Doppler radar; millimeter wave radar; neural network; deep learning; explainable
AL XAl deep radar; target classification radar; activity detection radar

1. Introduction

In recent years, there has been an increase in the commercial use of components that
work in the high frequencies of radio radiation, including the millimeter waves (mmW)
regime. One of the reasons for the commercial use and the lowering of costs is the broad
demand for communication and the requirements for wider bandwidths than before, which
is possible with the increases in frequencies.

Concerning the detection of targets the size of humans or animals, it is crucial to use
high frequencies, especially when it is necessary to detect the limbs and micro-movements
of those targets.

1.1. Millimeter Wave Radar Sensors

Radar sensors in electromagnetic waves are common worldwide in various fields
such as the automotive industry [1], where the radar used can provide warnings about a
dangerous proximity to vehicles, information about weather [2], and information related to
medical applications in order to detect heart beats, breathing, and more [3]. Radar sensors
are also common in military industries in order to detect and track aircraft [4], missiles [5],
shooting bullets [6], drones [7], and more [8,9]. The basic operating principle of radar is
the transmission of an electromagnetic wave from the transmission antenna, radiation
scattering by the target, and reception of the reflected back-scattered radiation from the
target by the radar [10]. A radar system can identify important characteristics of a target
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such as distance, velocity, acceleration [11], size [12], angle of arrival [13], and more [14] by
analyzing the radiation that is scattered from the target and received by the radar’s receiving
antenna, and much of the analysis is performed by comparing the known transmitted wave
and the wave absorbed by the dispersion of the target and the environment.

Radar sensors are manufactured according to characteristics that are defined according
to the needs, type, and characteristics of the targets that will be detected. For this reason,
radar for detecting aircraft will not necessarily be suitable for detecting pedestrians because
there are large differences between the required ranges and the sizes of the targets. There
are key radar characteristics that must be determined according to the type of mission:
(1) central frequency of the transmission; (2) waveform; (3) transmission power; (4) number
of transmission and reception antennas; (5) processing capabilities.

The operation frequency of a radar is usually determined to fit the expected targets
features, including dimension and velocity, enabling a reliable detection [15]. Operation in
high frequencies, such as in the mmW regime, allows better spatial and velocity resolution.
Successful detection of a target also relies on the scattering characteristics of the target
at the radar frequency. High frequencies result in better spatial and velocity resolutions.
However, mmW suffer from higher atmospheric absorption, and it is preferable to choose a
frequency within a ‘atmospheric window’, where minimum absorption occurs.

There are several works that have presented serious research on types of radar in the mmW
regime [16-19]. The choice to use the mmW regime is derived from the following advantages:

e Itincreases the transmission frequency, which increases the sensitivity to physical
small-sized targets.

e [ts higher transmission directivity is achieved by the use of smaller antennas [20],
which enable a reduction in the physical dimensions of the radar used.

e Itincreases the transmission frequency, which allows for improved spatial and velocity
resolutions [21].

Primarily, the components in mmW are limited by the maximum power they can work
with, and these are typically relatively low powers [22]. Constant envelope transmission
techniques are very common in mmW for the following reasons:

e  The components in the mmW regime are very limited in their maximum power, and
transmission in the maximum instantaneous power is possible due to the supply of
constant power for the entire time.

The efficiency of the amplifiers in a constant envelope is higher.
The mmW better handles envelope noise [23].

It can be concluded that there is no escape from using mmW in the case of tiny targets
when, on the one hand, high directionality and detection resolution are achieved and, on
the other, the transmittable powers are lower. In the case of working with mmW, a distinct
advantage can be seen for using transmission in a constant envelope of transmission.

1.2. Millimeter Wave Radar Waveforms

The waveforms in radar systems have a significant influence on detection capabili-
ties. Mainly, there are three radar operation modes [24]: (I) pulse radar, (II) continuous
wave (CW) radar, and (III) frequency modulation continuous wave (FMCW) radar. The
differences are in the type of target detection (characteristic, range, or velocity), the relative
required power of the transmission, the average power of the transmission, the computer
resources for the data analysis, and the resolution in the detection (which determines the
error rate of the obtained data).

1.2.1. CW Radar

Continuous wave (CW) transmission is a relatively easier option since the transmission
is a carrier wave without any special modulation. With CW transmission, it is possible to
detect the velocity of a target according to the Doppler effect [25] without any additional
information. The processing resources consumed are relatively low because only a fast
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Fourier transform (FFT) operation is required to detect the frequency difference between
the transmission and the reception.

In CW radar, only a target’s velocity may be obtained, and the system cost is the
lowest, the data analysis is relatively low, and the transmitted power is relatively low. The
advantage of CW radar is its error rate, which depends only on the time window length
for analysis, the natural immunity in a highly cluttered environment, and its constant
envelope characteristic.

1.2.2. Pulse Radar

In pulse radar, a carrier wave is modulated with an amplitude modulation (AM) signal
of pulses. The result is a carrier wave with transmissions and breaks at specified times. With
this method, it is possible to discover the velocity of a target by comparing the transmission
and reception frequencies and discover the range by measuring the delays between the
pulses [26]. This method is relatively more expensive than the CW transmission method
and its processing requires more resources, although it provides the desired information
about the range of a target. In pulse radar, the error in range measurement is the time
between pulses multiplied by the speed of light and divided by two. Pulse radar is not
immune to clutter, similar to the CW method.

Since pulse radar does not always transmit, in order to perform optimal detection,
relatively higher instantaneous powers are required [27]; hence, this type of radar is not
suitable for radar in the mmW regime.

1.2.3. FMCW Radar

A more complex transmission method is the frequency modulation continuous wave
(FMCW) method. With FMCW, it is possible to transmit all the time without the need
for breaks (as in pulse radar). In this method, more energy is received from a target
without the need for high instantaneous power [28]. The FMCW is a ‘frequency-consuming’
technique because of the relatively broad bandwidth due to the frequency sweep, while
the transmission of a continuous wave (CW) has zero bandwidth. In addition, in order
to detect both, the range and speed of a target, the processing required is relatively more
complex [29].

In FMCW radar, both a target’s velocity and range may be obtained, the system cost is
the highest, and the data analysis is relatively high, but the required transmission power
is relatively low. The resolution of the velocity and range depend on the transmission
bandwidth. The FMCW method is not immune to clutter, similar to the CW method.

1.3. Artificial-Intelligence-Based Detection and Classification

Artificial intelligence (Al) is based primarily on the passing of raw data through
weights, and it involves mathematical functions of powers, convolutions, and non-linear
activation functions. These weights are organized in layers while the data are inserted in
the input layer, and the result is obtained in the output layer while all other layers are called
hidden layers. The result in the output layer should be close to the expected value, and a
cost function indicates the error between the result and the expected value. The weights
are tuned for the purpose of minimizing the error of the cost function by the sophisticated
process of back-propagation with iterations of the data with optimization algorithms [30].

The field of Al has been studied for many years, but it has recently received significant
attention due to the processing capabilities that have developed. In addition, the field of
artificial intelligence has received significant weight as a practical solution to a variety of
problems, and it has received a significant scope of research in the fields of computer vi-
sion [31], voice processing [32], radar [33], and more [34]. Many studies have reported great
contributions to in accuracy and lowered complexity [35,36] using Al-based processing
compared to classic solutions that do not include Al

In general, an Al solution is suitable for the needs of classification or regression where
the output of the system is based on the passage of the information through weights and
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filters. The learning is carried out on a known database in learning epochs that include an
error calculation in each iteration between the desired value and the output of the system,
with the weights readjusted according to the errors by a back-propagation technique. Al
methods have added value over classical tools where the data have low signal-to-noise
ratio (SNRs), as well as when the model used for classification is highly complicated for
being analyzed with classical methods.

1.4. Detection and Classification of Pedestrians and Animals Using Radar

As was said previously, the detection of a target is made possible with the help of
the scattering it causes as a result of the radar’s transmission. In order to detect targets
with sizes in the order of meters, and even to perform a classification according to the
movements of limbs in dimensions of centimeters, it is necessary for the radar used to work
in the millimeter wave range. Different targets can have similar characteristics regarding
their speed and distance, and the difference between targets may lie in the movements
of their limbs. For example, a person and a dog walking in front of radar at the same
speed and distance, without distinct movements of their limbs, will both be analyzed and
classified as the same target. The successful classification and understanding of a target
can be achieved when the frequency that is transmitted is suitable at a wavelength for the
detection of limbs and an appropriate analysis is performed on the information.

Classification of a target by radar is based neither on the appearance of the target nor
on its general shape; rather, it is based on the repetitions of the waves that are transmitted
to it. For this reason, radar devices are exposed to many deceptions. For example, a human
crawling in front of radar may be classified as an animal when the role of the radar is
to classify between a person and an animal. In addition, there may be an error in the
classification in the case where a person walks with a large metallic object, such as a gun,
that causes multiple reflections toward the radar such that the reflections from the person
are weaker.

1.5. Detection and Classification of Pedestrians and Animals Using Other Methods

There are several systems that can classify targets that do not use radar, such as
cameras in the visible range [37], thermal cameras [38], LIDAR (light detection and ranging)
devices [39], and more. These systems provide a detailed picture of both a target and the
environment of that target, and they are more informative than radar devices that only
provide vector information. With all the advantages of systems that do not use radar, there
are several significant disadvantages: (I) all the mentioned systems require a line of sight
(LOS) with a target, whereby they are not suitable for difficult thicket conditions such as a
forest environment or small hills; (II) systems in the field of visible waves will not work
well for the same reason that the human eye does not see well in conditions of rain, snow,
or fog.

1.6. The Proposed Technique for Pedestrians and Animals Classification

In this study, we proposed the use of a mmW Doppler radar sensor, which is a type of
radar that works in the mmW regime, allowing for the detection of limb movements by
human and animal targets. Further, this radar allows for receiving returns and it analyzes
whether a target is carrying something. In addition, working in the form of Doppler, i.e.,
CW only, allows for detecting only moving targets, while all the static environment does
not influence the performance. It can be said that conducting detection using Doppler radar
constitutes a spatial filter and causes moving targets to be highlighted and easier to detect.
Another distinct advantage of using radar is the existence of phenomena in electromagnetic
waves such as diffraction and refraction [40]. These phenomena are less noticeable in
systems in the visible range; thus, detection and classification can be performed with the
help of radar even in the case of partial concealment without an LOS.

This radar’s output is analog, and it is sampled and saved on a computer, which
performs the preprocessing and adjustment of the information so that it can enter a NN.
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The proper use of an NN demands many recordings of all the desired types of targets for
classification, in addition to examining several networks and choosing the network with
the best results.

1.7. Our Contribution

In recent studies, classification tasks have been performed on recordings at fixed
distances from targets or without separating the targets into deferent categories of distances,
typically in a neutral environment and without attempts to fool the radar, while using lower-
frequency types of radar. In addition, in existing studies, there has been one task required
from the systems; for example, in [41], they managed to classify the type of the target, in [42],
they introduced targets detection, and, in [43], they presented activity classification of a
target, and these tasks were performed separately. We added a task—range detection—to
the tasks of classifying a target and its activity in the mmW regime using CW radar, which
is naturally immune to clattering.

As expected, the classification at close range had the highest classification accuracy,
and we also performed training on recordings with various ranges for making the system
more reliable. The presented scheme is fundamentally different in the detection and
certainty capabilities due to the high frequency of the used radar. In addition, we present
an integrated capability for detection, classification, activity detection, and range estimation,
all in one single neural network.

We contribute to the field in several unique and significant ways. Firstly, we introduce
a reliable classification system for walking pedestrians and animals using a radar operating
in the mmW regime. This is a significant improvement in detecting and classifying targets.
Our proposed technique is robust, demonstrated by our inclusion of additional targets
designed to ‘fool” the radar system.

Reliable classification is not feasible when operating at low frequencies since the
data on small movements are not available with the required resolution. The exclusive
advantage of using mmW is the ability to detect sub-movements within the body, including
activities of legs and arms in addition to the main movement of the center of mass. This
enables additive information for the classification procedure. Employing interpretability
analysis, we demonstrate how important is the detection of sub-movements of the legs and
the hands for obtaining a reliable classification.

These tests highlighted the resilience and effectiveness of our methodology. Impor-
tantly, our system goes beyond classification, also enabling the detection of the range
of targets. The core of our approach is a deep neural network (DNN) architecture that
processes radar recordings as input after a pre-processing procedure. This use of DNNs
represents a novel application in the field. We also employ high frequencies in tandem with
the neural network-based classification, which underscores the superiority of our scheme
over current state-of-the-art methodologies. Lastly, we strive for transparency and under-
standing in our work. Therefore, we conducted an in-depth analysis of the neural network
using interpretable tools, such as explainable Al (XAI). Understanding the decision-making
process of the DNN and its ability to perform multiple tasks at once is possible through
this. These unique aspects significantly differentiate our work from existing research and
pave the way for further advancements in radar-based target classification and detection.

1.8. Article’s Sections

The remainder of this paper is organized as follows: Section 2 presents the system
model and detection technique; Sections 3 and 4 describe the pre-processing stage for the
data before the DNN and the dataset creation in the field; Section 5 presents the DNN
training process; Section 6 presents the interpretability analysis for the pre-trained DNN
and an in-depth performance analysis; Section 7 concludes the study.
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2. Micro-Doppler Radar System

The use of a micro-Doppler radar for small targets demands working with short
wavelengths, as described in the introduction. A recommended frequency for this system is
94 GHz, as used in [19]. As expected with the Doppler effect, the transmission of frequency
toward a target which has a relative linear movement to the radar will be returned with a
frequency shift.

To analyze the returned frequency in the case of a 94 GHz transmission, a minimum
sampling rate of 188 GHz is required in order to comply with the Nyquist condition.
Sampling at this rate is nearly impossible, and it demands expensive equipment, making it
necessary to find a way to lower the frequency.

Using a mixer and a 94 GHz frequency generator in a local oscillator is a good solution,
but the instability error between the generators of the transmission and the local oscillator
input remains. When the instability is much greater than the expected frequency shifts, the
detection of the radar will be uncertain or impossible.

One solution involves using the coherent radar method, where the transmission is
subtracted from the reception in analog manner. In this way, the generator’s instability
error is subtracted, as described in Figure 1.

a®

Mixer CX){—
R(t) A
e > Er(
Target Eg(t)
® paly o ey P D T
CL/ Er (t) Circulator

Figure 1. Micro-Doppler radar system scheme.

The radar sensor proposed in this study and shown in Figure 1 consists of a fixed
frequency generator with the frequency fy, an antenna that is used for both transmission
and reception, a circulator that enables simultaneous transmission and reception, a single-
channel mixer, and an analog-to-digital (ADC) device. The generator signal is connected
through the circulator to the antenna so that a transmission of frequency fj is carried out at
the radar output. The transmission signal at the radar output has the frequency fj, and the
amplitude At is obtained by the following expression:

ET(t) = ATejZﬂfot. 1

The transmission signal hits the target at the distance R(t). The target scatters the
radar’s transmission signal, with some of the scatters being reflected backward to the radar.
The scatters from all the N sub-movements of the target returned from the target backward
to the radar have the amplitudes Ag; and the time delays 7;(f), which are calculated
as follows:

N-1
Er(t) = Y Ag,e2olt=Ti(t)] )
i=0

where T;(t) is equal to the round-trip 2R;(t) divided be the speed of light, ¢, as follows:

_ 2R(t)

(1)

®)
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According to Figure 1, the input signals to the mixer comprise the local oscillator CW
signal Er(t) and the received signal Eg(t). The output of the mixer after low-pass filtering
(LPF) is the signal Z(t), calculated as follows:

- Er(t) x Eg(t) NolATAR o o N2l x :
Z(t) — T( ) 5 R( ) — Z 5 zeJZTIfOT,(t) _ Z A,-e c (4)
i=0 i=0

where the LPF is carried out without a filter and instead by waveguides that do not pass all
the high harmonics of the mixing process.

The result is a time-varying phase for each sub-movement 6;(t). After digitization
by ADC and spectral analysis by the fast Fourier transform (FFT) operation of Z(t), the
following Doppler frequency is obtained:

ldel’(t) o Z_f()dRi(t) o 2fy

=24 ~ < a o ulth ©)

which is related to the derivative of the phase 0;(t). The derivative of the distance R(t)
comprises the radial velocities, v, (t), of the target and its micro-movements relative to the
radar, as follows:

vr; (t) = vi(t) cos[o (t)]. (6)

Equation (5) presents the linear relationship between the radial velocity vy, (t) of a
target relative to the radar and the frequency obtained at the radar detector output f4 (t).

In order to track the instantaneous micro-movements velocity, a short-time Fourier
transform (STFT) is employed. Fourier transformation is carried out within a moving
temporal window of a duration T. The resolution in the frequency domain is, thus,

1
Afg = = 7
fi= = )
From the relation appearing in Equation (5), the resulted velocity resolution of the

radar is f o1
0 0
A = — - A = = . —
Consequently, the minimum integration time T for obtaining a required velocity

resolution Av, is

fo 1
T==" 9
2c  Av, ©)
Inspection of Equation (9) reveals that increasing the carrier frequency fy allows
shortening integration time T, while keeping the required resolution of velocity.
The measurements in this study were performed with the radar shown in Figure 2.
This radar was a purchased radar with the parameters specified in Table 1.

Figure 2. Micro-Doppler radar with an eight-degree beam width.
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Table 1. Parameters of the micro-Doppler radar shown in Figure 2.

Parameter Name Value
Transmission frequency 94 GHz
Transmission power 13 dBm
Antenna type Horn lens
Antenna gain 25 dBi
Beam width 8 degrees
Coupling 3dB
Coupler’s isolation 33 dB
Circulator’s isolation 18 dB

The W-band radar employed in this work is used to demonstrate the feasibility of
performing a variety of classification tasks by a NN. In order simplify the implementation,
a radar with single antenna and a circulator was used. In such configuration, the limited
isolation of the circulator (18 dB) may lead a degradation in the dynamic range. However,
it was found that, for the range of distances considered in the experiments, the targets were
detected with sufficient accuracy enabling reliable classification.

3. Pre-Processing by Time-Frequency Analysis

Equation (5) shows the way to measure the velocities of a target with the help of
Doppler radar when it is also possible to measure the amount of return of a target, a
parameter characterized as the radar cross-section (RCS). Although the amplitude of the
transmission At is constant, the amplitudes in the reception, Ag;, depend on the RCS of the
targets and the distance between the radar and the target, while the RCS is mainly affected
by the size of the target and the material from which it is made.

In this form of analysis, information is obtained about the velocity of a target and the
strength of the return without any information about the changes in time. This analysis
is still too simple when a more qualitative discovery of the parameters that characterize
the radar targets is desired since much of the information is essentially available in the
time plane.

A time analysis, in addition to frequency and power analyses, demands a short-time
Fourier transform (STFT) operation. In an STFT operation, the total data are divided into
separate time windows with same period T, and an FFT operation is performed on each of
them separately. The result is a multiplicity of frequency—power-type graphs at different
times, and, when a total analysis of all those graphs divided by time is performed, the time
plane is also considered.

The signal Z(t) from Equation (4) is entered into the FFT, in accordance with Figure 1.
By using an STFT analysis with the window of length T, the three-dimensional output
z1(t,f) is obtained as follows:

_ t+T o N—1 t+T e~
Zr(tf) = }‘{Z(t) X w{itﬁﬂ” =/ wr(t)Z(t e P at = )y [ wr(t)e R4y A; 01
N-_1 t+T S ! ot (10)
= T [ wp(t)A; 2 ()8 ool gy
i=0 t

t—T/2
T

and, when F{-} is the Fourier transform of (), wr(f) = w { } is a window function

that is equal to zero when t <0 and T < t. In this study, the Blackman window was chosen,
and 0;(t) was calculated as follows:

t
0;(t) = / 2nfy (¥)dt. (11)
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In the case where f; () has a very slow variant for the period of time T, Equation (5)
transforms into the form

t+T _ jemty (nf ,

A convenient way to view a 3D graph created by the STFT process is to display
the power plane in a color display. Thus, the Y-axis represents the frequency, the X-axis
represents the time, and the colors represent the Z-axis of the power according to a color
map that should be attached to the graph. There are cases where time overlaps are made
between time windows for getting a better time resolution. The result of the process is
a graph with three axes commonly called a spectrogram. Figure 3a illustrates the time
windows division from the complete vector x(t). Figure 3b presents the FFT for each
separated time window in a comparison to the FFT of the complete vector x(t). Figure 4

presents the spectrograms with a comparison between full-time Fourier Transform analysis
versus short-time Fourier transform.

In Time Domain In Frequency Domain

x(®) /W WMWMWW FET{x()

x(o<=t<02) VI | FPTxos02)
x(0.1<=t<0.3) UL | FFT{x(0.1<=t<0.3)} — B
x(0.2<=t<0.4) i | FFT{x(0.2<=t<0.4)} —— e
x(0.3<=t<0.5) WA~ P Tox(0.3<=t<0.5)} ——— e
x(0.4<=t<0.6) ‘ FFT{x(0.4<=t<0.6)} g St

0 0.2 0.4 0.6 0 5 10

Time [sec]

Frequency [kHz]

() (b)
Figure 3. Comparison between full-time Fourier Transform analysis versus short-time Fourier
transform: (a) data vector x(t) in comparison to separated time windows of x(t); (b) FFT results of

each. The colors in (b) express power, with a high number being red, a medium number being green
and a low number being blue.

DFT{x(t)}

STFT{x(t)}

T8 T8
= =<,
>6 >6
O O
(= C
sS4 sS4
g 8
i 2 I 2

0 0

0 0.5 1 0 0.5 1
Time [sec] Time [sec]

(a) (b)

Figure 4. Illustration of the STFT process as a spectrogram graph: (a) FFT of the entire vector, with no
information along time; (b) STFT of the same time vector with data variation due to the STFT process.

The colors express power, with a high number being red, a medium number being green and a low
number being blue.

The color map can also be displayed in grayscale. With this method, it is possible
to distinguish between the types of signals that change in time, even when their central
frequencies are the same. Thus, for example, it is possible to distinguish between the
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types of signal modulation in wireless communications. Without a spectral analysis over
time, all signals would receive a relatively similar spectrum image. Similarly, in a Doppler
radar system that detects instantaneous velocities, it is possible to notice changes over time
when we use a time-spectral display; thus, it is possible to perform an in-depth analysis of
the signal.

In this study, we present a simplified way for frequency analysis over time. Other
spectral analysis techniques, such as wavelet transform [44] can be also employed. However,
we found the STFT analysis efficient for the processing and target classification. Note that,
in alternate methods, the frequency resolution is dependent on the frequency. In the
measured scenarios, the resulted Doppler frequencies are spread over a broad range. We
preferred to employ the standard STFT, while keeping the resolution equal in order to
avoid introducing bias into the classification procedure.

4. Dataset Creation

Classifying signals with the help of a DNN’s supervised learning is a data-driven
method; therefore, to learn, it requires recordings. In general, the accuracy of the classifica-
tion improves if the data are numerous and qualitative.

When it comes to a DNN whose job is to classify different signals from different targets,
the task becomes very complex when the same type of target has great diversity in the
range from the radar, the direction of arrival (DoA), the multi-path, and other factors. The
task is even more complex when there is an attempt to fool the radar. Therefore, in this
study, a dataset was built with multiple ranges, targets, and attempts to fool the radar.

Seven categories of targets were recorded by the radar:

Targets walking (human) at close range: four different people and 132 recordings;
Targets walking (human) at medium range: four different people;

Targets walking (human) at long range: four different people;

Targets walking (human) with a concealed weapon: four different people (the goal
was to test whether a person walking toward the radar could hide their intentions);
Targets walking and running (dogs) at far to close range: five different dogs;

Targets crawling (human) at close range: four different people (the goal was to test
whether a person could fool the radar and impersonate a dog);

e  Recordings with no target at all, i.e., open space (these recordings were created to
prevent false alarms; when the system is operational, there will not always be targets,
and the system also needs to recognize this case).

The system described in Figure 1 is shown in Figure 5 as it was assembled and placed
in the field to perform the recordings.

W 8 8

Figure 5. The micro-Doppler radar system used in the field to perform the recordings.

The system was placed in a wooded area, and recordings were made of a target
walking at three different distances, as shown in Figure 6.
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Recordings of a Walking Man ﬂ

From the side From the front

3

Figure 6. The system and recording environment of the walking target at three different ranges. In
the pictures on the right, a target was moving at two different distances, and spectrograms were
obtained by the computer.

Recordings without a target have no meaning for distance. Creating a recording of
walking dogs is a complex task; therefore, no divisions into different distances were made.
The methods of obtaining recordings for dogs and without a target are shown in Figure 7.

(b)

Figure 7. The system and recording environment of (a) a recording with no target, where the
spectrogram can be seen on the computer’s screen, and (b) a walking dog.

A summary of the composition of the dataset can be seen in Table 2.

Table 2. Categories of targets recorded by the radar.

. Distance between Nu.mber of Number of
# Category Action Different .
Radar and Target Recordings
Targets
1 Person walkin Close (5-10 m) 132
2 & Medium (10-20m)  Four persons 132
3 Far (20-30 m) 132
4 Person walking with Close (5-10 m) Four persons 60
a concealed weapon
5 Dog walking and 520 m Five dogs 80
running
Person crawling Close (5-10 m) Four persons 132

7 No target X X 80
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The total dataset consisted of 748 recordings. The created dataset was very diverse,
and there was also an opening to prevent false alarms by creating recordings with no
targets. The spectrogram of the variety of recorded targets is presented in the next section.

5. Neural Network Training Procedure

After making all the recordings of all the desired targets, the recordings were put into
pre-processing, as discussed in Section 3 of this study. The spectrograms were put into
folders, with each folder having the name of that category. In this way, the training process
was performed using the supervised learning method where the DNN had to be trained to
associate the recordings with the name of the folder from which the recordings came.

The dataset was divided into three sub-datasets as follows:

e Dataset for training: This set had 60% of the recordings from the main dataset. It
was used for learning in iterations, where, in each iteration, there was a change in the
weights according to the training.

e  Validation database: This set had 20% of the recordings from the main dataset. These
were spectrogram images that did not exist in the training set, and they were used for
analyzing the online training performance.

e  Database for testing: This set had 20% of the recordings from the main dataset. These
spectrogram images were not entered into the training process, and they simulated
a situation where the system was operated in the field; and the capabilities of the
network were observed by performing the target classification in operational mode.

In the training process, the spectrogram images were inserted into the DNN, as shown
in Figure 8.

Spectrogram

N

Prediction

Type of Layer

Dimensions

Comments

Image Input

228 x 228 pixels

Spectrogram in grayscale values

Convolution

11 filters, 10 x 10 numbers each

Output of all the filters is
11x128x128

Batch Normalization

11x128x128

Normalization before activation

RelU

11x128x128

Non-linear activation function

Max Pooling

11x114x114

Dimensions reduction by 4 (each 4 numbers
become one)

Convolution

16 filters, 10 x 10 numbers each

Output of all the filters is
16x114x 114

Batch Normalization

16x114x 114

RelU

16x114x114

Max Pooling 16 x57 x 57

Convolution 32 filters, 10 x 10 numbers each Output of all the filters is
32x57x57

Batch Normalization 32x57x57

RelU 32x57x57 103,968 in total

Fully Connected 103,968 x 7 7 classes of different targets

Softmax

7

Probabilities (normalize to sum equals 1)

Classification Output

7

Prediction is the maximum probability

Figure 8. The DNN structure used in this study.

Figure 8 presents the structure of a convolutional neural network (CNN), which
is a subtype of a DNN. In this structure, the order of the layers is tailored to fit the
classification procedure. Initially, the input to the network is a grayscale spectrogram,
sized at 228 x 288 pixels. This image is fed into the first convolutional layer to identify
potential features. Within this convolutional layer, the presence of corresponding features
is detected. Following this layer, normalization of all indications must be performed before
proceeding to the ReLU activation. This normalization step is crucial because ReLU is a
non-linear function, as discussed in the introduction above. After the ReLU activations, the
max pooling layer reduces the dimensions to decrease the complexity of the classification
computation. Following max pooling, the layers are replicated. The output from the final
ReLU layer is channeled into seven neurons in the fully connected layer. The softmax
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layer then generates the probabilities corresponding to these seven neurons. Finally, the
prediction is executed by the classification layer. The general structure of the DNN and the
order of the layers depicted in Figure 8 are typical of CNN-type neural networks [42,43].

The network shown in Figure 8 then underwent a training process according to the
process described in Figure 9.

Training
Data-Set Pre-Processing Neural Network Backpropagation
Training Set R
B »
ata
L4
Loss
Lakicls Function
Validation Set Hyper-Parameters Control Tuning with Back Propagation
By Stochastic Gradient Descent
Testing
Pre-Processing Pre-Trained Neural Network Classification
I\
Test Set »r
L J

Figure 9. Illustration of the training and testing processes of a DNN, as performed in this study.

The DNN from Figure 8 underwent the training process from Figure 9. The progress
achieved through the training process is shown in Figure 10.

70+ l" ——— Training Iterations
£ 6ol ~ ®--e Validation Cycles
§ ’
5 50} 1
S
< 40}
30 g
20}
10+
10
0 ! 1 1 1 1 1 1
50 100 150 200 250 300
8r \ ——— Training Iterations
6 L \ ®--e Validation Cycles
o |5
Sam |
S ~
¥
2t \ “s
\ e -
— St m——--a ® - @ ---=-- ®---mm- @ mmm—— L O O - %0
0 S——— -y N . A
50 100 150 200 250 300

Figure 10. The neural network’s training process.

Figure 10 shows a suboptimal result of the DNN’s training. Although the accuracy of
the study approached 100%, the validation database showed a different situation, with an
accuracy of approximately 80%. The actual accuracy that should have been achieved with
the new data was that of the validation database; thus, the result did not appear to be ideal.

In the case of a very diverse database, there may be a need to understand the reasons
for the low level of accuracy, and sometimes, there is no reason to be concerned. To better
understand the reasons for the low accuracy, the confusion matrix, which separately shows
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the reasons for the overall accuracy for each type of category, can be consulted. Figure 11
shows the confusion matrix of the trained network.

Measured In Actual N
No Target | 11 | 4

Crawling
S5m—10m ; 2
S5m—10m 4 1
Walking < 15m—90m 2
20m—25m 2 3 0
‘Walking with a Gun 2 °
5m—10m
Dog 3 13
o~ ; 7.
‘/I/‘ N G 2. N 2, Ly O
o N Y, NN % %’o %
L. 7

Walking Predicted As

Figure 11. Confusion matrix of the target classification from the test dataset. The background colors
behind the numbers in the matrix indicate the percentage of the total quantity. Blue color is a high
percentage, yellow color is a low percentage.

Several important conclusions can be drawn from Figure 11:

High accuracy was achieved at a close walking range and even at a medium range.
Poorer accuracy was achieved for long-range walking, where the main confusion was
due to the recordings without any target, and it was, nonetheless, acceptable.

e  There was confusion between the recordings without any target and the recordings of
far-range walking, which was acceptable.

e  There was slight confusion between the crawling and walking targets at both medium
and long ranges.

e  There was no confusion between the crawling person and the walking dog (the radar
could not be fooled).
High-quality detection existed for the walking ranges (even though we used Doppler radar).
There was little acceptable confusion due to overlap between the ranges.

It is important to note that the resources of the available data for training neural
networks in the tasks are very limited. This requires the establishment of new dataset for
the purpose of this research only. For the purpose of training the DNN and providing real
proof of the feasibility of the presented scheme, initial recordings of the radar targets were
made for the neural network training. Despite the limited quantity of recordings, which is
not particularly large, the training process shown in Figure 10 demonstrates convergence
around a finite value. The confusion matrix, shown in Figure 11, demonstrates a sufficient
classification reliability.

6. Interpretability

Understanding how decisions are made in a DNN is challenging since DNNs are rarely
driven by a clear model. There are a few ways to comprehend the DNN's decision-making
abilities and motivations in order to understand how they operate. Taking information
samples from various categories and comparing the activation levels of various attributes
is one of the techniques used in classification networks.

The features in the first convolution layer were trained to find different patterns
according to the different categories across the images while the features in more advanced
layers learned to find the different locations of the previous activations.
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6.1. Activity Detection

To understand the patterns of the different categories that the features in the first
convolution layer identified in the images, we performed a comparison between three
different features across three different categories from the database that were saved
for examination. The activations obtained from the three different features in the first
convolution layer are shown in Figure 12.

Activations of Feature #2 | Activations of Feature #4 | Activations of Feature #8

No Target:

WO Target

N

Walking in a Range
of 10 Meters:

Walking With
a Gun:

(g) (h) (i)

Weak Activation II Strong Activation

Figure 12. Interpretability of the first convolution layer of the neural network: a comparison of three
different features and three different categories. (a—c) are activation of features 2, 4 and 8 from the
CNN in Figure 8 with input of a spectrogram of no target class. (d—f) are activation of features 2,
4 and 8 from the CNN in Figure 8 with input of a spectrogram of a walking human class. (g-i) are
activation of features 2, 4 and 8 from the CNN in Figure 8 with input of a spectrogram of a walking

human with a gun.

Figure 8 shows the hierarchy of the DNN that was employed in this study. It can be
seen in the first convolution layer that there were 11 features. The most noticeable features
in this layer—features 2, 4, and 8—were chosen to represent how the network operated for
part of the process of classification.

Figure 12 demonstrates the activation images produced after passing three images of
different categories through features 2, 4, and 8. The left column in Figure 12 shows the
activations for feature 2, the middle column shows the activations for feature 4, and the
right column shows the activations for feature 8. For each of the features, three spectrogram
images for the three different categories were inserted.

Three categories out of the seven were chosen to distinguish the way the network
worked when the network was asked to classify the activities (walking with and without a
gun), and a comparison was made with the situation where there was no target.

For features 2 and 4, there were almost no activations in the case where there was
no movement (as shown in Figure 12a,b). For the walking category, the activations were
significant for limb movements (as shown in Figure 12d,e). For the walking movement with
a weapon, there were significantly stronger activations for the center of mass, as shown in
Figure 12g,h.

For feature 8, there were strong activations to noise across the entire frequency and
time domains in the case where there was no movement, as shown in Figure 12¢c, and there
were different activations for walking and walking with a weapon, as shown in Figure 12fi.

For clarification, an analysis was conducted to better understand the indications of
limbs and center of mass that appeared in the activation features of Figure 12d,e,g,h. The
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corresponding input images, shown as grayscale spectrograms, are presented in Figure 13.
The movement of the center of mass is depicted as an average signal near line 150 on the
Y-axis of the spectrogram. After the max pooling layer, this center-of-mass movement
becomes evident as an activation feature around line 75. A closer look at Figure 12g,h
reveals a pronounced activation at this line.

Gray-Scale Spectrogram: Walking in a Range of 10 Meters Gray-Scale Spectrogram: Walking With a Gun
Pixel in x-axis Pixel in x-axis
1 50 100 150 200 228 1 50 100 150 200 228

l [l 1 [l [l ] >
1 1 I I 1 1 v

v

50 — 50

100 - 100 +

Pixel in y-axis
Pixel in y-axis

150 150 +

200 200 T

228 228 1+

Figure 13. The input images as grayscale spectrograms.

Furthermore, Figure 13 displays limb movements across the Y-axis spanning from
line 50 to line 228. After the max pooling layer, the anticipated activations for this range
are halved, resulting in activations from line 25 to line 114. This is evident in the activa-
tion features of Figure 13d,e, where the activations span the Y-axis between these lines.
This relationship highlights the connection between the micro-Doppler mapping of the
spectrograms and the subsequent activations.

6.2. Range Detection

In this study, work was performed using Doppler radar. According to Equation (5),
Doppler radar can provide information about a target’s velocity without any information
about its range. In practice, the measurements were made for three different walking
ranges for four different people, and, in most cases, the network discovered the walking
range in addition to detecting the walking itself. Perceptions about the reason for the
discovery of the range may be achieved by an analysis similar to that in the previous
section; thus, images from the test database were inserted into the three features from the
first convolution layer. The results of the activation images are shown in Figure 13.

Figure 14a,b present strong activations for features 2 and 4 in the case of walking in the
near range. The activations were weaker for the average range, as shown in Figure 14d,e,
and they were even weaker for the far range, as shown in Figure 14g,h. Thus, it could
be said that a closer range of walking led to a higher level of activation for these features.
Additionally, for feature 8, a greater walking range led to greater activation.

Therefore, it could be concluded that the distance classification results from the different
SNRs of the measurements were due to the differences in the intensities of the reflected
radiation from the targets as a function of the different distances of the walking measurements.
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Activations of Feature #2 | Activations of Feature #4 | Activations of Feature #8

Walking in a Range
of 5-10 Meters:

Walking in a Range
of 15-20 Meters:

Walking in a Range
of 20-25 Meters:

Weak Activation II Strong Activation

Figure 14. Interpretability of the first convolution layer of the neural network: a comparison of three
different walking ranges for the walking person and the radar. (a—c) are activation of features 2, 4
and 8 from the CNN in Figure 8 with input of a spectrogram of short-range walking human class.
(d—f) are activation of features 2, 4 and 8 from the CNN in Figure 8 with input of a spectrogram of
medium-range walking human class. (g-i) are activation of features 2, 4 and 8 from the CNN in
Figure 8 with input of a spectrogram of high-range walking human.

6.3. Dog and Human Detection

A radar that will work in the field should classify targets correctly with high certainty,
even attempts to fool the system are made. One of the possibilities for attempting to fool a
radar that can differentiate between a person and an animal is to attempt to resemble an
animal by crawling in front of the radar. The DNN shown in Figure 8 received recordings of
a human crawling in order to test the DNN’s ability to detect that the target was a crawling
human, rather than an animal.

According to the confusion matrix in Figure 11, the DNN rarely confused a crawling
human with a walking dog, even in the case where there was a small number of examples
in the dataset. Observing the various activations within the DNN should provide insight
into its ability to differentiate a walking human, a crawling human, and a walking dog.
Here again, the activations were selected after the first convolution layer with features 2, 4,
and 8. The activation results are shown in Figure 15.

As discussed in the previous paragraphs, for comparison, low activations can be seen
for non-target recordings. It can be seen in Figure 15e,h,k that, in the column for feature
4, there are differences between the activation results for the same feature for different
targets. For the other features, it is difficult to identify significant differences; indeed, this
is a comparison between different but relatively similar targets in relation to the previous
cases examined.

6.4. Prediction Accuracy

The common radar parameters, true positive (TP) and false alarm (FA), are extremely
important for understanding and evaluating whether a radar system is reliable. Figure 15
presents the process of deriving the TP directly from the confusion matrix shown in
Figure 11. The TP considers cases in which there were true classifications of targets, cases in
which a person was detected as a person, and all cases of walking and crawling. As can be
seen in Figure 16, for all 25 recordings, crawling was detected as crawling and walking, and
near- and medium-range walking was detected as walking (and overlap between them was
allowed), while only 2 out of 25 recordings of far-range walking were wrongly detected as
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noise. This is understandable because, with any system, there is a degradation in abilities
as long as the range for detection increases.

Activations of Feature #2 | Activations of Feature #4 | Activations of Feature #8

No Target:

Walking Person in
a Range of 5-10
Meters:

Person Crawling:

Dog Walking:

Weak Activation II Strong Activation

Figure 15. Interpretability of the first convolution layer of the neural network: a comparison of
person walking, a person crawling, and a dog walking. (a—c) are activation of features 2, 4 and 8 from
the CNN in Figure 8 with input of a spectrogram of no target class. (d—f) are activation of features
2,4 and 8 from the CNN in Figure 8 with input of a spectrogram a walking human class. (g—i) are
activation of features 2, 4 and 8 from the CNN in Figure 8 with input of a spectrogram of a crawling
human class. (j—-1) are activation of features 2, 4 and 8 from the CNN in Figure 8 with input of a
spectrogram of a walking dog.

i Walking
Predicted I
True 4 ‘2.
o, O .3
2 Jé‘t‘ 3 Y %5 %o
G %, 4" %y, 0t
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No Target 1 4
Crawling 1 2
5m10m | 1
‘Walking 15m-20m | 2
20m25m | 2 3 0
‘Walking with a Gun 2 9
Dog 3
~ L g
2 out of 25 NN 23 out of 25
detected as n0 55 ourof 25  detected right
target detected right

Figure 16. True positive analysis using the confusion matrix.

Figure 17 presents the process of deriving the FAs directly from the confusion matrix
shown in Figure 11. The FAs indicate the cases in which the predictions indicated the
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existence of a target, while, in reality, there were no targets. In our case, targets that were
dogs or instances with no target at all were predicted as being walking person, as can be
seen in the red arrows in Figure 17. All the targets of persons, shown in the green circles,
were true predictions.

3 ‘Walking
Predicted
True I / N Iy,
o, @ 9 %
2 T, a5, % G,
& éo B Yy % @ 0,
& B % h 3 N
No Target " ‘ —) 4 out of 107
- detections are false
Crawling 1 2
5m-10m T I
= 100 out of 107
‘Walking 15m-20m 2 > detections are true
¢
20m-25m 2 Q) 0 ')
‘Walking with a Gun 2 9
l—r N
3 out of 107
Dog 5 u s ') detections are false

Figure 17. False alarm analysis using the confusion matrix.

In order to present the classification capabilities of the DNN in a realistic way; it is
necessary to divide the classification capabilities according to different ranges, as in any
practical system. That is, it would be wrong to say outright that the DNN misclassifies when
it was given a very difficult task of classifying targets at a very long distance. As shown in
Figure 16, accuracy dependent on distance can be established (as shown in Figure 18) where,
for the near-range and medium-range walking, the resultant accuracy was 100%, and for
the far-range distance, there were two mistakes (out of 25), which resulted in an accuracy
level of 92%. As discussed earlier, this study was unique in that there was a division of
the radar targets into different ranges as a significant step toward an operational system,
whereby closer targets led to a higher classification accuracy. A degree of uncertainty was
allowed when the targets were far away.

20225 meters]
92%]Jaccuracy;
bL5220)meters]
100%%Jaccuracyy

5,10 meters)

100%/Jaccuracy;

Figure 18. Accuracy dependent on range.

The subject of false alarm was significant, and the study indicated the number of false
alarms expected for the system. According to Figure 18, the FA measure could be extended
in the case of a small database when no false alarms were presented in the medium-range
walking distance (possibly because only the walking human targets had range diversity).
Three false alarms were shown for an actual dog walking, which was classified as a human
walking at close range, out of 107 recordings in total, and four false alarms were shown
for walking at a far distance when in fact there were four cases where there was no target.
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Given that there was a situation without a target and a situation where a dog was walking,
these were cases where there was no need for an alarm from the system. In situations
where a person was walking and that person needed to be warned, the degree of FA was 3
out of 107 for close-range distances (2.8%) and 4 out of 107 for far-range distances (3.7%).
An illustration of the FA factors based on the actual DNN classifications can be seen in
Figure 19.

»
»

Probability Density

»

1 1 =
Threshold 1  Threshold 2 Accuracy Level

Figure 19. False alarms in the neural network’s performance. The blue graphs are for illustration purposes.

The X-axis in Figure 19 indicates the decision levels of the DNN after the softmax
layer (from Figure 8). This layer shows the classification percentages for each category.
Immediately afterward, the classification layer made hard decisions between the categories;
hence, the category with the highest probability was accepted as the final classification. It
was possible to manually change the threshold levels between the different categories so
that the system could have different FAs and TPs than what were obtained in Figures 16-18,
and these threshold levels are illustrated in Figure 19 as threshold 1 and threshold 2.
Figure 19 introduces a significant ability to calibrate decision thresholds in a tactical realistic
system. Changing decision thresholds is extremely important because, in many cases, a
higher or lower priority is needed for some of the targets or activities that may occur in
front of the radar.

7. Conclusions

A detection technique was examined, and it presented the ability to classify radar
targets, detect their activity, and detect their range, while showing immunity against being
fooled due to its use of a single neural network. A dataset for walking human targets was
divided into three different ranges between the target and the radar, and a high classification
accuracy was shown for near-range targets over far-range targets. This is a significant
milestone and constitutes progress toward the creation of an operational system. The TP
and FA parameters were analyzed given the provided pre-trained NN, and an XAl analysis
was performed on the activations of the first convolution layer of the DNN for achieving
interpretability and understanding how the DNN worked in completing its various tasks.
In the presented scheme, superiority was demonstrated using a DNN combined with a
micro-Doppler radar in the millimeter wave frequencies, and it was immune to clatters and
detected the micro-movements of the targets. A very high level of accuracy and a low FA
were achieved despite the relatively small database, which was coupled with a relatively
low-cost radar system and a complexity-efficient neural network.
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