
Citation: Yu, Z.; Lei, Y.; Shen, F.;

Zhou, S.; Yuan, Y. Research on

Identification and Detection of

Transmission Line Insulator Defects

Based on a Lightweight YOLOv5

Network. Remote Sens. 2023, 15, 4552.

https://doi.org/10.3390/rs15184552

Academic Editors: Tiziana D’Orazio,

Ronghui Zhan, Jong-Eun Ha and

Hyoseok Hwang

Received: 30 June 2023

Revised: 14 September 2023

Accepted: 14 September 2023

Published: 15 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Research on Identification and Detection of Transmission Line
Insulator Defects Based on a Lightweight YOLOv5 Network
Zhilong Yu 1, Yanqiao Lei 1,*, Feng Shen 2, Shuai Zhou 3 and Yue Yuan 2

1 College of Automation, Harbin University of Science and Technology, Harbin 150080, China;
zlyu@hrbust.edu.cn

2 School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
fshen@hit.edu.cn (F.S.); 18b901010@stu.hit.edu.cn (Y.Y.)

3 Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China;
zhoushuailijinmei@163.com

* Correspondence: lei820029589@163.com

Abstract: Transmission line fault detection using drones provides real-time assessment of the opera-
tional status of transmission equipment, and therefore it has immense importance in ensuring stable
functioning of the transmission lines. Currently, identification of transmission line equipment relies
predominantly on manual inspections that are susceptible to the influence of natural surroundings,
resulting in sluggishness and a high rate of false detections. In view of this, in this study, we propose
an insulator defect recognition algorithm based on a YOLOv5 model with a new lightweight network
as the backbone network, combining noise reduction and target detection. First, we propose a new
noise reduction algorithm, i.e., the adaptive neighborhood-weighted median filtering (NW-AMF)
algorithm. This algorithm employs a weighted summation technique to determine the median value
of the pixel point’s neighborhood, effectively filtering out noise from the captured aerial images.
Consequently, this approach significantly mitigates the adverse effects of varying noise levels on
target detection. Subsequently, the RepVGG lightweight network structure is improved to the newly
proposed lightweight structure called RcpVGG-YOLOv5. This structure facilitates single-branch
inference, multi-branch training, and branch normalization, thereby improving the quantization
performance while simultaneously striking a balance between target detection accuracy and speed.
Furthermore, we propose a new loss function, i.e., Focal EIOU, to replace the original CIOU loss
function. This optimization incorporates a penalty on the edge length of the target frame, which im-
proves the contribution of the high-quality target gradient. This modification effectively addresses the
issue of imbalanced positive and negative samples for small targets, suppresses background positive
samples, and ultimately enhances the accuracy of detection. Finally, to align more closely with real-
world engineering applications, the dataset utilized in this study consists of machine patrol images
captured by the Unmanned Aerial Systems (UAS) of the Yunnan Power Supply Bureau Company.
The experimental findings demonstrate that the proposed algorithm yields notable improvements
in accuracy and inference speed compared to YOLOv5s, YOLOv7, and YOLOv8. Specifically, the
improved algorithm achieves a 3.7% increase in accuracy and a 48.2% enhancement in inference
speed compared to those of YOLOv5s. Similarly, it achieves a 2.7% accuracy improvement and a
33.5% increase in inference speed compared to those of YOLOv7, as well as a 1.5% accuracy enhance-
ment and a 13.1% improvement in inference speed compared to those of YOLOv8. These results
validate the effectiveness of the proposed algorithm through ablation experiments. Consequently, the
method presented in this paper exhibits practical applicability in the detection of aerial images of
transmission lines within complex environments. In future research endeavors, it is recommended to
continue collecting aerial images for continuous iterative training, to optimize the model further, and
to conduct in-depth investigations into the challenges associated with detecting small targets. Such
endeavors hold significant importance for the advancement of transmission line detection.
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1. Introduction

Transmission line serve as the primary means of transportation within the national
power system, thereby, playing a crucial role in ensuring the system’s stable operation. In
light of rapid advancements in drone inspection technology and artificial intelligence [1],
the inspection of transmission lines in China has only achieved a level of intelligence [2]
whereby preset flight paths enable automatic aerial photography [3,4]. Nevertheless,
the processing of these aerial images still relies on manual screening, which results in
slow detection speeds and substantial consumption of human and material resources.
Consequently, intelligent detection and recognition of defects capabilities within vast
quantities of transmission line images hold immense significance.

Extensive research has been conducted both domestically and internationally on the
detection of defects in transmission lines, yielding phased achievements [5–7]. Notably,
algorithms based on convolutional neural networks have demonstrated remarkable perfor-
mance in target detection [8] and project defect detection [9]. In one study [10], the authors
proposed a method that employed regional divisions of high-capacity convolutional neu-
ral networks, known as R-CNN, to locate and segment detection objects. Subsequently,
faster models were developed, such as Fast R-CNN [11] and Faster R-CNN [12]. Another
study [13] optimized the R-CNN approach by enhancing regional divisions and employing
neural network architecture search technology, resulting in promising outcomes in fabric
defect detection. Additionally, a modified Faster R-CNN algorithm was proposed in a
separate study [14], which utilized a cluster algorithm for the initial test box and improved
the loss function to address the imbalance of positive and negative samples. Furthermore,
the authors of another publication [15] employed a combination of an empty-hole con-
volution network and a deep Q network for feature extraction, while incorporating an
attention mechanism module to model the defects. The proposed approach exhibited
commendable robustness. In a separate study [16], a TensorFlow platform was introduced,
along with a Faster R-CNN model based on this platform. The Concept-Resnet-v2 network
was employed as the fundamental feature extraction network, enabling network structure
adjustments and parameter optimizations. Considering the current development trend,
the R-CNN algorithm is evolving towards lightweight implementations. However, the
inherent limitations of this two-stage algorithm, such as its relatively complex model and
slower reasoning speed, make it unsuitable for projects requiring large picture batches and
limited hardware resources, particularly for real-time monitoring.

The current target recognition algorithms, in addition to the two-stage algorithm
led by R-CNN, is the single-stage algorithm dominated by YOLO [17]. This single-stage
algorithm model is relatively concise, with faster inference, which means that the practical
application of memory occupation is relatively low; it has better generalization for real-time
detection of engineering scenarios and has been applied to power transmission lines [18].
In another publication [19], a combination of YOLOv3 and Faster CNN was applied to
inspect transmission lines, effectively detecting and determining the types and locations of
defects. Despite the notable accuracy breakthrough, the complexity of the model renders it
unsuitable for practical project applications. Moreover, it consumes a significant amount of
memory and hampers reasoning speed. In a different study [20], the author enhanced the
YOLO network structure by integrating a residual network with a convolutional network.
This modification led to substantial improvements in both accuracy and reasoning speed.
However, it is worth noting that there is still a risk of insulation being overlooked during
the convolution process, resulting in a relatively low degree of adaptation.

In the domain of lightweight networks, such as the Ghost-Net [21] series, Mobilenetv1 [22]
series, and shufflenet [23] series, significant advancements have been made. However, it has
been observed in the literature [24] that deep separable convolution employs a substantial
number of low FLOPs and entails high data read/write operations. This characteristic
renders it more compatible with CPU and ARM mobile devices, while proving less efficient
for hardware with high parallelism, such as GPUs. Given that the transmission branch of
aerial image screening relies on GPU hardware, RepVGG [25], a VGG-like convolutional
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architecture, is better suited to harness the computational power of GPUs. By employing
distinct network structures for inference and training, RepVGG achieves a harmonious
balance between accuracy and speed, making it an ideal foundational network for this
study. Nevertheless, when applied to machine inspection images, the detection of small
target insulators still exhibits a high rate of leakage and false positives, necessitating
further improvement. Furthermore, the current algorithm overlooks the influence of image
quality on detection in practical applications. Therefore, it remains crucial to prioritize the
construction of an image preprocessing network while enhancing the algorithm network.

Within the realm of YOLO series algorithms, YOLOv5 stands out as the most promi-
nent and widely adopted approach. Extensive research [26] has been conducted to enhance
the detection of small target defects in integrated circuits, primarily by augmenting the
YOLOv5 detection component and incorporating the SE layer. Another study [27] intro-
duced the BottleneckCSP module into the primary network for header detection, while
leveraging Ghost convolution to reduce model complexity and strike a favorable balance
between accuracy and speed. This research has yielded valuable insights into the design of
lightweight models. In the context of industrial testing, a separate investigation [28] focused
on constructing a lightweight backbone network and substituting SPP with experience-
driven wild modules. This approach not only improves accuracy while maintaining model
efficiency, but also offers practical guidance for engineering deployment. However, it is
important to note that the actual deployment scenario was not fully considered in this study.
The detection of insulation poses a significant challenge due to the substantial imbalance
between positive and negative samples, leaving ample room for improvement. Recent
efforts have focused on addressing common issues encountered in the YOLO algorithm
through the utilization of artificially curated datasets. However, it is important to note
that the quality of images obtained through direct transmission from drones may not
always be guaranteed, and the power grid dataset remains confidential. Furthermore, the
performances of most algorithms have not been thoroughly validated using actual machine
patrol images. Consequently, there is still considerable potential for enhancing the YOLO
algorithm’s ability to detect target defects in real-world scenarios.

Line inspection defect reports of power companies reveal that the majority of defective
images are associated with insulators. This finding underscores the practical relevance of
employing YOLOv5 for insulator defect detection in engineering applications.

(1) In the current landscape of computer models, the majority of existing models tend to
be complex and pose challenges regarding their practical implementation in typical
configurations. In this paper, we address this problem by reconfiguring the RepVGG
network structure and propose a novel primary network structure called RcpVGG
(reconstitution VGG) as the backbone of YOLOv5. The aim of this reconstruction
is to streamline the reasoning architecture, enabling faster inference, improving the
accuracy of small target detection, and enhancing the overall applicability of the
algorithm in various projects.

(2) Improving the direct acquisition of drone imagery is the focus of this study, given
the complexity of the mechanical vibration background and the presence of attached
images. In this paper, the filtering method of the adaptive median filtering algorithm
is improved, and a new filtering algorithm is proposed, i.e., NW-AMF, with the aim
to mitigate the impact of image quality problems on the accuracy of image defect
detection, so as to improve the noise reduction effect and detection accuracy.

(3) In order to cope with the challenges of small targets and unbalanced positive samples
on target detection, we propose a new loss function, i.e., Focal EIOU. Firstly, the origi-
nal CIOU loss function is replaced by the EIOU loss function with better convergence
effect, and is combined with the Focal loss function to suppress positive samples
effectively. Together, these improvements contribute by improving the accuracy and
acceleration of convergence speed.

(4) To verify the efficacy of the proposed algorithm, we use a completely new dataset. This
study employs a dataset comprised of non-public machine patrol images obtained
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from the drone system of a power supply bureau company. This dataset is utilized
for both training and validation purposes, serving as a means to assess the practical
applicability of the algorithm.

2. YOLOv5 Network
2.1. YOLOv5 Algorithm

Figure 1 illustrates the network architecture of YOLOv5, which incorporates mosaic
data augmentation and adaptive pin-frame computation techniques to enrich the dataset
and obtain an optimal size suitable for the dataset. The backbone network primarily consists
of CBS (Conv + BatchNorm + SiLU), C3, and SPPF modules. During the feature extraction
stage, the preprocessed image serves as input to the backbone network, which extracts
features from various layers corresponding to the target being detected. These extracted
features are subsequently fused in the feature fusion network. The Neck component of
YOLOv5 is responsible for integrating features from different scales and levels. The Head
component performs multi-scale detection on feature maps of varying sizes, ultimately
yielding the coordinate positions and sizes of the target boxes.
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2.2. The Heavy Parameters of the Main Network

Despite the continuous emergence of algorithms for complex branch structures and the
increasing accuracy of detection, the industry still extensively employs algorithms based
on the VGG network. This is primarily due to the VGG network’s fast reasoning speed,
facilitated by its single-road structure, which eliminates the need for additional branches.
Moreover, the VGG network reduces memory consumption and offers a relatively high level
of flexibility in its single-way architecture, enabling improvement at each layer. However,
these advantages are accompanied by evident shortcomings, such as poor performance
and relatively low detection accuracy, resulting in performance deviations.
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According to the current algorithm network structure and performance, it can be
concluded that incorporating a multi-branch architecture during the training process is
beneficial for improving accuracy. However, during the inference process, the use of
the multi-branch architecture can impact reasoning speed, which may be insufficient
for achieving faster reasoning. To address this limitation, a novel network architecture
called RepVGG was proposed in the literature for the first time [18]. The RepVGG training
process employs a multi-branch structure, consisting of 3× 3 Conv, 1× 1 Conv, and residual
branches, which enhances discoverability. In contrast, the reasoning process adopts a single-
road minimalist architecture, significantly boosting inference speed. Refer to Figure 2 for a
visual representation of this architecture.
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The following can be observed through the constructive diagram. For each branch of
the convolutional layer, the method of combining with the Batch Norm layer is used in C1,
C2 and the input and output channel of the 3× 3 convolutional layers can be represented
by W(3) ∈ RC1×C2×3×3. Similarly, the 1 × 1 convolutional layers can be expressed as
W(1) ∈ RC2×C1 and W stands for 3× 3 convolution kernel. The accumulated average,
standard deviation, and proportional factors are combined with the three branches and
the Batch Norm layer. The deviation is µ(3), β(3), σ(3), γ(3), µ(1), σ(1), γ(1), β(1), µ(2), β(2),
σ(2), γ(2). The convolutional process is represented by *. When the input and output image
variables are the same. When satisfying C1 = C2, H1 = H2, W1 = W2, then:

M(2) = bn
(

M(1) ∗W(3), µ(3), σ(3), γ(3), β(3)
)

+ bn
(

M(1) ∗W(1), µ(1), σ(1), γ(1), β(1)
)

+ bn
(

M(1), µ(0), σ(0), γ(0), β(0)
) (1)

Suppose only the 3× 3 convolution and 1× 1 convolutional branches are considered.
In this case, the reasoning function BN is expressed as:

bn(M, µ, σ, γ, β)i,i,,:: = (M:,i,:,: − µi)
γi
σi

+ βi, ∀1 ≤ i ≤ C2 (2)
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Use W ′ and b′ to indicate the convolution nuclear and bias vector coefficients obtained
after the BN layer, then there are:

W ′i,i,,,: =
γi
σi

Wi,∴,:,:, b′i = −
µiγi
σi

+ βi (3)

Available : bn(M ∗W, µ, σ, γ, β):,i,i,: =
(

M∗W ′
)

i,i,,,: + b′i , ∀1 ≤ i ≤ C2 (4)

The remaining identity branches can be treated as a volume layer with a weight of
1× 1, allowing for the application of conversion. By incorporating biases into the three
branches, the final bias weight can be obtained. This module can be considered to be a
convolution module, and the reasoning process can be viewed as a single-road architecture
stacked using this 3× 3 convolution module.

3. RcpVGG-YOLOv5 Algorithm

In the context of insulator defect detection, utilization of the YOLOv5 has revealed a
notable drawback in terms of its sluggish inference speed. Additionally, it suffers from a
high rate of misunderstanding, resulting in subpar accuracy. To address these issues, the
present study proposes a novel approach that leverages RepVGG as the primary network
prototype to reconfigure the existing framework of YOLOv5. The resultant algorithm,
denoted as RcpVGG-YOLOv5, integrates noise and lightweight target detection techniques,
as visually depicted in Figure 3.
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3.1. Improved Adaptive Median Filter Algorithm NW-AMF Filtering

When drone footage is captured in a natural environment along a predetermined
flight path, the resulting images may be impacted by various types of noise, which include
noise from the complex background environment, as well as mechanical jitter and current
within the drone itself. Such noise can negatively affect subsequent target testing and other
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analytical processes. As a result, preprocessing of noise reduction in the input image is
necessary [29]. Adaptive median filtering is the main method of traditional noise reduction
filtering [30]. The principle is: Set two processes, i.e., A and B. The pixels corresponding to
the (i, j) pixels at the coordinate are X(i, j), and the maximum size corresponding to the
corresponding window is Mmax. Set Zmax , Zmin, Imed , which are the maximum, minimum
value, and Z(i, j) median value of the corresponding window gray, respectively. The two
processes A and B meet the formulas:

ZA1 = Imed − Zmin (5)

ZA2 = Zmax − Imed (6)

ZB1 = Z(i,j) − Zmin (7)

ZB2 = Zmax − Z(i,j) (8)

Upon transmitting the noisy image to the filter network, the first step involves con-
ducting grayscale extraction to ascertain whether it falls within the median range. This
process is governed by Equations (5) and (6). Subsequently, the conditions are evaluated to
determine if they are satisfied, i.e., ZA1 > 0 and ZA2 > 0. Following this, an assessment is
made to verify if the grayscale value of the set window meets the criteria, i.e., ZB1 > 0 and
ZB2 > 0. If these conditions are met, it can be concluded that the pixels are non-noisy, and
the actual grayscale value, denoted as Z(i, j), is outputted. Conversely, if the conditions are
not met, the output will be the median grayscale value, represented as Imed.

However, in the context of comprehensive high-definition image analysis, the im-
pact on the window is significant once the image details reach a relatively complete state.
Optimal information performance of the image details is achieved when the window
value is set to a smaller magnitude; however, this comes at the expense of compromised
noise reduction capabilities. Conversely, a larger window value enhances filtering perfor-
mance, albeit at the risk of inducing excessive blurring in the image. To address this issue,
the present study introduces an enhanced noise reduction method, namely the adaptive
neighborhood-weighted median filtering (NW-AMF) method. The neighboring domain of
Z(i, j) is expressed as shown in Figure 4.
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Let the set of corresponding neighborhood pixel values be denoted as fn(i, j), and let
the set of neighborhood pixel values in the up, down, left, and right directions be denoted as
W[ f (i, j)]. If the fn(i, j) value satisfies the conditions of being either 0 or 255, it is considered
to be noise and subsequently eliminated. The remaining set of neighborhood pixel values is
then used to calculate the median value, denoted as Med(W[ f (i, j)]). Weighting coefficients
are assigned to each pixel according to Equations (9) and (10). Finally, the remaining pixels
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and their corresponding weighting coefficients are multiplied and summed to obtain the
final filtering output, as illustrated in Equation (11):

sum =
N

∑
n=1

1

1 + ( fn(i, j)−Med{W[ f (i, j)])}2 (9)

wn(i, j) =
1(

1 + [ fn(i, j)−Med{W[ f (i, j)]}]2
)
× sum

(10)

f (i, j) =
N

∑
n=1

fn(i, j)× wn(i, j) (11)

Among these variables, N represents the total number of pixels in W[ f (i, j)]. Once
the neighboring pixel collection undergoes the filtering process, the size of the weighted
coefficient for each pixel point wn(i, j) is obtained. The resulting filter output is represented
by f (i, j). The overall structure of this process can be summarized as in Figure 5:
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3.2. Reconstruction of the RepVGG Main Network: RcpVGG

The RepVGG network exhibits a notable enhancement in terms of inference speed,
while simultaneously striking a balance between performance and accuracy, thereby ful-
filling the fundamental requirements for target detection. However, it has been observed
that the accuracy of RepVGG experiences a substantial decline. Furthermore, the rate of
misinterpretation escalates, rendering the network’s performance unsuitable for direct
deployment. In light of these circumstances, here, we introduce a novel approach, namely
RcpVGG (reconstitution VGG), with the aim of augmenting its detection capabilities while
preserving its commendable reasoning prowess.
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Upon deploying RepVGG in conjunction with YOLO, a notable deterioration in perfor-
mance and a collapse in quantization emerge as pressing concerns. Notably, the distribution
of input channel weights in the model, as well as the tensor distribution values of the output
channel, exhibit favorable characteristics that aid in mitigating quantization errors. In an
effort to investigate the quantization error, the study referenced as [31] conducted ablation
experiments on the RepVGG architecture, thereby quantifying the error associated with
each branch. Intriguingly, it was discovered that the input error experienced a significant
increase subsequent to traversing the 1 × 1 branches and identity branches of the BN layer.
Building upon this revelation, this study adopts a similar approach by eliminating the
1 × 1 and identity branches. To address the issue of variance drift, the three branches are
subsequently aggregated, and to ensure stability during the training process, a BN layer is
introduced after the summation of the three branches. For further details regarding the pa-
rameters, please refer to Section 3.1. Consequently, the reconstructed model is represented
by Equation (12):

M(2) = M(1) ∗

 ∑
k∈{0,1,3}

Reshape

(
γ(k)√

ε + σ(k) ∗ σ(k)

)
∗ W(k)

+ ∑
k∈{0,1,3}

[
β(k) −

γ∗(k)µ(k)√
ε + σ(k) ∗ σ(k)

]
(12)

Reshape() corresponds to the convolutional dimension with the underlying structure.
M(1) ∈ RN×C1×H1×W1 and M(2) ∈ RN×C2×H2×W2 represent the inputs and outputs, respec-
tively. The cumulative mean, standard deviation, scale factor, and deviation of the three
branches, after their amalgamation with the BN layer during training, are represented by
µ, γ, β, and σ, respectively. Following the concatenation of the three branches, the Batch
Norm layer is applied to facilitate the reasoning function. The architectural depiction of
this structure can be observed in Figure 6.
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3.3. Improvement of Loss Function

In YOLOv5, the estimation of dissimilarity between the predicted values of the net-
work model and the actual values is commonly accomplished through the utilization of
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the loss function. This loss function serves as a crucial metric for evaluating the algorithm
network’s efficacy. Among the fundamental metrics employed, the metric intersection over
union (IOU) stands out. Its formula is as follows:

IOU =
A ∩ B
A ∪ B

(13)

where A and B represent the area of the prediction box and the real frame; however,
the IOU loss defects are relatively evident. It solely focuses on measuring overlap and
fails to account for factors such as overlapping methods, shapes, and colors. To address
this issue, the GIOU loss function was introduced. It seeks to rectify the drawback by
assigning greater importance to the boundary frame. However, the GIOU loss function
suffers from algorithm degeneration and slow convergence due to its computationally
intensive nature [32]. In an attempt to enhance detection accuracy, the DIOU loss function
incorporates the consideration of the distance between the target box and the prediction
box, as well as the overlapping rate and scale. Nevertheless, it overlooks the vertical ratio
of the return of the target box [33].

The CIOU loss function is employed in YOLOv5, and its calculation formula is as follows:

RCIOU =
ρ2(b, bgt)

c2 + αv (14)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(15)

α =
v

(1− IOU) + v
(16)

LCIOU = 1− IoU +
ρ2(b, bgt)

c2 + αv (17)

In Formula (14), the center points of the target and prediction frames are denoted as b
and bgt, respectively. The widths of the target and prediction frames are represented by w
and wgt, while the heights are denoted as and h and hgt, respectively. The European-style
distance between the center point of the prediction box and the real box is represented by ρ.
Additionally, c represents the diagonal distance that encompasses the minimum enclosing
area, including both the prediction box and the real frame. The parameter v quantifies the
consistency of the length and width ratio, while α denotes a weighting parameter. The
types (15) and (16) are derived from Xa, and they are used in the final calculation of the loss
function, as shown in Formula (17). The CIOU [34] introduces the vertical and horizontal
ratios of the target box to the prediction box by increasing the influencing factor. However,
due to the discrepancy between the reference value and the relative value, the difference in
the number of positive and negative samples for small targets is significant.

Accordingly, in this article, we suggest adoption of the EIOU loss function, which offers
several advantages. Instead of relying on the coordinate ratio, it utilizes the discrepancy in
horizontal and vertical coordinates, resulting in enhanced convergence speed. Moreover,
this approach provides a more precise depiction of the box. The expression for the loss
function is given by Formula (18):

LEIoU = LIoU + Ldis + Lasp

= 1− IOU +
ρ2(b,bgt)

C2 +
ρ2(w,wgt)

C2
w

+
ρ(h,hgt)

C2
h

(18)

The EIOU loss function [35] encompasses three distinct components to calculate
functional losses. These components include the overlap loss functions for the predictive
and real boxes, the central distance loss functions, and the horizontal and vertical loss
functions. These components are denoted as LIoU, Ldis , and Lasp , respectively. In this
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context, b, bgt represents the central point shared by the two boxes, while ρ signifies the
European-style distance between the two center points. In addition, c represents the
diagonal distance of the intersecting region between the two frames, while Cw and Ch
correspond to the minimum width and height of the two frames, respectively.

Simultaneously, the Focal loss function [36] is introduced as a means to address the
issue of the significant disparity in quality between positive and negative samples in
practical engineering scenarios. This is expressed by Equation (19) as follows:

FocalLoss = −αt(1− pt)
γ log(pt) (19)

where αt represents the weighted coefficient of positive and negative samples, which can
change the degree of contribution of the positive sample to the loss function by regulating
the parameter and pt denotes the difficulty of controlling the sample classification. The γ
value is used to adjust the weighted coefficient of the parameter pt.

According to the literature [37], occurrence of the gradient anomaly can adversely
affect the experimental process when the target frame is significantly smaller than the
image scale. In order to mitigate this issue, the present study incorporates the concept of
the Focal loss function to enhance the EIOU loss function in terms of gradient direction.
This modification aims to minimize the influence of low-quality samples on the gradient,
as demonstrated by Formula (20):

LFocal E−IoU = IOUγLEIoU (20)

IOU = |A ∩ B|/|A ∪ B| (21)

The loss value increases proportionally with the IOU, resulting in a larger loss for
high-quality regression targets. This adjustment aids in enhancing accuracy, and γ denotes
the gradient’s contribution. By adjusting γ, the algorithm assigns a greater gradient contri-
bution to high-quality samples, thereby facilitating improved convergence of the function.

4. Experimental Results and Analysis
4.1. Experimental Environment and Evaluation Indicators
4.1.1. Experimental Environment

In order to ensure the effectiveness of the algorithm, the datasets utilized in this study
were obtained exclusively from the UAS of Yunnan Power Supply Company. A total of
1627 images depicting insulators and various defects were selected for analysis. These
defects encompassed four distinct types: insulator breakage (denoted as jyzps), insulator
self-explosion (denoted as jyzzb), insulator fouling (denoted as jyzwh), and insulator
binding wire loosening (denoted as jyzzxst). Table 1 lists the types of insulator defects
and the number of training and validation sets corresponding to specific defect names.
Figure 7 shows the images of different defect types (the images have been enlarged). For
training purposes, the smallest YOLOv5s model was employed, with a batch size of 64 and
a training batch size of 300. The laboratory setup environment is detailed in Table 2.

Table 1. Dataset type and quantity.

Insulator Defect Type Type of Label Training Set Detection Set

Insulator contamination jyzwh 269 50
Insulator self-explosion jyzzb 726 140

Tie the thread pine jyzzxst 234 50
Broken insulator Jyzps 404 60
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Table 2. Experimental platform environment configuration.

Environmental Configuration Parameter

Operating system Ubuntu 16.04
GPU Tesla T4 (16 GB)
CPU Intel(R) Xeon(R) Processor v8

Deep learning model framework Pytorch 1.7.1
GPU acceleration environment CUDA 11.0.2

Programming language Python 3.8

4.1.2. Evaluation Index

In this paper, an evaluation of each algorithm filtering performance is conducted using
two metrics: normalized mean square error (NMSE) and peak signal-to-noise ratio (PSNR).
A higher PSNR value and a lower NMSE value indicate a superior filtering effect. The
formulas for calculating these metrics are presented in Equations (22) and (23):

NMSE =

M−1
∑

i=0

N−1
∑

j=0
[y(i, j)− I(i, j)]2

M−1
∑

i=0

N−1
∑

j=0
[I(i, j)]2

(22)
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PSNR = 10 · lg

 M× N × 2552

N
∑

j=1

M
∑

i=1
[y(i, j)− I(i, j)]

 (23)

where I(i, j) and y(i, j) represent the gray values of the corresponding pixel points of the
original image I and the filtered output image Y, respectively, and M and N denote the
length and width of the image, respectively.

In various application scenarios, diverse effects can be observed when employing
distinct target test algorithms. The algorithm’s reasoning performance primarily relies
on several parameters, including the number of detection frames per second (FPS), the
number of floating-point calculations (Flops), as well as the metrics of precision (P), recall
(R), average accuracy (AP), and mAP. These metrics are denoted as (24), (25), (26) and (27)
in the calculation representation:

P =
TP

TP + FP
(24)

R =
TP

TP + FN
(25)

AP =
∫ 1

0
P(R)dR× 100% (26)

mAP =

k
∑

i=1
APi

k
(27)

where TP represents the correct number of targets, FP denotes the number of misunder-
standings as the target, FN indicates the number of misunderstandings as non-targets, and
k refers to the total number of targets. Generally, P and R are presented as the opposite
performance trend, which is used as mAP to represent the comprehensive performance of
target detection.

4.2. Lutium Comparison
4.2.1. Add the Effect of the Noise Reduction Module

To verify the accuracy of target detection, detection accuracy, and comprehensive
performance indicators in drone shooting scenarios, the influence of detection accuracy
and comprehensive performance indicators was examined. To investigate the impact of
noise on the test results, different levels of noise density (0.2, 0.4, 0.6, and 0.8 for salt and
pepper) were introduced into each dataset. The presence of noise and its effect on the test
results are presented in Table 3.

Table 3. The effect of different levels of noise on the detection performance of YOLOv5.

Noise Density (All) P (All) R (All) mAp@0.5 (All) mAp@0.5:0.95

0 0.734 0.653 0.706 0.487
0.2 0.719 0.636 0.666 0.472
0.4 0.711 0.632 0.665 0.469
0.6 0.705 0.571 0.646 0.468
0.8 0.703 0.603 0.64 0.462

Through ablation experiments, it can be deduced that noise exerts a substantial influ-
ence on the detection accuracy of YOLOv5. With each increment of 0.2 in noise density,
the overall accuracy of defect detection experiences a decline from approximately 1% to
2%. Simultaneously, the mAP decreases by 0.02. The impact on the detection performance
becomes more pronounced as the noise density increases.
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To quantitatively assess the filtering effectiveness of the NW-AMF algorithm, ablation
experiments were conducted by comparing it with other widely used industrial filtering
algorithms, namely tri-state median filter (TMF) [38], switching median filter (SMF) [39],
and adaptive center-weighted median filter (ACWMF) [40].The experimental results are
shown in Table 4 and Figures 8 and 9.

Table 4. Filtering effects of different algorithms.

Arithmetic Norm
Noise Intensity

0.2 0.4 0.6 0.8

TMF
PSNR 28.82 25.45 18.50 10.38
NMSE 0.0048 0.0105 0.0519 0.3373

ACWMF
PSNR 35.27 31.34 26.26 13.91
NMSE 0.00011 0.0027 0.0087 0.1496

SMF
PSNR 35.89 31.95 27.60 16.32
NMSE 0.0009 0.0023 0.0064 0.0858

NW-AMF
PSNR 39.34 34.86 31.76 28.44
NMSE 0.0004 0.0012 0.0025 0.0053
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Based on the graphical data, it is evident that the NW-AMF algorithm attains superior
PSNR values and lower NMSE values when confronted with pretzel noise density values
of 0.2, 0.4, 0.6, and 0.8. This observation signifies the algorithm’s heightened filtering
performance. Notably, as the noise density gradient increases, the performance indices of
the SMF algorithm, ACWMF algorithm, and TMF algorithm undergo significant changes,
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indicating a notable decline in their filtering performance. Conversely, the NW-AMF algo-
rithm exhibits a more gradual alteration in the aforementioned indices, thereby maintaining
a superior performance index even under the influence of 0.8 density salt-and-pepper noise.
Consequently, the algorithm proposed in this study demonstrates a consistent and stable
ability to remove salt-and-pepper noise of varying densities. Hence, it can be inferred that
the algorithm presented in this paper possesses a reliable capacity to eliminate pretzel noise
of different densities.

The resultant effect of the noise reduction module on the noisy image is presented in
Table 5.

Table 5. YOLOv5 Detection effect after noise reduction for pictures with different noise density.

Noise Reduction Level (All) P (All) R (All) mAp@0.5 (All) mAp@0.5:0.95

0.2 0.730 0.654 0.701 0.472
0.4 0.727 0.653 0.691 0.472
0.6 0.723 0.655 0.688 0.471
0.8 0.719 0.651 0.694 0.47

The experimental findings from Table 5 provide substantial evidence that the noise
reduction module has significantly enhanced image detection performance. Following the
application of the noise reduction module, there is an average increase of approximately
2% in accuracy, accompanied by a marginal improvement of 0.01 in the comprehensive
performance mAP.

To validate the non-end-to-end detection effect of the joint noise reduction and target
detection network, an ablation experiment was conducted using a dataset containing
pretzel noise with a density of 0.4. This dataset had already undergone the noise reduction
process to assess the impact on various target detection algorithms. The outcomes of this
experiment are presented in Table 6.

Table 6. Effectiveness of different algorithms for noise reduction image detection.

Method (All) P (All) R (All) mAp@0.5 (All) mAp@0.5:0.95

YOLOv3 0.701 0.638 0.634 0.414
YOLOv5s 0.727 0.653 0.691 0.472
SSD-VGG 0.612 0.562 0.513 0.312

YOLOv5-RepVGG 0.691 0.591 0.603 0.402
YOLOv7 0.731 0.647 0.693 0.47
YOLOv8 0.739 0.65 0.701 0.488

RcpVGG-Yolov5 0.749 0.659 0.705 0.503

By comparing the algorithm proposed in this paper with both the widely adopted
industry-standard target algorithms and the current state-of-the-art approaches, it can be
concluded that the non-end-to-end nature of the algorithm does not adversely affect the
accuracy of the detection results or the performance metrics such as mAP.

4.2.2. Improvement of the Loss Function

Prior to evaluating the impact of the Focal EIOU loss function, it is necessary to fine-
tune the parameter γ to align it more closely with the dataset, thereby facilitating enhanced
convergence. The ablation experiments, as depicted in Table 7, serve to substantiate
this claim.

Drawing upon the insights from the table, it can be concluded that achieving an
equilibrium between the positive and negative samples to the training when γ = 0.5 is a
more appropriate approach. This is particularly pertinent when considering the limited
size of the target dataset in this experiment.

To validate the efficacy of the loss function, the experiments were conducted in ac-
cordance with the prevailing trend of conducting ablation experiments on loss functions.
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YOLOv5-6.0, which employs the CIOU loss function, served as the baseline for comparison.
Consequently, the loss function was substituted with EIOU, Focal EIOU, Focal WIOU, and
SIOU. The outcomes of these experimental iterations are presented in Table 8.

Table 7. Detection performance for different parameter values.

γ Parameter Value (All) P (All) R (All) mAp@0.5 (All) mAp@0.5:0.95

0.1 0.762 0.672 0.717 0.498
0.3 0.779 0.665 0.722 0.499
0.5 0.788 0.631 0.738 0.502
0.7 0.781 0.639 0.731 0.502
0.9 0.774 0.655 0.729 0.503

Table 8. Different loss functions detection renderings.

Loss Function Type (All) P (All) R (All) mAp@0.5 (All) mAp@0.5:0.95

CIOU (initial) 0.754 0.653 0.706 0.497
EIOU 0.7 0.681 0.691 0.495
SIOU 0.762 0.656 0.722 0.499

Focal WIOU 0.768 0.642 0.738 0.502
Focal EIOU 0.788 0.63 0.746 0.503

Upon observing Figures 10 and 11 as well as Table 8, it is evident that the YOLOv5s
loss functions, namely CIOU and SIOU, exhibit a tendency towards stable detection accu-
racy and convergence speed. However, these loss functions demonstrate subpar accuracy
when confronted with images containing severe imbalances between positive and nega-
tive samples, and their convergence speed is deemed inadequate. Conversely, a closer
analysis of the chart reveals that the algorithm’s accuracy is enhanced by approximately
2% when combined with the Focal loss function, resulting in an overall improvement of
approximately 0.05 in comprehensive performance. Notably, the convergence effect of
the analysis diagram indicates that the Focal EIOU loss function exhibits faster and more
effective convergence.
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4.2.3. Improvement of the Effect of the Main Network of RepVGG

To verify the effectiveness of the RcpVGG-YOLOv5 algorithm following enhancements
to the primary network, a detection contrast analysis is conducted using an image density
of 0.4. The detection performances of YOLOv5s [20], YOLOv5-RepVGG [25], YOLOv3 [19],
SSD-VGG [17], YOLOv7 [41], and YOLOv8 [42] are compared, and the results are presented
in Table 9.

Table 9. Target detection performance comparison.

Method (All) P (All) R (All) mAp@0.5 FPS (Hz)

YOLOv3 0.691 0.635 0.632 109
YOLOv5s 0.712 0.636 0.646 139
SSD-VGG 0.605 0.559 0.58 203
YOLOv5-
RepVGG 0.682 0.592 0.59 218

YOLOv7 0.722 0.649 0.676 155
YOLOv8 0.734 0.652 0.681 183
RcpVGG-
YOLOv5 0.749 0.659 0.705 207

Figure 12 provides a clear visualization of the superior comprehensive performance
(mAP) exhibited by the RcpVGG-YOLOv5 algorithm compared to the other algorithms.
Furthermore, Figures 13 and 14 demonstrate that RcpVGG-YOLOv5 achieves the highest
accuracy and exhibits the most robust convergence under complex conditions. Ultimately,
the superiority of RcpVGG-YOLOv5 is visually evident in Figure 15.

To offer a more intuitive representation of the performance impact, the following
figures showcase the detection results of various algorithms on four distinct defective
datasets: spontaneous detonation of insulator defect, broken insulator defect, loosening
of tie lines insulator defect, and fouled insulator defect (Figure 16, Figure 17, Figure 18,
and Figure 19, respectively) (the detection results of YOLOv7, YOLOv8, and the algorithm
proposed in this paper do not exhibit significant differences, and therefore, this aspect of
the results has been omitted).

In the context of self-explosive defects, the recognition rate of insulators in the
VGG/RepVGG network tends to be low, thereby increasing the likelihood of missed
judgments. While YOLOv5s demonstrates the capability to detect defects, it is prone
to misinterpret obscuration as a dirty defect on the insulator. Similarly, YOLOV3 can
only marginally identify the defect, but it often confuses the end and tail of the glass
insulator with a defect. Conversely, RcpVGG-YOLOv5 exhibits adaptability in detecting
scene defects.



Remote Sens. 2023, 15, 4552 18 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 26 
 

 

 

Figure 11. The loss curve in the training process. 

4.2.3. Improvement of the Effect of the Main Network of RepVGG 

To verify the effectiveness of the RcpVGG-YOLOv5 algorithm following enhance-

ments to the primary network, a detection contrast analysis is conducted using an image 

density of 0.4. The detection performances of YOLOv5s [20], YOLOv5-RepVGG [25], 

YOLOv3 [19], SSD-VGG [17], YOLOv7 [41], and YOLOv8 [42] are compared, and the re-

sults are presented in Table 9. 

Table 9. Target detection performance comparison. 

Method (All) P (All) R (All) mAp@0.5 FPS (Hz) 

YOLOv3 0.691 0.635 0.632 109 

YOLOv5s 0.712 0.636 0.646 139 

SSD-VGG 0.605 0.559 0.58 203 

YOLOv5-RepVGG 0.682 0.592 0.59 218 

YOLOv7 0.722 0.649 0.676 155 

YOLOv8 0.734 0.652 0.681 183 

RcpVGG-YOLOv5 0.749 0.659 0.705 207 

Figure 12 provides a clear visualization of the superior comprehensive performance 

(mAP) exhibited by the RcpVGG-YOLOv5 algorithm compared to the other algorithms. 

Furthermore, Figures 13 and 14 demonstrate that RcpVGG-YOLOv5 achieves the highest 

accuracy and exhibits the most robust convergence under complex conditions. Ultimately, 

the superiority of RcpVGG-YOLOv5 is visually evident in Figure 15. 

 

Figure 12. mAP of various algorithms. Figure 12. mAP of various algorithms.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 26 
 

 

 

Figure 13. The accuracy of various algorithms. 

 

Figure 14. The loss value of each type of algorithm. 

 

Figure 15. Inference speed. 

To offer a more intuitive representation of the performance impact, the following fig-

ures showcase the detection results of various algorithms on four distinct defective da-

tasets: spontaneous detonation of insulator defect, broken insulator defect, loosening of 

tie lines insulator defect, and fouled insulator defect (Figures 16, 17, 18, and 19, respec-

tively) (the detection results of YOLOv7, YOLOv8, and the algorithm proposed in this 

paper do not exhibit significant differences, and therefore, this aspect of the results has 

been omitted). 

Figure 13. The accuracy of various algorithms.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 26 
 

 

 

Figure 13. The accuracy of various algorithms. 

 

Figure 14. The loss value of each type of algorithm. 

 

Figure 15. Inference speed. 

To offer a more intuitive representation of the performance impact, the following fig-

ures showcase the detection results of various algorithms on four distinct defective da-

tasets: spontaneous detonation of insulator defect, broken insulator defect, loosening of 

tie lines insulator defect, and fouled insulator defect (Figures 16, 17, 18, and 19, respec-

tively) (the detection results of YOLOv7, YOLOv8, and the algorithm proposed in this 

paper do not exhibit significant differences, and therefore, this aspect of the results has 

been omitted). 

Figure 14. The loss value of each type of algorithm.

Regarding damage defects in insulators, particularly in the presence of salt and pepper
noise, on the one hand, the VGG/RepVGG network exhibits a low recognition rate for
small target insulation areas. Moreover, it is prone to erroneously identifying non-target
areas as targets. While YOLOv5s demonstrates the ability to detect defects, it is susceptible
to noise interference, leading to erroneous recognition of insulator dirt defects. YOLOv3
also suffers from recognition errors. On the other hand, RcpVGG-YOLOv5 showcases
adaptability in scene defect detection.

With respect to recognizing defects in multiple insulators, the VGG/RepVGG network
is significantly impacted by noise, resulting in a low recognition rate. Both YOLOv5s and
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YOLOv3 can only identify the absence of prominent ligation lines, which increases the
likelihood of overlooking loose defects during inspections. However, RcpVGG-YOLOv5
demonstrates adaptability in detecting defects within a scene.
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Figure 16. Spontaneous detonation of insulator defect: (a)VGG/RepVGG; (b) YOLOv5s; (c) YOLOv3;
(d) RcpVGG-YOLOv5.

In the context of recognizing multiple insulators, the VGG/RepVGG network exhibits
a significant issue of missed inspections. Both YOLOv5s and YOLOv3 are susceptible to
misinterpretations when inspecting the loosening of tie lines using the side binding method.
However, RcpVGG-YOLOv5 demonstrates adaptability in detecting defects within a scene.
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Figure 19. Fouled insulator defect: (a) VGG/RepVGG; (b) YOLOv5s; (c) YOLOv3; (d) RcpVGG-

YOLOv5. 
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Based on the empirical findings, it has been observed that the SSD-VGG and YOLOv5-
RepVGG algorithms exhibit a suboptimal performance in recognizing small- and medium-
sized targets in machine patrol images. Moreover, the inclusion of salt and pepper noise
with a density of 0.4 further exacerbates the inspection rate. Consequently, direct imple-
mentation of these algorithms in practical engineering applications is deemed unsuitable.
Conversely, the YOLOv3 and YOLOv5s algorithms demonstrate the capability to identify
insulators; however, when subjected to the aforementioned interference of salt and pepper
noise with a density of 0.4, the rates of missed inspections and misinterpretations increased.
In light of these observations, the RcpVGG-YOLOv5 algorithm emerges as a more viable
solution, exhibiting enhanced adaptability to such complex scenarios.

5. Discussion

According to the analysis of experimental results, the enhanced algorithm network
proposed in this study (0.705) exhibits superior comprehensive performance (mAP) com-
pared to the baseline network YOLOv5-RepVGG (0.59) and the base algorithm YOLOv5s
(0.646). Furthermore, it outperforms traditional algorithms such as SSD-VGG (0.58) and
YOLOv3 (0.632). Notably, when compared to the latest algorithms, it demonstrates a perfor-
mance advantage of 2.9% over YOLOv7 and 2.4% over YOLOv8, thereby establishing the
algorithm’s superiority in terms of performance. In terms of accuracy, it also surpasses the
baseline algorithm (0.712) and the baseline network (0.682), exhibiting a clear advantage
with accuracy rates 2.7% and 1.5% higher than the latest algorithms YOLOv7 and YOLOv8,
respectively. Regarding speed, the proposed algorithm demonstrates a notable advantage,
with a 33.5% increase compared to YOLOv7 and a 13.1% increase compared to YOLOv8.
This is visually depicted in Figure 15, which clearly illustrates the superior balance between
accuracy and speed achieved by the algorithm presented in this paper. Furthermore, in
terms of effectiveness, the algorithm proposed in this study exhibits fewer instances of
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misdetection and leakage in the detection of 300 insulator defect maps compared to other
algorithms. This characteristic renders it more suitable for engineering applications.

6. Conclusions

In this paper, we introduce an algorithm, namely RcpVGG-YOLOv5, which combines
noise reduction and target detection techniques. The experimental findings demonstrate
that the enhanced algorithm remains effective and exhibits robustness when dealing with
aerial images amidst complex background conditions. In practical scenarios, this algorithm
facilitates prompt response by maintenance personnel to defects, thereby offering technical
assistance for line detection in power supply companies. It is important to acknowledge
that our model does encounter certain limitations. Firstly, the algorithm network lacks a
detection strategy for insulators, such as small targets, apart from the loss function compo-
nent. This aspect presents ample room for improvement. Secondly, the overall dataset size
is relatively small and necessitates supplementation. Consequently, the accuracy rate does
not surpass 80%. Nevertheless, the model proposed in this study retains high practicality
and supports the development of applications in conjunction with the front-end, thereby
enabling easy generalization.

Henceforth, future work will focus on two primary areas. Initially, the restricted avail-
ability of the transmission line defect dataset due to confidentiality concerns has limited
the sample collection process. Consequently, efforts will be made to continue gathering
insulator defect samples with varying scales and backgrounds, thereby expanding the
experimental dataset and enhancing the detection model’s generalization capabilities. Fur-
thermore, the network structure will undergo further optimization, incorporating targeted
strategies for small target detection. This optimization will result in an improved detection
performance, enabling real-time and efficient identification of transmission line defects.
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