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Abstract: Landslides frequently occur in the mountainous area of southwest China, resulting in
infrastructure damage, as well as a loss of life and property. The use of interferometric synthetic
aperture radar (InSAR) technology has become increasingly popular due to its wide coverage, high
precision, and efficiency in identifying potential landslides in steep mountainous regions to mitigate
risks. This study focused on the Mao County region in China and utilized a small baseline subset
of InSAR (SBAS−InSAR) technology with Sentinel-1 and ALOS-2 data to identify the potential
landslides and analyze their applicability. To ensure accuracy, the findings were verified using optical
image and field surveys. Additionally, a comparative analysis was performed on C-band and L-band
SAR data to examine differences in the coherence, geometric distortion, and displacement results,
revealing that the L-band has clear advantages in the coherence, suitable observation coverage, and
displacement results, while C-band can detect relatively slight displacements. This study aimed
to determine the applicability of different SAR satellites for early landslide identification in steep
mountainous areas, which can serve as a technical reference for selecting appropriate SAR data and
enhancing InSAR identification abilities for potential landslides in the future.

Keywords: SBAS−InSAR; ALOS-2; Sentinel-1; geometric distortion; applicability analysis

1. Introduction

The western Sichuan region is situated at the boundary between the first and second
steps of Chinese topographic levels, making it a stress-concentrated area [1,2]. Moreover,
this region is characterized by intense geological activities, including the Longmenshan
Fault and the Xianshuihe Fault, which have resulted in frequent landslides. Moreover, these
landslides have caused significant economic losses and substantial human casualties [3–7].
Therefore, early identification of potential landslides is crucial for reducing risks and
preventing disasters.

Time series interferometric synthetic aperture radar (InSAR) technology [8,9], such
as small baseline subset InSAR (SBAS-InSAR), has significant advantages over optical
remote sensing, including all-weather, all-day, cloud-free, and high-measurement-accuracy
sensing, and so on [10]. As a result, it has become one of the most effective tools for
identifying and monitoring potential landslides [11–14]. And SBAS−InSAR technology
has found successful applications in landslide prevention and control [15–18]. Multi-
platform SAR data, including Sentinel-1 in the C-band, TerraSAR-X in the X-band, and
ALOS-1/2 in the L-band, are extensively used in potential landslide monitoring [19–24].
Dong et al. [25] conducted a spatiotemporal analysis of the Xinmo landslide using a
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combination of TerraSAR-X, ALOS-2, and Sentinel-1 data. Similarly, Lu et al. [26] employed
ALOS PALSAR-1 and Sentinel-1 data to identify potential landslides in the Jinsha River
basin. As a result, several potential landslides were identified by multi-platform SAR
data, which serves as complementary information for the identification of landslides using
optical images. Herrera et al. [27] used multi-platform and multi-temporal SAR data and
successfully detected 294 active landslides, indicating that different pieces of SAR data
have varying abilities in landslide detection. Zhang et al. [28] combined ALOS PALSAR
and ENVISAT ASAR data, and identified 17 potential landslides in the Dadu River region,
highlighting the impact of radar wavelength and geometric distortion on the effectiveness
of InSAR identification. However, previous research on InSAR has primarily focused on
using displacement monitoring results to validate landslide identification. Efforts centered
around exploring the interferometric coherence, displacement monitoring abilities, and
geometric distortion of SAR data with different wavelengths in steep mountainous areas
are still limited. Consequently, the applicability of different SAR satellites in landslide
identification remains unclear and requires further investigation and clarification.

This study used the Mao County region in China as the study area. We utilized
28 Sentinel-1 and 10 ALOS-2 data, along with SBAS−InSAR technology, to identify po-
tential landslides along the riverbanks. Additionally, optical images from Google Earth
were used for verification purposes. Then, we compared and analyzed the differences
between the different pieces of SAR data in the time series results, and also fully explained
and analyzed the distribution of coherence, displacement results, and geometric distortion.
Finally, we applied different pieces of SAR data for the early identification of potential land-
slides in steep mountainous areas, providing theoretical support for selecting appropriate
data sources and allowing us to gain a deeper understanding of the abilities of different
SAR satellites.

2. Study Area and Datasets
2.1. Study Area

This study uses the northwest region of Mao County, Sichuan Province, Southwest
China (Figure 1a), specifically the segment from Feihong Township to Huilong Township
and Shidaguan Township (31◦43′~31◦55′N, 103◦31′~103◦47′E), as the study area. This area
is situated at the convergence of the Heishui River and the Min River and is known for
being one of the areas with the highest frequency of geological activity. The study area
is approximately 3.5 × 108 m2 and is characterized by steep mountains, with elevations
ranging from 1600 to 4050 m (a vertical difference of about 2500 m). The terrain features a
pattern of high peaks in the northwest and low areas in the southeast. Meanwhile, located
in the transitional zone from the Qinghai–Tibet Plateau to the western Sichuan Plain, Mao
County is associated with frequent seismic activity. This is due to the complex geological
structure, which is primarily influenced by the Longmenshan fault zone. Additionally, the
Xianshuihe fault, Songpingshan fault, and Minjiang fault zones also contribute to seismic
activity in the area (Figure 1b). In terms of climate, Mao County is influenced by the
westerlies and the southwestern monsoon from the Indian Ocean, resulting in a plateau
monsoon climate. Moreover, due to the significant variations in altitude, there are distinct
vertical climate zones and regional climate variations, resulting in a complex local climate
pattern [10]. The combined influences of climate and geological conditions mentioned
above result in frequent natural disasters, such as floods, as well as geological hazards like
landslides and debris flows [29]. These hazards pose significant threats to the lives and
safety of local residents. They often result in the blockages of rivers and roads (Figure 1c),
as well as damage to infrastructure. For instance, on 24 June 2017, a high-level landslide
occurred in Xinmo Village, Mao County, Sichuan, resulting in 83 individuals being declared
missing or dead, the destruction of 64 households, and the obstruction of a tributary of the
Min River for almost 2 km [30,31].
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Figure 1. Overview of the study area; (a) geographic location of the study area; (b) fault distribution;
and (c) topography of the study area.

2.2. Datasets

The two different data sources used in this study are ascending Sentinel-1 TOPS
(terrain observation by progressive scans) data in the C-band and ascending ALOS-2 strip
data in the L-band. With a revisit period of 12 days, Sentinel-1 [32] is capable of providing
continuous images under all weather conditions. The ALOS-2 satellite [20–22] is equipped
with the PALSAR-2 sensor, which has a revisit period of 14 days and can operate in all
weather conditions, including complex atmospheric conditions. Table 1 lists the main
parameters of the two data sources used in this experiment.

Table 1. Main parameters of the two experimental data.

Parameters Sentinel-1 ALOS-2

Orbit Ascending Ascending
Band C L

Polarization VV HH
Wavelength (cm) 5.6 23.6
Resolution (m) 13.9/3.5 2.03/2.42
Revisit (day) 12 14

Incident angle (◦) 41.696 36.18
Azimuth angle (◦) −12.77 −16

Time span 27 November 2017−17 October 2018 26 November 2017−14 October 2018
Number of images 28 10

This study used Sentinel-1 data covering the period from 27 November 2017 to 17
October 2018 and includes 28 images. The ALOS-2 data spans from 26 November 2017 to
14 October 2018 and includes a total of 10 images. Among them, the temporal threshold for
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Sentinel-1 was set at 36 days and the spatial threshold at 200 m, resulting in 78 interfero-
metric pairs in the time series process, as shown in Figure 2a, the numbers in the figure
represent the serial numbers of the SAR images. Due to the relatively smaller dataset but
higher coherence of ALOS-2 data, we set a temporal baseline of 180 days and a spatial
baseline of 300 m. This resulted in 32 interferometric pairs being generated, as shown in
Figure 2b. In this experiment, the NASA shuttle radar topography mission digital elevation
model (SRTM−DEM) [33] was used as a reference to mitigate or minimize the effects of flat
terrain and geocoding.
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3. Methodology

The time series InSAR technique used for both ALOS-2 and Sentinel-1 in this study
is the SBAS–InSAR technology [34,35]. This technique, initially proposed by Berardino in
2002 [36], is based on multi-master images and utilizes singular value decomposition (SVD)
to obtain time series displacement results for the entire study area. It effectively mitigates
the temporal and spatial decorrelation issues encountered in traditional differential InSAR
(D−InSAR) techniques, mitigating the effects of temporal and spatial decorrelation on data
processing [37]. The specific data processing workflow is as follows.
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Assuming there are N + 1 images obtained from the time series (t0 · · · ti · · · tN), and M
interferometric pairs are generated by setting a temporal−spatial baseline threshold. The
relationship can be expressed as,

N + 1
2
≤ M ≤ N

(
N + 1

2

)
(1)

Furthermore, the differential interferograms are generated by using the DEM, fol-
lowed by Goldstein filtering. After filtering, the interferograms are unwrapped using the
minimum cost flow (MCF) method. Ground control points (GCPs) are then used to refine
and flatten the unwrapped interferograms for enhanced accuracy. Then, assuming t0 as the
reference time with zero displacement, the relative phase of pixels in the interferogram j
with respect to the reference time can be represented as follows,

δϕj = ϕt1 − ϕt2 = δϕ
de f
j + δϕ

topo
j + δϕatm

j + δϕnoise
j (2)

In the equation, 1 ≤ j ≤ M, where δϕ
de f
j represents the displacement phase, δϕ

topo
j rep-

resents the topographic phase, δϕatm
j represents the atmospheric phase, δϕnoise

j represents
the noise phase.

Where δφi(i = 1, . . . , M) represents the phase value in relation to the unwrapping
reference point. The time series corresponding to the master IM and secondary IS images
are as follows,

IM = [IM1, · · · , IMm] IS = [IS1, · · · , ISm] (3)

If the master and secondary images are arranged in chronological order, i.e., IMj > ISj
j = (1, · · · , M), then the phase representation in the differential interferogram is as follows,

δφj = φ
(

tIMj

)
− φ

(
tISj

)
(j = 1, · · · , M) (4)

The system of equations shown above, which consists of M equations with N un-
knowns, can be simplified to,

δφ = Aφ (5)

The matrix A[M× N], where each row corresponds to an interferometric pair and
has zero values for all other elements. Furthermore, this representation allows for the
transformation of the system of equations,

IMj

∑
i=ISj+1

(ti − ti−1)νi = δφj(j = 1, · · · , M) (6)

In the equation, ν is the velocity, that is,

Bν = δφ (7)

Matrix B is an M × N matrix, where the elements B[i, j] = tj+1 − tj(ISi + 1 ≤ j ≤ IMi,
∀i = 1, · · · , M), and all other elements are zero. By performing a singular value decom-
position (SVD) on B, we can obtain the average velocity for each period. Integrating the
velocity in the time domain yields the time series displacement of the pixels. Finally, per-
forming geocoding allows us to obtain time series displacement results in a geographic
coordinate system.

In this experiment, we take the C-band as representative of the Sentinel-1 satellite
and the L-band as representative of the ALOS-2 satellite and discuss and analyze the
applicability of different bands in steep mountainous areas. To ensure the results are
comparable, the experiment utilized ascending data and the SBAS–InSAR technology. The
processing workflow employed identical filtering parameters and unwrapping thresholds,
as indicated in Table 2.
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Table 2. Parameters in the data processing workflow.

Parameter Sentinel-1 ALOS-2

Method SBAS–InSAR SBAS–InSAR
Multi-look 4:1 3:3

Unwrapping 0.2 0.2
Filtering Method and Parameters Goldstein, 3−5 Goldstein, 3−5

Unwrapping Method Minimum Cost Flow Minimum Cost Flow

By comparing the interferometric coherence, displacement monitoring results, and
geometric distortion distribution of ALOS-2 and Sentinel-1, a comprehensive analysis
(Figure 3) was conducted to evaluate the monitoring ability and applicability of these two
different data sources for early identification of landslides in steep mountainous areas.
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The formula for calculating coherence is as follows:

γ =
∑N

n=1 ∑M
m=1|µ1(n, m)||µ2(n, m)|√

∑N
n=1 ∑M

m=1|µ1(n, m)|2 ∑N
n=1 ∑M

m=1 |µ2(n,m)|2
(8)

In the equation, M and N represent the size of the data block used for computing
coherence, while m and n represent the row and column indices within the data block.
µ1(n, m) and µ2(n, m) represent the complex values of the master and secondary images
at the (n, m) location, respectively. Based on this formula, coherence can be calculated for
any pixel by performing the calculation within a window of size n × m; this enables the
determination of the coherence coefficient γ for each pixel.

In addition, three types of geometric distortions (foreshortening, layover, and shadow)
were induced by the radar side-looking imaging, which will occur based on the incidence
angle and various topographic features. In mountainous areas with significant variations in
terrain, the orientation and slope characteristics of land features are determining factors in
the occurrence of geometric distortions [38]. Therefore, it is crucial to take the topographic
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features into full account. In this study, the SARScape module in ENVI software was used
to evaluate the geometric distortions in the study area using the SRTM DEM.

4. Results
4.1. Time Series Results by SBAS–InSAR

Time series InSAR processing and monitoring of the study area were conducted
based on 10 ascending ALOS-2 images and 28 ascending Sentinel-1 images by utilizing
the SBAS−InSAR technology. As a result, we obtained the displacement velocity along
the line of sight (LOS) of the radar. Furthermore, this study identified the deformed areas
with significant displacement. Figure 4 illustrates the distribution of the annual average
displacement velocity and the potential landslide identification results in these areas from
ALOS-2 and Sentinel-1. The number of measurement points (MPs) obtained from ALOS-2 is
8,185,222, while the number of MPs from Sentinel-1 is 486,452. It shows that the MP density
of ALOS-2 is 16 times higher than that of Sentinel-1. The first reason is that even after
multi-look processing, ALOS-2 still maintains a higher resolution compared to Sentinel-1,
resulting in a greater density of obtained MP results. The second reason is that C-band data
(Sentinel-1) has relatively weaker penetration capability, making it more susceptible to the
influence of vegetation coverage.

Figure 4 shows the annual velocity results from both datasets. Combining these results
with high-resolution optical images and utilizing the morphology of landslides along with
displacement velocity, a total of 28 potential landslides undergoing creep displacement
were identified. Among them, 24 potential landslides were identified by ALOS-2, while
25 were identified by Sentinel-1. Additionally, 21 potential landslides were identified by
both datasets. Based on the ALOS-2 annual velocity map (Figure 4a), it can be observed
that the unstable slope with the smallest magnitude of displacement among the potential
landslides (A09) has an annual displacement velocity of −65 mm/year. The unstable slope
with the most significant displacement (A11) has a velocity exceeding −180 mm/year,
indicating high levels of displacement. Simultaneously, the Sentinel-1 annual velocity
map (Figure 4b) shows that the unstable slope with a small magnitude of displacement
(S08) has a velocity of −45 mm/year, while the largest one (S12) reaches −150 mm/year.
These slopes exhibit noticeable displacement characteristics, indicating a high possibility of
instability and posing significant threats to local residents and the nearby rivers, namely
the Min River and Heishui River.

4.2. Field Verification

The potential landslides (A21~A23) are located in Sujiaping village, Heihu town,
northwest of Mao County, Sichuan province, specifically 31◦47′30′′N, 103◦43′20′′E. Accord-
ing to the ALOS-2 annual velocity map, the displacement rate reaches −185.3 mm/year
(Figure 5a). Similarly, the Sentinel-1 data shows a displacement rate of −97.9 mm/year.
These measurements indicate that these potential landslides are currently undergoing rapid
displacement. It can be observed through field verification that the slope on the right is
composed of rocks, while the slope on the left is accretionary (Figure 5b–g). A21 has a
sliding direction of approximately 150◦, a length of about 1071 m, a width of about 400 m in
the middle, and a distinct circular topography. The perimeter of the shape is approximately
2700 m, with an area of about 4 × 105 m2. The average thickness is about 8 m, resulting in
a total volume of approximately 3.2 million m3.

The potential landslide on the left has a sliding direction of approximately 168◦,
a length of about 800 m, a width of about 175 m in the middle, and an area of about
1.1 × 105 m2. It has a thickness of about 10 m, resulting in a volume of approximately
1.11 million m3. At the same time, the displacement of its right edge gully is obvious
(Figure 5b–g). According to the local monitors during the field investigation, the right and
rear edges of the left landslide had several new cracks in January and February 2021, and
many houses had cracks and collapses. At the same time, the degree of crack development
was high, with a tendency to penetrate through the entirety, which made it a higher threat.
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A12 is located in Shaba Village, Huilong Township, Mao County, Sichuan Province,
at coordinates 31◦50′38.36′′N, 103◦40′24.61′′E. The lower part of the slope is adjacent to a
tributary of the Min River, and provincial road S302 is situated on the opposite side of the
river, facing the hazard. The ALOS-2 annual velocity map shows significant displacement,
primarily concentrated in the lower left and middle sections of the slope (Figure 6a). This
unstable slope is a deposit of an ancient landslide, and field verification photos show
distinct gullies on both sides, with a depth of approximately 20 m (Figure 6b–e). The slope
is composed of inclined rock formations with a sliding direction of approximately 180◦. The
planar area of the landslide is approximately 7× 105 m2, with a thickness of about 20 m and
a total volume of approximately 14 million m3. The primary displacement zone within the
landslide measures approximately 153 m in length and 267 m in width and has a thickness
of about 10 m. The volume of this zone is estimated to be approximately 4.1 × 105 m3. This
potential landslide exhibits a tongue-shaped (funnel-shaped) morphology, with distinct
circular features and several well-developed landslide terraces (Figure 6b–e). The slope
surface appears fragmented and exhibits a yellow–green coloration, with numerous oc-
currences of slumping. There are two parallel gullies formed on the slope (Figure 6). The
lower part of the slope shows local downslope displacement, while the leading edge is
heavily eroded by the river, resulting in localized collapses. The river has narrowed in this
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area, indicating potential instability, and poses a direct threat to the residents and houses
on the opposite bank.
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The potential landslide A17 is located in the Maifei group, Shaba Village, Huilong
Township, Mao County. The geographical coordinates are approximately 103◦41′51.12′′E
and 31◦50′08.35′′N, with an elevation of around 2000 m. The lower part of this landslide is
located at the junction of National Highway G213 and Provincial Road S302 on the right
side of the Min River (Figure 7b). According to the ALOS-2 annual velocity map, this
potential landslide shows significant displacement in its central region, with a velocity
exceeding 80 mm/year. A17 is characterized as a rocky slope located in a high-mountain
gorge terrain, with an overall slope gradient of approximately 50◦~60◦. The upper and
lower sections of the slope consist of bedrock, while the middle and upper sections consist
of accumulated material. The elevation boundary between the bedrock and accumulated
material is approximately 1950 m and 2140 m, respectively, with the elevation of the Min
River tributary at around 1660 m.
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potential landslides A17.

There are two prominent displacement zones within this region. One is located near
the boundary between the bedrock and accumulated material in the lower part of the slope
(Figure 7c), covering an area of approximately 3500 m2, with a thickness of about 8m and
a volume of approximately 2.8 × 104 m3. The other displacement area is located in the
upper part of the accumulated material (Figure 7d), spanning an area of approximately
1.5 × 104 m2, with a thickness of about 6m and a volume of approximately 9 × 104 m3. The
sliding direction of this area is approximately 20◦, posing a significant threat to the lower
Min River and National Highway G213.

5. Discussion
5.1. Comparative Analysis of Coherence

Due to the inconsistent revisit periods of ALOS-2 and Sentinel-1, as well as the limited
availability of ALOS-2 images in this study, two interferograms with similar temporal
baselines (24 days and 28 days) were selected to represent the coherence characteristics of
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the winter and summer seasons in this experiment (interferogram 1 and interferogram 2 in
Table 3).

Table 3. Typical interference pairs of Sentinel-1 and ALOS-2.

Satellite Interferogram 1
(Winter)

Temporal
Baseline

(Day)

Normal
Baseline

(m)

Interferogram
2 (Summer)

Temporal
Baseline

(Day)

Normal
Baseline

(m)

Sentinel-1 27 November 2017–21
December 2017 24 102.654 14 May 2018–7

June 2018 24 25.317

ALOS-2 26 November 2017–24
December 2017 28 6.458 13 May 2018–10

June 2018 28 211.359

The four interferograms were classified into five coherence levels based on coherence
intervals of 0.2, resulting in the following classification: poor (0~0.2), fair (0.2~0.4), medium
(0.4~0.6), good (0.6~0.8), and high (0.8~1). This classification is illustrated in Figure 8.
Figure 8a,b,e show the coherence distribution of interferogram 1 (winter season). Figure 8e
shows that the coherence proportion of Sentinel-1 in the study area is 66.1%, higher than
42.6% of ALOS-2 when the coherence distribution is classified as poor, fair, and medium.
However, when the coherence distribution is classified as good and high, the coherence
proportion of ALOS-2 is 58.4%, surpassing that of Sentinel-1. As shown in Figure 8f, for
interferogram 2 (summer season), when the coherence is categorized as medium, good,
and high, the overall coherence proportion of ALOS-2 in the study area is 84.3%, which
is significantly higher than the 48.6% of Sentinel-1. Moreover, according to Table 3, it can
be observed that the spatial baseline of interferogram 2 from the ALOS-2 satellite is much
larger than that of Sentinel-1, indicating that ALOS-2 maintains good coherence even with
long spatial baselines.
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Figure 8. Coherence distribution and comparison plot of ALOS-2 and Sentinel-1; (a,b) coherence map of
interferogram 1; (c,d) coherence map of interferogram 2; (a,c) is from Sentinel-1, (b,d) are from ALOS-2;
(e) coherence distribution of interferogram 1; and (f) coherence distribution of interferogram 2.

Meanwhile, Figure 8 shows that the number of coherent pixels for ALOS-2 is more
than four times greater than that of Sentinel-1. Specifically, in the medium, good, and high
coherence categories, the pixel count for ALOS-2 is 4.8 times higher than that of Sentinel-1.
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These findings highlight the advantages of ALOS-2 in terms of significantly larger pixel
count and better preservation of coherence; this enables early identification of potential
landslides in steep mountainous regions.

5.2. Comparative Analysis of Time Series Result

Figure 9 displays the displacement results of three representative potential landslides
using various satellite data. The variations in the identification results primarily stem from
the inconsistent penetration of vegetation, which is caused by differences in wavelength.
These differences also lead to varying magnitudes of detectable displacement. Comparing
Figure 9a with Figure 9b (red boundary shows that this potential landslide is identified
only by ALOS-2), as well as Figure 9c with Figure 9d, it can be observed that when the dis-
placement magnitudes of landslides are large, the Sentinel-1 exhibits coherence loss in the
time series results, while the ALOS-2 maintains good coherence; this is because the L-band
sensor carried by ALOS-2 has a longer wavelength, which enables it to penetrate vegetation
and maintain better coherence. Additionally, the ALOS-2 has a higher maximum detectable
displacement gradient, enabling the detection of larger magnitudes of displacement.
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(b,d,f) annual velocity map from Sentinel-1.

With the comparison of Figure 9e,f (blue boundary shows that this potential landslide
is identified only by Sentinel-1), it can be observed that both Sentinel-1 and ALOS-2 cover
the displacement results of potential landslide S25, suggesting a lack of vegetation in this
area. In this case, the central part of the landslide shows a more noticeable displacement
signal in the Sentinel-1 data, whereas it is not as prominent in the result from ALOS-2; this
is primarily attributed to the small magnitudes of displacement and the longer wavelength
of ALOS-2, which enables the detection of subtle displacement signals. On the other hand,
the Sentinel-1, equipped with a shorter wavelength in the C-band, has a stronger ability to
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detect smaller displacements; this demonstrates its advantage in identifying finer details
when detecting subtle displacements.

5.3. Comparative Analysis of Geometric Distortion

InSAR technology, due to its side-looking imaging characteristics, can produce geomet-
ric distortions when applied in steep mountainous areas. These distortions can be classified
into four categories: foreshortening, layover, suitable observation, and shadow [30,39,40].
By retrieving satellite parameter files, we can obtain the incidence angles of both satellites.
The incidence angle of the ALOS-2 is 36.2◦, and the satellite azimuth angle is 344◦. The
incidence angle of the Sentinel-1 satellite is 41.7◦, and the satellite azimuth angle is 347.23◦.
Based on these parameters, the geometric distortions that occur with these two satellites can
be determined for any slope gradient (Figure 10c). For the Sentinel-1, foreshortening occurs
when the slope faces the satellite within a gradient range of 0◦ to 41.7◦, while layover occurs
within a gradient range of 41.7◦ to 90◦. When the slope is facing away from the satellite,
suitable observation is observed for slope gradients below 48.3◦ (90◦ minus 41.7◦), while
shadowing occurs for slope gradients above 48.3◦. For ALOS-2, foreshortening occurs when
the slope faces the satellite within a gradient range of 0◦ to 36.2◦. When the slope is facing
away from the satellite, shadowing occurs for slope gradients above 53.8◦ (90◦ minus 36.2◦).
Comparing the geometric distortions of the two satellites, it can be observed that ALOS-2,
with a smaller incidence angle, slightly outperforms Sentinel-1 in terms of applicability.
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In this study, only the areas with suitable observation are classified as detectable,
because the results of foreshortening can cause distortion. Therefore, foreshortening,
layover, and shadowing are classified as areas that are difficult to detect. Based on the
SARScape module in ENVI, the actual geometric distortions of the two datasets in the study
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area were obtained (Figure 10a,b). Pixel-based statistics were then performed to generate
a geometric distortion statistical map of the study area (Figure 10d). The results indicate
that the detectable area for Sentinel-1 covers 46.62% of the total, while the non-detectable
area accounts for 53.38%. The detectable area for the ALOS-2 satellite is 46.64%. In terms of
the percentage of detectable areas, the advantage of ALOS-2 is not very significant for the
study area.

6. Conclusions

This study utilized SBAS−InSAR technology to conduct early identification at the
intersection of the Heishui River and Min River using Sentinel-1 and ALOS-2 images and
identified 28 potential landslides. To ensure accuracy, the findings were verified using
optical imagery and field surveys. Furthermore, we compared the coherence of C-band
and L-band SAR data in the study area, analyzed the results of displacement monitoring,
and examined the distribution of geometric distortion. This study also evaluated the
applicability of the multi-platform SAR data in the study area, considering the geometric
distortion and wavelength differences. The main conclusions are as follows:

1. In terms of coherence distribution, ALOS-2 has a higher proportion of 57.4% in winter
when coherence is above 0.6, which is much higher than that of Sentinel-1. In summer,
the proportion of ALOS-2 satellites with coherence greater than 0.4 is 74.3%, which
is significantly higher than the proportion of Sentinel-1. The pixel numbers with
medium or higher coherence (>0.4) in ALOS-2 are 4.8 times higher than in Sentinel-1.
The coherence distribution demonstrates the superiority of the ALOS-2 image in
terms of the number of coherent points and the high coherence when applied to steep
mountainous areas;

2. Sentinel-1 tends to lose coherence when detecting large-scale displacement, whereas
ALOS-2 maintains good coherence; this demonstrates that ALOS-2 is highly effective
in identifying significant displacements. However, due to its relatively shorter wave-
length, Sentinel-1 performs better than ALOS-2 in identifying potential landslides
with subtle displacements;

3. In the study area, the suitable observation coverage using ALOS-2 is slightly greater
than that using Sentinel-1. When classifying the suitable observation areas into
detectable areas and areas affected by others as non-detectable areas, the percentage of
detectable areas using ALOS-2 is 46.64%, where no significant difference was observed
between the two satellites.
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