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Abstract: In a typical GNSS receiver, pseudorange and pseudorange rate measurements are generated
through the code and carrier tracking loops, respectively. These measurements are then employed
to calculate the user’s position and velocity (PV) solutions, which is typically achieved using a
Kalman filter (KF) or the least squares (LS) algorithm. However, the LS method only uses the current
observation without error analysis. The positioning result is greatly affected by the errors in the
observed data. In KF, by using an iterative approach that combines predictions and measurements
of PV information, more accurate estimates can be obtained because the PV information is time-
correlated. Meanwhile, its optimal estimate requires that both the model and noise statistics are
exactly known. Otherwise, achieving optimality cannot be guaranteed. To address this issue, this
paper proposes and implements a novel GNSS solution method based on an unbiased finite impulse
response (UFIR) filter. Two different field tests were conducted. The position results of UFIR are
compared with those from the LS and KF methods, and the horizon positioning mean error is
improved by 44% and 29%, respectively, which highlights its efficacy. The method offers two primary
benefits: it is robust to noise uncertainty, and it leverages historical data within the UFIR framework
to provide a more accurate estimate of the current state.

Keywords: GNSS solutions; Kalman filter; least squares; unbiased finite impulse response filter;
robustness

1. Introduction

Nowadays, location-based services (LBS) have seamlessly integrated into our daily
lives and are playing a crucial role in various fields, including civilian and military applica-
tions [1–4]. By utilizing a constellation of satellites, the Global Navigation Satellite System
(GNSS) has the capability to provide users with global precise positioning, navigation, and
timing (PVT) information. Users who possess a GNSS receiver can obtain PVT information
if there are sufficient satellites in view [5,6]. In a typical GNSS receiver, satellite signals are
first down-converted and sampled through an RF front-end. Then, intermediate frequency
(IF) signals are utilized for signal acquisition and tracking. From the tracked signals, the
receiver calculates pseudorange and pseudorange rate measurements. Finally, based on
these measurements, the GNSS receiver can further process these data to calculate its PVT
information, which commonly employs either a least squares (LS) method or a Kalman
filtering (KF) approach [7,8].

The LS algorithm is a classic mathematical optimization technique. By minimizing the
sum of the squared residuals (between observations and estimations), LS can effectively
find the best-fitting solution that optimally fits the observed data. Several attempts were
made to enhance the LS estimation performance in GNSS. For example, Filić et al. proposed
a weighted LS to take the expected errors into account [9] to reduce the computational
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burden caused by matrix inversion in the LS. Barbu et al. suggested a novel QR factor-
ization method that effectively improved the precise point positioning performance of
high-frequency GNSS [10]. Li et al. conducted a study where they integrated Doppler
measurements with code pseudorange data to improve LS position estimation [11]. María
et al. applied an LS solution network over all the recorded data generated by several GNSS
devices to achieve sub-meter horizontal accuracy [12]. Xu et al. introduced a bias-corrected
weighted LS method for accurate location services that auto-corrects model nonlinearity
and squared range biases while sequentially estimating unknown location parameters with
condition adjustments [13]. The LS converges quickly in the initial iteration, but there is
no error analysis on the observed data, and it is thus greatly affected by the errors in the
current observations. In addition, these LS methods overlook the time correlation inherent
in the GNSS measurement data. For the KF approach, the state vector usually consists of
the quantities that define the system’s state, such as position, velocity, clock bias, and drift.
Meanwhile, the observation vector typically includes pseudorange and pseudorange rate
increments [14,15]. Based on this, smoother results can be obtained by incorporating state
transformation constraints. For the KF to achieve optimality, it requires precise knowledge
of the noise statistics. However, in practice, it is difficult to obtain exact knowledge of
noise statistics for a time-varying system. To address the noise challenges associated with
the KF, scholars have proposed numerous methods to address the noise sensitivity issue
inherent in the Kalman filter (KF). For instance, Gao et al. introduced an adaptive KF
navigation algorithm, termed RL-AKF. The uniqueness of this method lies in its ability
to adaptively estimate the process noise covariance matrix by leveraging the principles
of reinforcement learning [16]. In [17], Ahmed introduced a novel DRKF technique that
constructs a statistically robust equivalent weight model using the chi-square test, thereby
enhancing placement outcomes. To address the GNSS outliers, Berkay et al. integrated
robust KF with variance component estimation to dynamically set weights and variances
for multi-GNSS observations in single-frequency positioning [18].

Another approach to approximating noise statistics by using innovation about the
process is referred to as the adaptive KF (AKF), but the approximation is limited [15,19–21].
In addition, the KF operates in a recursive manner, making it an infinite impulse response
(IIR) filter, which allows estimation errors to accumulate over time during the estimation
process [22]. Instead, a superior filter named the unbiased finite impulse response (UFIR)
filter has been emerging as a remarkable replacement. It has been extensively studied
and thoroughly analyzed in [23]. In the UFIR filter, a fixed-size horizon of past data is
collected and processed together to estimate the current state, effectively suppressing the
propagation of historical errors to the current epoch [24]. Another advantage of UFIR is
that it is insensitive to noise interference [25]. The UFIR filter stands out for its ability to
minimize the mean-square error (MSE) while efficiently utilizing a horizon length of N
measurements. Fortunately, the optimal N can be determined in several ways [26].

Because of the above, the primary purpose of this work is to explore the implemen-
tation and application of the UFIR method in GNSS solutions to improve the accuracy
of position estimation. In addition to its independence from noise statistics, this paper
presents several contributions compared to existing LS- and KF-based position estimation
methods in GNSS, which are as follows:

(1) The proposed method offers a novel approach to estimating position information that
effectively eliminates the requirement for calculating error covariances during the
iteration process.

(2) Because the UFIR operates only with the Nopt adjacent points in a batch form, the
accumulation of errors is ultimately suppressed.

(3) Two field tests were conducted, and comparative analyses were performed with LS
and KF methods. The results show that the UFIR solution can significantly improve
GNSS positioning performance.

This paper is structured as follows. In Section 2, some formulas of GNSS positioning
are given, and we also review the LS and KF approaches. In Section 3, we present the
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framework of the UFIR and its implementation in GNSS. In Section 4, two field tests are
conducted, and the results of LS, KF, and UFIR are also presented, compared, and analyzed.
Section 5 concludes this paper.

2. Problem Formulation

As mentioned earlier, the user PVT information is derived using the pseudorange
and pseudorange rate observations. These observations are generated from two different
tracking loops, which include the code tracking loop and the carrier tracking loop. This
section sequentially introduces the parameterization model in operation and the estima-
tion methods. Specifically, Section 2.1 presents GNSS formulas for position calculation;
Section 2.2 gives the principle of the LS method; and Section 2.3 reviews the KF and its
difference with LS.

2.1. GNSS Position Calculation

Figure 1 illustrates the geometric structure relating the satellite positions to the re-
ceiver’s location. Assuming there are i visible satellites, the pseudorange formulas are
expressed as follows [6]:

√
(x1 − xu)

2 + (y1 − yu)
2 + (z1 − zu)

2 + c · δtu + I1 + T1 + ε1 = ρ 1√
(x2 − xu)

2 + (y2 − yu)
2 + (z2 − zu)

2 + c · δtu + I2 + T2 + ε2 = ρ 2
...√

(xi − xu)
2 + (yi − yu)

2 + (zi − zu)
2 + c · δtu + Ii + Ti + εi = ρ i

(1)

where x = [xu, yu, zu]
T and xi = [xi, yi, zi]

T are the receiver’s position and the ith satellite
position vectors in an earth-centered and earth-fixed (ECEF) frame, respectively; δtu is the
receiver clock offset; ρi denotes the pseudorange between the ith satellite and the GNSS
receiver; Ii and Ti are ionospheric delay and tropospheric delay errors; εi represents other
error factors, such as pseudorange noises and unmodeled random error; and c denotes the
speed of the light.
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2.2. Least Square Method

In the above, each pseudorange measurement equation is a nonlinear function of the
user position. After Taylor expansion and ignoring high-order terms, the relation between
the offset ∆x and pseudorange values ∆ρ can be expressed as [6]:

H · ∆x = ∆ρ (2)

where ∆x = [∆x ∆y ∆z c · δtu]
T is the state increment of user receiver and ∆ρ is the pseu-

dorange increment; they represent the provision of the approximate solution around the
linearization point and the linearization of the satellite–receiver geometric range, refer-
ring to ∆x = x− x0 and ∆ρ = ρ− ρ0. The receiver clock offset δtu is not affected by the
linearization; H is the direction cosine matrix, given by:

H =


e1

x e1
y e1

z 1
e2

x e2
y e2

z 1
...

...
...

...
ei

x ei
y ei

z 1


i×4

(3)

and the ei = [ei
x ei

y ei
z] denotes the unit vector from the user location to the ith satellite,

obtained by follows:

ei
x = − xi − x

ri
, ei

y = −yi − y
ri

, ei
z = −

zi − z
ri

(4)

where ri =
√
(xi − xu)

2 + (yi − yu)
2 + (zi − zu)

2 is the approximate distance between the
user and the ith satellite.

The ∆ρ can be further expressed as:

∆ρ =


ρ 1 −

√
(x1 − xu)

2 + (y1 − yu)
2 + (z1 − zu)

2 − c · δtu − I1 − T1

ρ 2 −
√
(x2 − xu)

2 + (y2 − yu)
2 + (z2 − zu)

2 − c · δtu − I2 − T2
...

ρ i −
√
(xi − xu)

2 + (yi − yu)
2 + (zi − zu)

2 − c · δtu − Ii − Ti


i×1

(5)

According to Equation (2), the state increment of the user receiver can be written as:

∆x = (HTH)
−1

HT · ∆ρ (6)

Accordingly, one can express the update of the position estimation and the receiver
clock bias by adding the position increment ∆x to the current state, as follows:

xk+1 = xk + ∆x (7)

As we can see from the above, the LS method considers that each measurement is
independent of each other, and it provides a single estimate of the position that fits the
observed measurements. This indicates that the relationship between these measurements
has not been investigated.

2.3. Kalman Filter

The KF is typically a state-space approach utilized for estimating the state of a dynamic
system while considering noisy observations. It involves the use of both the state vector
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and the measurement vector in the estimation process. In general, the adjacent state vector
∆x can be modeled as [27]:

∆x = [∆xk ∆yk ∆zk ∆vx,k ∆vy,k ∆vz,k c∆tk c∆
.
tk]

T
(8)

where ∆vx, ∆vy, ∆vz, and c · ∆
.
t present the velocity deviation of the user and clock drift.

Thus, the state propagation equation at epoch k can be given by:

∆xk|k−1 = Φk−1 · ∆xk + wk−1 (9)

Φk−1 =

I3×3 τ · I3×3 03×2
03×3 I3×3 03×2
02×3 02×3 K


8×8

, K =

[
1 τ
0 1

]
(10)

in which Φ denotes the system transition matrix; w is the process noise term; I denotes an
identity matrix; and τ is the update interval of the KF.

The process noise covariance matrix Q that related to w is determined based on the
rule of thumb, which takes into consideration the user dynamics and oscillator used. The
calculation is performed as follows [27]:

Q =

[
Qdyn 06×2

02×6 Qclk

]
8×8

(11)

Qdyn =

[
∆t3/3 · I3×3 ∆t2/2 · I3×3
∆t2/2 · I3×3 ∆t · I3×3

]
6×6
· Sv (12)

Qclk =

[
S f · ∆t + S f · ∆t3/3 Sg · ∆t2/2

Sg · ∆t2/2 Sg · ∆t

]
(13)

where Sv represents noise power spectral density (PSD) of the receiver velocity, set by the
level of user dynamics; and S f and Sg are the PSD of receiver clock phase and frequency,
respectively, calculated as follows:

S f = c2 · h0/2 (14)

Sg = c2 · 2π2 · h−2 (15)

where h0 and h−2 represent the clock model coefficients associated with the white frequency
modulation noise and random walk frequency modulation noise, respectively, associated
with the utilized oscillator.

The covariance matrix Pk of the priori sate estimation can be expressed as:

Pk = ΦPk−1ΦT + Qk−1 (16)

The linearized GNSS measurement equation is given as follows:

yk =

[
∆ρk
∆

.
ρk

]
= Hk · xk−1 + vk (17)
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where H is the measurement matrix, given by:

Hk =



e1
x,k e1

y,k e1
z,k 0 0 0 1 0

e2
x,k e2

y,k e2
z,k 0 0 0 1 0

...
...

...
...

...
...

...
...

eN
x,k eN

y,k eN
z,k 0 0 0 1 0

0 0 0 e1
x,k e1

y,k e1
z,k 0 1

0 0 0 e2
x,k e2

y,k e2
z,k 0 1

...
...

...
...

...
...

...
...

0 0 0 eN
x,k eN

y,k eN
z,k 0 1


2N×8

(18)

in which ∆ρ and ∆
.
ρ are the pseudorange increment and pseudorange rate increment,

respectively; vk is the measurement noise vector.
Unlike the process noise, the measurement noise depends on the particular phase

discriminator implementation, and its covariance matrix is calculated by:

Rk = diag(σ(γk)) (19)

where σ(x) is the variance of x, diag(·) represents a diagonal matrix, and γk = yk −Hkxk is
referred to as the measurement residual or innovation sequence.

Therefore, it suffices to update the posteriori state estimation based on the innovation
γk, using [28]:

xk = xk|k−1 + Kkγk (20)

in which Kk denotes the state feedback gain matrix, given by:

Kk = PkHT
k (Rk + HkPkHT

k )
−1

(21)

The updated covariance matrix is defined by:

P−k = (I−KkHk)Pk (22)

Incorporating the updated state estimation, xk, the final state of the user receiver is
obtained by:

xusr
k = Φxk|k−1 + xk (23)

Unlike the LS, the KF considers that each measurement is time-correlated because
state transformation constraints are included. In addition, KF makes an error analysis of
the current estimation and aims to minimize the variance of the state error. Compared to
the results obtained from the LS method, utilizing the KF approach yields smoother and
more authentic results. Nonetheless, because of the sensitivity to noise uncertainty and
because the historical information has not been explored, the improvement is limited. A
framework that possesses historical information constraints and that is noise independent
is anticipated to produce superior estimate results compared to the LS and KF.

3. Optimization Framework

In this section, the UFIR optimization framework is proposed to obtain superior
position estimates. To this end, the extended state-space model is first constructed. Then,
the posterior estimation, error covariance, and gain of UFIR are described in detail. Finally,
the way to find the optimal horizon length is given.
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3.1. Extended Model

For UFIR, the extended state vector Xn,m and observation vector Yn,m are represented
in a horizon length of N epochs, within the interval [m = n − N + 1, n]. Accordingly,
Equations (9) and (17) can first be rewritten using the time-forward solution by [29]:

Xn,m = Φn,mxm−1 + Gn,mWn,m (24)

Yn,m = Hn,mxm−1 + Ln,mWn,m + Vn,m (25)

where Xn,m = [xT
n , xT

n−1, · · · , xT
m]

T , Yn,m = [yT
n , yT

n−1, · · · , yT
m]

T , Wn,m = [wT
n , wT

n−1, · · · , wT
m]

T

and Vn,m = [vT
n , vT

n−1, · · · , vT
m]

T are the extended vectors.
The extended matrices Φn,m, Gn,m, Hn,m and Ln,m are provided by, respectively,

Φn,m = [(Fm
n )

T , (Fm
n−1)

T , · · · , ΦT
m]

T
(26)

Gn,m =


Gn ΦnGn−1 · · · Fm+2

n Gm+1 Fm+1
n Gm

0 Gn−1 · · · Fm+2
n−1 Gm+1 Fm+1

n−1 Gm
...

...
. . .

...
...

0 0 · · · Gm+1 Φm+1Gm
0 0 · · · 0 Gm

 (27)

Hn,m = Hn,mΦn,m, Ln,m = Hn,mGn,m with Hn,m = diag(Hn, Hn−1, · · · , Hm), and
Fm

n = ΦnΦn−1 · · ·Φm. Generally, matrix G is set as the identity matrix I, and Φ is time
invariant. The noise vectors wn and vn are both white, and the corresponding variance
matrices related to the extended model are Qn,m = diag(Qn, Qn−1, · · · , Qm) and Rn,m =
diag(Rn, Rn−1, · · · , Rm). The details of the expanded state-space model can be further
explored in reference [23].

3.2. UFIR Estimator

From the extended state dynamic Equation (24), state x with respect to xm−1 can be
represented as:

xn = Fm
n xm−1 +Wn,m (28)

where Wn,m = Gn,mWn,m and Gn,m , [Gn, ΦnGn−1, · · · ,Fm+2
n Gm+1,Fm+1

n Gn−1] are the
first-row vectors of Gn,m. Combining Equations (25) and (28), the measurement equation
becomes:

yn = H̃n,mxn +Ln,m (29)

where H̃n,m = Hn,m(Fm
n )
−1, and Ln,m = (Ln,m − H̃n,mGn,m)Wn,m + Vn,m.

Given the extended matrices, the batch UFIR estimate x̂n at n epoch using the discrete
convolution is [30]:

x̂n = ΦN(HT
n,mHn,m)

−1
HT

n,mYn,m (30)

Equation (30) can be further computed in an iterative form, as:

x̂−j = Φx̂−j (31)

Gj = [HTH + (ΦGj−1ΦT)
−1

]
−1

(32)

x̂j = x̂−j + GjHT(yj −Hx̂−j ) (33)
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where j ∈ [m + a, n] and Gj and x̂j are initialized in short batch form as:

Gj=m+a−1 = Φa(HT
a Ha)

−1
ΦaT

(34)

x̂j=m+a−1 = Φa(HT
a Ha)

−1
HT

a Ym+a−1 (35)

where a represents the dimension of the state xn.
Furthermore, the error covariance Pj can be calculated using the following method:

Pj = (I− ΞjH)(ΦPj−1ΦT + Qj)(I− ΞjH)T + ΞjRjΞ
T
j (36)

in which Ξj = GjHT denotes the UFIR filter gain that is used to correct the bias. The initial
covariance matrix is given by:

Pm+a−1 = (KaHa −Ga)Qm+a−1(· · · )
T + KaRm+a−1KT

a (37)

with gain

Ka = Φa(HT
a Ha)

−1
HT

a (38)

It is important to note that matrix Ξ, which is used to correct the estimation bias in
UFIR, is determined by H and Φ, which are already known. However, the gain of KF
depends not only on the process noise Q but also on the measurement noise R, making it
challenging to set them perfectly. This distinctive feature makes UFIR more robust than KF
against the errors of noise statistics. It is also noteworthy that UFIR requires the horizon
length N to be optimal, which will be given in the next section.

3.3. Turning of UFIR

For the UFIR strategy, the objective of Nopt is to minimize the MSE. The memory
length Nopt is the critical tuning parameter that ensures UFIR is optimal. When N < Nopt,
the UFIR fits with the model well, but the noise reduction is insufficient. Alternatively,
the bias errors become dominant. This is because the UFIR no longer fits with the model,
although it better suppresses the noise.

Generally, if the ground truth is available in the operation, then Nopt can be provided
by [31]:

Nopt = argmin
N
{trPk(N)} (39)

where tr(·) denotes the trace operator and argmin{·} is the minimization operator.
Otherwise, an alternative approach is given as follows:

Nopt ∼= argmin
N

{
∂

∂k
trV k(N)

}
(40)

where V k = E
{
(yk −Hkx̂−k )(yk −Hkx̂−k )

T
}

is the mean-square value.

4. Experiments and Results

In this section, we conducted land-vehicle experiments and collected data from real
scenarios to assess the efficiency of the proposed approach. To be specific, two separate
experiments were performed in different areas: one in an urban environment and the other
in a suburban environment, utilizing authentic GNSS signal reception. These scenarios
were selected based on frequent occurrence challenges in the field to the majority of GNSS
applications. By examining these common and representative situations, we aim to ensure
that our findings are not limited to niche cases but have broader applicability and relevance
across a range of scenarios. Experimental results derived from these scenarios can be
generalized to many similar situations in GNSS solutions. Furthermore, the existing LS
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and KF positioning methods are also employed as benchmarks for a fair comparison
and analysis.

4.1. Data Description

To verify the proposed method, we utilized datasets collected from two different
scenarios. Figure 2 illustrates the experimental setup, in which two GNSS antennas were
mounted on the top of the car. A commercial U-blox NEO-M8T GNSS receiver, sourced from
u-blox, Thalwil, Switzerland, was employed for providing a ground truth of positioning, at
a frequency of 2 Hz. The raw signal was first collected by a GNSS IF front-end sampler and
then stored on a laptop. Finally, the raw IF data were processed by a GNSS software-defined
receiver (SDR), version 1.0, which is developed based on MATLAB. The SDR processing
was conducted using a laptop equipped with an Intel Core i5-12400H processor, running at
4.4 GHz and 16 GB of RAM. The processor is a product of Intel Corporation, headquartered
in Santa Clara, CA, USA. Detailed configurations of the equipment are listed in Table 1.
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Figure 2. Experimental setup.

Table 1. Parameter settings of the experimental equipment.

Equipment Parameter Value Unit

Antenna

Polarization Right-hand circularly
polarized (RHCP) -

Low noise amplifier (LNA) gain 32 ± 3.0 dB
Elevation coverage 360◦ -

Noise figure <2.0 dB

Front-end

GNSS signal GPS L1 -
Sampling rate 16.368 MHz

IF 4.092 MHz
IF bandwidth 2.5 MHz
Quantization IQ-2 bit

U-blox NEO-M8T

Channel 72 -

Horizontal position accuracy 2.0 (Typical)
2.5 (SBAS) m

Position update rate 10 (Max) Hz
Channel 72 -

4.2. Positioning Performance Evaluation

Figure 3 shows two test trajectories and satellite views plotted on Google Earth. The
test scenarios were classified into two types: bumpy road sections (Scene 1) and smooth
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road sections (Scene 2). During Scene 1, only five satellites were visible due to blocked
GNSS signals, and the experiment lasted for 165 s. For the second test, an open area with
no obstructions was chosen, and the experiment lasted for 245 s with a total of seven
satellites available.
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In KF, the error state covariance matrix P−0 (unit: squared meter) and δx0 (unit: meter)
are initialized as follows:

P−0 = 1e5× diag [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1] (41)

δx0 = diag [0, 0, 0, 0, 0, 0, 0, 0] (42)

The process and measurement noise covariance matrices, expressed in squared meters,
are initialized as follows [27]:

Q = diag [0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.01] (43)

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 3. Trajectories and satellites sky-plot of two tests scene. 

In KF, the error state covariance matrix 0
−P  (unit: squared meter) and 0δx  (unit: me-

ter) are initialized as follows: 

0 1e5 diag [0 1, 0 1, 0 1, 0.1, 0.1, 0.1, 1, 1]. . .− = ×P  (41) 

0 diag [0, 0, 0, 0, 0, 0, 0, 0]δ =x  (42) 

The process and measurement noise covariance matrices, expressed in squared me-
ters, are initialized as follows [27]: 

diag [0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.01]=Q  (43) 

0 3
0 1

m

m

.
.

× 
=  ×  

I 0
R 0 I

 (44) 

where diag [ ]⋅  represents a diagonal matrix; I  is an identity matrix of dimension m; and 
m is the number of the tracking channel. The observation noise covariance matrix is then 
adaptively computed by Equation (19). The horizon lengths of these two tests are calcu-
lated using Equation (39)—specifically, 150optN =  in the first test and 250optN =  in the 
second test. 

4.2.1. Test I: Urban Area, Bumpy Road 
The positioning results in the horizontal direction for the LS, KF, and UFIR correction 

are illustrated in Figure 4. The horizon positioning error and elevation positioning error 
of these three methods are presented in Figures 5 and 6, respectively. The entire driving 
route is divided into three periods. The car travels relatively smoothly in the first and third 
periods. As we can see, in the first- and third-time intervals, the errors obtained by the LS 
algorithm were the most significant, with horizontal positioning errors of approximately 
11 m and vertical positioning errors of 24 m. The positioning results of the KF algorithm 
outperformed those of the LS, reducing the horizontal positioning error to around 8 m 
and the vertical error to 20 m. When employing the UFIR method, the horizontal and ver-
tical positioning errors were further improved to 5.79 m and 15 m, respectively. The re-
sults indicate that the UFIR method is markedly superior to the other two algorithms. 
However, in the second period, the car encounters a bumpy road. We consider this situa-
tion as process interference. The reason is that the tilt of the antenna causes a decrease in 

(44)

where diag[·] represents a diagonal matrix; I is an identity matrix of dimension m; and
m is the number of the tracking channel. The observation noise covariance matrix is
then adaptively computed by Equation (19). The horizon lengths of these two tests are
calculated using Equation (39)—specifically, Nopt = 150 in the first test and Nopt = 250 in
the second test.

4.2.1. Test I: Urban Area, Bumpy Road

The positioning results in the horizontal direction for the LS, KF, and UFIR correction
are illustrated in Figure 4. The horizon positioning error and elevation positioning error
of these three methods are presented in Figures 5 and 6, respectively. The entire driving
route is divided into three periods. The car travels relatively smoothly in the first and third
periods. As we can see, in the first- and third-time intervals, the errors obtained by the LS
algorithm were the most significant, with horizontal positioning errors of approximately
11 m and vertical positioning errors of 24 m. The positioning results of the KF algorithm
outperformed those of the LS, reducing the horizontal positioning error to around 8 m and
the vertical error to 20 m. When employing the UFIR method, the horizontal and vertical
positioning errors were further improved to 5.79 m and 15 m, respectively. The results
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indicate that the UFIR method is markedly superior to the other two algorithms. However,
in the second period, the car encounters a bumpy road. We consider this situation as process
interference. The reason is that the tilt of the antenna causes a decrease in GNSS signal
gain. In this case, as a result, the positioning errors of all three methods have diverged.
Specifically, the maximum horizontal positioning error for LS reached 165 m, while for
KF it was 147 m, and for UFIR, it was reduced to 124 m. It is also observed that the LS
algorithm yields the largest positioning error. Although the KF algorithm shows some
improvement in positioning accuracy, the enhancement is limited, while the positioning
results of the UFIR-based GNSS solution method are relatively smooth. The comparative
results illustrate that, in terms of position accuracy, the relationship between these filters is
LS < KF < UFIR.
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Accordingly, the quantitated horizontal position results of LS, KF, and UFIR have been
listed in Table 2, including the median, mean values, and standard deviation (STD). It can
be seen that, compared with the KF, the mean values of horizon positioning errors from
UFIR decreased by 28.33%, and the median values decreased by 30.48%.

Table 2. Statistical analysis of the horizontal position errors.

Methods Median Mean STD Unit

LS 12.33 10.86 6.57 Meter
KF 8.53 8.08 5.34 Meter

UFIR 5.93 5.79 4.16 Meter

Additionally, both the KF and UFIR have a common objective of minimizing the dis-
crepancy between the predicted states and the observed states over time, thereby ultimately
reducing the error in the estimated states. The residual error, also known as the estimation
error or innovation, is a fundamental concept used to evaluate the quality and accuracy of
the estimated states. That is to say, analyzing the trajectory of the state elements δx0 offers
a straightforward indicator of the filter’s capability to precisely anticipate the actual states.
Hence, a residual error analysis is conducted as part of the stability analysis.

To achieve this, we introduced the relationship between the residual error vector ek
and states xk and its 1-sigma bound, which can be found by [32]:{

ek = Kk(yk −H(xk|k−1))

σ2
k = diag ((I−KkHk)P

−
k )

(45)

where H(xk|k−1) is the measurement matrix that relates the predicted state xk|k−1 to the
measurements yk.

Figure 7 presents the trends of the state errors in the x, y, and z directions, along with
their corresponding 1-sigma confidence intervals. These state errors were computed along
the trajectory represented in Figure 4. In Figure 7, only 1-sigma bound is shown. It is
observed that both the KF and UFIR residual errors are within the ±1-sigma bounds. This
indicates that the residual error will also satisfy the conventional ±3-sigma criterion. Even
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so, the UFIR demonstrates a higher degree of stability and a reduced level of noise variance
in its residual errors when compared to KF.
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4.2.2. Test II: Suburban Area, Smooth Road

Because the first test was carried out for about 165 s and in a very specific scenario,
this does not usually happen in real applications. In this test, we consider a generalized
one, in which the experiment was conducted on a smooth road and lasted for about 204 s.
The automobile kept static for about 35 s and then moved to the southeast with a moderate
dynamic along a dyke–dam. The trajectories and positioning errors in the horizon direction
are shown in Figures 8 and 9, respectively. From Figure 9, 11.36 m of horizon mean error is
obtained by the LS method, with the STD of 7.36 m. The error decreases to 8.95 and 5.30
m, respectively, after using the KF method. KF can achieve slightly better position results
than those of LS. This is mainly because KF combines the current measurement data with
the previous estimate and optimizes the estimation by predicting the system state and its
covariance. In other words, the LS method typically provides a single estimation without
considering future state predictions. However, when utilizing the UFIR approach, the mean
positioning error is significantly reduced in most epochs, as demonstrated in Figure 10. As
expected, the horizon mean error decreases to 6.35 m after using the UFIR method. The
STD also decreases significantly to 2.65 m compared with that of the LS and KF methods.
These results are consistent with the results of test I. Similarly to the first test, the results
show that the UFIR outperforms the LS and KF for both the static and dynamic periods.

Additionally, as mentioned earlier, the primary distinction among the LS, KF, and UFIR
approaches lies in the amount of historical information utilized during the iteration. The
horizon length means how much the previous measurements are taken into consideration.
This also means that the more optimal the Nopt, the closer the estimated results are to the
optimal value. Therefore, we also presented the positioning error of UFIR with different
horizon lengths, as shown in Figure 11. Note that as the horizon length increases, the
positioning error continuously decreases. The optimal estimation result in UFIR is achieved
with a horizon length of 250. However, if N exceeds 250, the positioning error will start
to increase continuously. This is because the trace of error covariance is concave on the
horizon length.
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Naturally, a larger horizon length implies a greater amount of historical data to take
into account, resulting in longer computation times. For simplicity, we extracted the first
100 s of GNSS data to evaluate the computational load under different horizon lengths.
The computational time of UFIR with different values of N is listed in Table 3. The optimal
estimated computation time of UFIR (1808.87 s) is 1.18 times that of KF (1531.23 s), while the
accuracy has been improved by 34%. This is acceptable because of the abundant on-chip
computing resources. Additionally, when it comes to memory usage, as illustrated in
Table 3, the memory consumption for UFIR escalates with an increase in the horizon length.
For a comparative analysis, the KF consumed 95.00 Mb of memory in the computational
experiments. When the optimal horizon length (N = 250) is employed, UFIR requires a
memory capacity of 162.85 Mb, which is approximately 1.7-fold higher than that of KF.
Considering the marked improvement in localization accuracy attained with UFIR, the
increased memory requirement is deemed a reasonable compromise.

Table 3. Computational load with different horizon lengths N.

Horizon Length N = 50 N = 150 N = 250 N = 500 N = 1000

Time (s) 1721.44 1745.98 1808.87 2050.98 2443.28

Memory used
(Mb) 101.00 137.48 162.58 247.48 497.20

To further elucidate the performance of the UFIR in varying noise conditions, an
additional set of experiments was conducted. This extended analysis focuses specifically
on the robustness of the UFIR algorithm under dynamic noise environments, thereby
offering a more comprehensive understanding of its applicability in real-world scenarios.
Specifically, we artificially introduced Student’s t-distributed noise with five degrees of
freedom into the observed pseudoranges. To simulate a situation where noise is growing
over time, we applied varying scale factors ranging from 1 to 100. The growing noise
was introduced into the last 30 s of the data. Figure 12 shows the horizontal positioning
accuracy of UFIR and KF under increasing noise conditions. As we can see, in the first 70 s,
the horizontal positioning error for KF is 8.08 m, while for UFIR it is 5.1 m. However, there
is a noticeable increase in the horizontal positioning error when using the KF as the level of
noise increased. In contrast, the UFIR method exhibited a relatively stable performance
under the same conditions. This behavior can be attributed to the sensitivity of the KF to
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noise, particularly when it is non-Gaussian. UFIR, on the other hand, is better suited for
handling zero-mean noise, displaying a greater ability to suppress it.
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5. Discussion

To validate the efficacy of UFIR, the above two targeted experiments were designed
to address different application scenarios. Figures 5, 6 and 9, and Figure 10 and Table 2
illustrate the positioning results of LS, KF, and UFIR. Taking test II as an example, the LS
method (mean error: 11.36 m) in this study has the worst position results. The reason is
that LS relies solely on spatial geometric structures to estimate position and assumes that
there is no temporal correlation between states. By incorporating the state transformation
constraints and updating the state prediction with current measurements, smoother po-
sitioning results are obtained for KF (mean error: 8.95 m). Nevertheless, KF is essentially
a Markov process, and the current state estimate is only achieved between two nearest
neighbors. This means that historical information is excluded when estimating the current
state. Thus, KF produces better estimate results. But, the improvement is limited by its
recursive property. For GNSS, a typical time-varying system, the state and measurement
are highly correlated in time. Unlike KF, UFIR is iterative, and the amount of historical
data used during iteration and invariance to noise uncertainty make it more accurate and
robust. As a result, the mean horizon positioning error of UFIR is reduced to 6.35 m,
which is significantly better than the other two algorithms. Meanwhile, incorporating
historical data will result in an increase in the computational load. Thus, we evaluate the
computational time under different horizon lengths N. The results in Table 3 indicate that
as N increases, the computational load and memory used also increase, but compared to
the improvement in positioning accuracy, it is still acceptable. Further analysis on noise
sensitivity also corroborates that the UFIR-based method exhibits superior robustness to
zero-mean noise compared to the KF method. These results suggest that by introducing
historical information and eliminating reliance on noise, higher accuracy and more robust
results can be achieved.

Consequently, the UFIR-based GNSS positioning estimator offers improved accuracy
and robustness compared to LS- and KF-based estimators. While it does come with the
drawback of increased computational load, this is no longer a significant concern for
modern computers and microprocessors.

6. Conclusions

Currently, GNSS positioning is the primary source for providing a globally referenced
position. However, accurate positioning estimation is a great challenge for GNSS receivers
due to the harsh application environment. LS and KF are currently the main methods
for GNSS positioning estimation. However, in LS, the observations between different
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epochs are independent of each other, neglecting the time correlation between states. In
KF, although the adjacent states are correlated with each other through the state transition
matrix, the rich historical data have not been effectively utilized. Given this, the UFIR is
proposed to estimate the GNSS position in this paper. UFIR inherits the advantages of
KF and takes historical data into account by expanding the state-space model, which will
improve positioning performance. Furthermore, it exhibits superior robustness because
it does not rely on noise statistics. Two comparative experiments were performed to
validate UFIR’s positioning performance. The results show that the proposal demonstrates
a significant improvement in positioning accuracy. When compared to the LS and KF
methods, the mean positioning error was reduced by 44% and 29%, respectively. UFIR
overall outperforms these two methods in both positioning accuracy and robustness, only
sacrificing some acceptable computing resources.
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