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Abstract: Landslides are among the most frequent secondary disasters caused by earthquakes in
areas prone to seismic activity. Given the necessity of assessing the current seismic conditions for
ensuring the safety of life and infrastructure, there is a rising demand worldwide to recognize
the extent of landslides and map their susceptibility. This study involved two stages: First, the
regions prone to earthquake-induced landslides were detected, and the data were used to train deep
learning (DL) models and generate landslide susceptibility maps. The application of DL models
was expected to improve the outcomes in both stages. Landslide inventory was extracted from
Sentinel-2 data by using U-Net, VGG-16, and VGG-19 algorithms. Because VGG-16 produced the
most accurate inventory locations, the corresponding results were used in the landslide susceptibility
detection stage. In the second stage, landslide susceptibility maps were generated. From the total
measured landslide locations (63,360 cells), 70% of the locations were used for training the DL models
(i.e., convolutional neural network [CNN], CNN-imperialist competitive algorithm, and CNN-gray
wolf optimizer [GWO]), and the remaining 30% were used for validation. The earthquake-induced
landslide conditioning factors included the elevation, slope, plan curvature, valley depth, topographic
wetness index, land cover, rainfall, distance to rivers, and distance to roads. The reliability of the
generated susceptibility maps was evaluated using the area under the receiver operating characteristic
curve (AUROC) and root mean square error (RMSE). The CNN-GWO model (AUROC = 0.84 and
RMSE = 0.284) outperformed the other methods and can thus be used in similar applications. The
results demonstrated the efficiency of applying DL in the natural hazard domain. The CNN-GWO
predicted that approximately 38% of the total area consisted of high and very high susceptibility
regions, mainly concentrated in areas with steep slopes and high levels of rainfall and soil wetness.
These outcomes contribute to an enhanced understanding of DL application in the natural hazard
domain. Moreover, using the knowledge of areas highly susceptible to landslides, officials can actively
adopt steps to reduce the potential impact of landslides and ensure the sustainable management of
natural resources.
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1. Introduction

Landslides are potentially devastating natural hazards that can occur as a secondary
disaster during or after an earthquake event [1]. Traditionally, earthquake-induced land-
slides have been recognized and mapped through field surveys [2]. However, such methods
involve several limitations, such as difficulties in accessing remote regions, high risks as-
sociated with entering the affected areas, and high cost and time requirements, and thus,
scientists have actively sought to identify innovative methods to address these problems [3].
With advancements in geospatial technology, different approaches have been developed
to detect earthquake-induced landslides [4,5]. For example, landslide patterns can be
recognized by remote sensing (RS) technologies [6]. RS images capture a large area without
any access limitations or safety concerns. The objective of this study was to detect the 2018
Iburi earthquake-induced landslide areas and map their susceptibility. To this end, it was
necessary to select the proper data and methodology.

As mentioned, RS and geospatial technologies can provide a vast range of data for
large areas, with high resolution and short visit times [7]. Satellite imagery from one [8] or
multiple sensors [9] can be used in landslide detection, depending on the aim and scope of
the research. Cost and data availability are other factors affecting the data selection. The
existing studies on landslide detection have used RapidEye satellite imagery [10], ALOS-
PALSAR [11], hyperspectral imagery [12], synthetic aperture radar images [13], Landsat
images [14], Sentinel images [15], and unstaffed aerial vehicle images [16].

In this context, one of the simplest RS approaches is to detect the landslides manually
through the visual interpretation of aerial photographs [17]. However, this approach is time-
consuming and requires expert knowledge and intensive resources [18]. Recent approaches
mostly consist of two stages: (1) the landslides’ representative features (either pixel or
object-based) are extracted, and (2) the features are classified as landslide or non-landslide
pixels or segments [19]. Several techniques can be found in the literature, including but
not limited to principal component analysis (PCA) [20], maximum likelihood classification
(MLC) [21], wavelet transform [22], and time-series analysis [23]. Each of these methods
has its own advantages and disadvantages. Among the existing methods, machine learning
(ML) techniques have been widely applied in landslide detection [19,24], with support
vector machine (SVM) and random forest (RF) [25–27] methods being commonly used.

Notably, the application of deep learning (DL) as a subdivision of ML remains inade-
quately explored. Ghorbanzadeh et al. [28] reviewed several DL methods used in landslide
detection and recognition and noted that since 2019, DL algorithms, such as convolutional
neural networks (CNNs), have been increasingly applied in landslide inventory mapping.
The widespread use of DL is likely related to its advantages, such as the lack of require-
ment of expert opinion, intensive supervision, and fieldwork [29]. In addition, to use
conventional methods such as SVM and RF, interpretation logic needs to be designed,
which may increase the algorithm complexity [20]. In contrast, in DL techniques, data are
processed in several stages, the amount of data is reduced through mapping relationships,
and significant characteristics of data are extracted [30]. Unlike conventional ML methods
that cannot effectively process natural data in their raw form, DL techniques can use raw
data as an input and learn highly complex functions [31].

Ye et al. [12] performed one of the pioneering studies involving the use of DL for
detecting landslide areas based on hyperspectral RS. Specifically, the authors used the
DL framework with constraints (DLWC) to recognize and detect landslide areas. The
results highlighted that DLWC outperformed other conventional methods. Representative
examples of DL methods include the dense convolutional network (DenseNet) [32], U-Net,
residual U-Net (ResUNet), generative adversarial networks, and deep convolutional neural
networks (DCNNs), which have been extensively evaluated by researchers. For instance,
Ghorbanzadeh et al. [33] applied U-Net and ResUNet to Landsat and Sentinel-2 imageries to
compare their landslide detection and recognition performances in three regions of Western
Taitung County. Yi and Zhang [8] developed LandsNet to map the landslide inventory
from two areas in Sichuan province, China. The performance of the proposed method
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was evaluated in comparison with ResUNet and DeepUNet. LandsNet, with an accuracy
of 86.89%, outperformed the other two algorithms. Su et al. [34] developed a deep CNN
model named LanDCNN to map the landslide extent in Lantau Island, Hong Kong. To this
end, a 0.5 m digital terrain model and high-resolution bitemporal RGB aerial photos were
used. Among DL methods, U-Net is considered to be a robust algorithm. Meena et al. [35]
applied U-Net, RF, SVM, and the K-nearest neighbor models to two datasets from different
sources (RapidEye and ALOS-PALSAR) to compare their potential in landslide detection.
The first dataset included optical bands of RapidEye imagery, and the second dataset
involved topographical data derived from ALOS-PALSAR. The researchers highlighted
that U-Net generated the most accurate outcomes.

In addition to generating the earthquake-induced landslide inventory map, it is neces-
sary to detect landslide-prone areas to implement appropriate measures for preventing or
minimizing the potential impacts of landslides [36]. Several researchers have applied statis-
tical methods to map landslide-susceptible regions [37–39]. Merghadi et al. [40] explored
the top-cited research and review articles pertaining to the landslide susceptibility domain.
Similarly, Reichenbach et al. [41] and Shano et al. [42] reviewed the most popular and well-
known approaches in this domain. Most of the existing studies were noted to use RF [43],
logistic regression [44], artificial neural network [45], SVM [37], decision tree [46], K-nearest
neighbors [47], weights of evidence [48], adaptive neuro-fuzzy inference systems [49], and
evidential belief functions [50]. In general, landslides have complex structures due to
numerous inherent causative and external triggering factors [51]. Therefore, it is necessary
to identify more robust techniques for mapping landslide-prone regions.

ML techniques have been noted to outperform traditional statistical methods [52,53],
and hybrid and ensemble techniques have been proven to outperform standalone ML
models [54]. In recent times, the research domain of landslide susceptibility has witnessed
the incorporation of diverse DL methodologies. For instance, the integration of meta-
heuristic optimization algorithms such as gray wolf optimizer (GWO) with ML can help
enhance the predictive performance of the model, as highlighted by Hakim et al. [55],
who integrated CNN with GWO and imperialist competitive algorithm (ICA) to map the
landslide-susceptible zones in Icheon City, South Korea. The authors concluded that ensem-
ble methods of DL and optimization algorithms can produce more reasonable outcomes
for landslide susceptibility mapping.

To the best of our knowledge, U-Net, VGG-16, and VGG-19 algorithms have not
been widely utilized for earthquake-induced landslide detection, in comparison with more
conventional methods such as PCA [56–58] and MLC [59]. Therefore, the objective of
this study was to evaluate the performances of these algorithms in detecting the locations
affected by the landslide induced by the 2018 Iburi earthquake, based on Sentinel-2 satel-
lite imagery. U-Net, VGG-16, and VGG-19 were selected, owing to their superiority to
conventional ML methods, as these methods can capture both local and global features in
the image, overcome the problem of vanishing gradients, capture more complex features
because of their deeper architecture, and be trained on a small dataset. Moreover, U-Net,
VGG-16, and VGG-19 have a simple structure, high training speed, and high classification
accuracy [60–63]. The inventory dataset generated from the first stage was used in land-
slide susceptibility mapping. Moreover, the standalone CNN model and that hybridized
by the ICA and GWO algorithms were used to create the landslide susceptibility maps.
Specifically, the CNN was integrated with ICA and GWO to tune its hyperparameters. ICA
and GWO have been noted to be better than other metaheuristic algorithms in terms of
the convergence rate, capability of simultaneously optimizing multiple hyperparameters,
robustness, scalability, and ability to balance exploration and exploitation during the search
process, thereby preventing the model from being trapped in local optima [64,65]. The
predictive ability of DL algorithms was assessed using statistical indices. Moreover, the
correlation between landslide occurrences and geo-environmental factors was scrutinized.

The contributions of this study to the literature are four-fold: (1) The efficiency of three
DL algorithms (namely, U-Net, VGG-16, and VGG-19) in detecting earthquake-induced
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landslides, based on Sentinel-2 satellite imagery, is assessed; (2) spatial predictions of
landslide susceptibility are generated using the CNN algorithm; (3) the feasibility of the
ICA and GWO metaheuristic algorithms in optimizing the hyperparameters of the standard
CNN for enhancing its predictive performance and reliability of the results is evaluated;
and (4) the outcomes can enhance our knowledge of landslide modeling by facilitating the
identification of the topographic, hydrological, and anthropogenic factors that most notably
influence the mapping of landslide-susceptible areas. The findings are expected to facilitate
further scientific research and the formulation of natural hazard management plans.

2. Methodology

The process flow of this research is illustrated in Figure 1. There are two main stages:
landslide detection and landslide susceptibility mapping. Landside detection is performed
using the U-Net, VGG-16, and VGG-19 algorithms, as discussed in Section 2.2. The F1-
score, precision, and recall values are used to assess the landslide inventories. The highest-
performing algorithm is used to detect landslides over the study area. A total of 63,360 cells
are detected as landslide locations. An equal number of locations are randomly detected as
non-landslide data within the areas characterized by minimal slopes within lower elevation
areas, in which a landslide has been considered unlikely to occur [55]. The final inventory
locations (non-landslides and landslides) are divided into training and testing zones in
a ratio of 70:30 for landslide susceptibility mapping. The testing and training subsets
are overlaid with rasterized influencing factors to extract the attributes of non-landslide
and landslide samples. In the landslide susceptibility mapping stage, the frequency ratio
(FR) is used to evaluate the spatial correlation among landslide locations and landslide-
susceptibility-related factors. Afterward, the three DL models are developed in MATLAB
software (Version: R2022b, https://www.mathworks.com/) (Accessed on 11 September
2023). The FR generated for each class of every landslide-susceptibility-related factor
is input to the models to create landslide susceptibility maps using DL algorithms; i.e.,
the CNN, CNN-ICA, and CNN-GWO methods. The output of the models is a landslide
susceptibility map that shows landslide-susceptible regions in the entire study area. To
optimize the performance of the CNN model, the hyperparameters are fine-tuned by
minimizing the root mean square error (RMSE) between the predicted and actual values.
The performances are evaluated using the area under the receiver operating characteristic
curve (AUROC) and RMSE.

2.1. Study Area

The Iburi earthquake occurred on 6 September 2018, in the Iburi region of Hokkaido,
Northern Japan [66] (Figure 2). The epicenter was located at 42.690◦N by 142.006◦E, 300
km from the southeastern Kuril Trench [67]. According to the Japan Meteorological Agency
(JMA), the Iburi earthquake had a maximum seismic intensity of 7.0, a moment magnitude
(Mw) of 6.6, and a JMA magnitude of 6.7 [68]. Until 31 October 2018, 311 aftershocks
(maximum seismic intensity higher than 1.0) were recorded by JMA [69]. This earthquake
caused severe social and economic damage to Hokkaido and all of Japan [70]. According
to the Ministry of Internal Affairs and Communications, Japan, 394 houses collapsed and
1061 were damaged. In addition, 41 people were killed, and 691 people were injured.
Approximately 82% of the total fatalities resulted from shallow landslides in Atsuma. Most
of these landslides were shallow earth slides that occurred approximately 20 km north
of the epicenter, likely because of the thickness of the surface geology (between 4 and
5 m) in the region [71]. The remaining landslides were deep rockslides that occurred
within 10 km of the epicenter. Pyroclastic flow deposits and pyroclastic fall deposits
covered 40% of Hokkaido Island. The main reason for earthquake- and rainfall-induced
landslides in Hokkaido was the presence of Quaternary volcanic soils in the region [72]. The
powerful typhoon Jebi, which hit the study area a day before the earthquake [73], adversely
affected the slope stability of this region as well. Rainfall of 10–20 mm was recorded by
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the Automated Meteorological Data Acquisition System (Meteorological Agency of Japan,
https://www.jma.go.jp/) (Accessed on 11 September 2023).

2.2. Data
2.2.1. Landslide-Detection-Related Dataset

Level-1C Sentinel-2 imagery obtained on 10 September 2018, was used to generate
landslide inventory maps via U-Net, VGG-16, and VGG-19 for image segmentation and
landslide detection. The algorithms are described in Section 2.3. Atmospheric correc-
tion was performed using the SNAP software (Version: 9.0.0, https://www.step.esa.int/)
(Accessed on 11 September 2023) eveloped by the European Space Agency for data process-
ing [74]. First, the study area was divided into three zones: training, testing, and prediction
zones (Figure 3). The training and testing zone data were used to train and evaluate the
algorithms, respectively. The most accurate algorithm among the three algorithms was
then used to detect the landslide locations in the prediction zone. The process was initiated
by digitizing a number of landslide samples from the training zone to be used in training
U-Net, VGG-16, and VGG-19. To prepare the inventory layer (independent factor) for land-
slide susceptibility processing, the same number of non-landslide locations were selected.
Values of 1 and 0 were assigned to landslide and non-landslide locations, respectively. All
locations were split into training (70%) and testing (30%) groups [75,76].

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 1. Process flow of the research, representing the model development for landslide detection 
and susceptibility mapping. 

2.1. Study Area 
The Iburi earthquake occurred on 6 September 2018, in the Iburi region of Hokkaido, 

Northern Japan [66] (Figure 2). The epicenter was located at 42.690°N by 142.006°E, 300 
km from the southeastern Kuril Trench [67]. According to the Japan Meteorological 
Agency (JMA), the Iburi earthquake had a maximum seismic intensity of 7.0, a moment 
magnitude (Mw) of 6.6, and a JMA magnitude of 6.7 [68]. Until 31 October 2018, 311 af-
tershocks (maximum seismic intensity higher than 1.0) were recorded by JMA [69]. This 
earthquake caused severe social and economic damage to Hokkaido and all of Japan [70]. 
According to the Ministry of Internal Affairs and Communications, Japan, 394 houses col-
lapsed and 1061 were damaged. In addition, 41 people were killed, and 691 people were 
injured. Approximately 82% of the total fatalities resulted from shallow landslides in 
Atsuma. Most of these landslides were shallow earth slides that occurred approximately 
20 km north of the epicenter, likely because of the thickness of the surface geology (be-
tween 4 and 5 m) in the region [71]. The remaining landslides were deep rockslides that 
occurred within 10 km of the epicenter. Pyroclastic flow deposits and pyroclastic fall de-
posits covered 40% of Hokkaido Island. The main reason for earthquake- and rainfall-
induced landslides in Hokkaido was the presence of Quaternary volcanic soils in the re-
gion [72]. The powerful typhoon Jebi, which hit the study area a day before the earthquake 

Figure 1. Process flow of the research, representing the model development for landslide detection
and susceptibility mapping.

https://www.jma.go.jp/
https://www.step.esa.int/


Remote Sens. 2023, 15, 4501 6 of 26

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 28 
 

 

[73], adversely affected the slope stability of this region as well. Rainfall of 10–20 mm was 
recorded by the Automated Meteorological Data Acquisition System (Meteorological 
Agency of Japan, https://www.jma.go.jp/) (Accessed on 11 September 2023). 

 
Figure 2. Study area: (a) location of Japan capital (black star symbol) and Iburi region of Hokkaido, 
Northern Japan (red square symbol), (b) The digital elevation map, and (c) location of landslides 
occurred during and after the 2018 Iburi earthquake (white symbol). 

2.2. Data 
2.2.1. Landslide-Detection-Related Dataset 

Level-1C Sentinel-2 imagery obtained on 10 September 2018, was used to generate 
landslide inventory maps via U-Net, VGG-16, and VGG-19 for image segmentation and 
landslide detection. The algorithms are described in Section 2.3. Atmospheric correction 
was performed using the SNAP software (Version: 9.0.0, https://www.step.esa.int/) (Ac-
cessed on 11 September 2023) eveloped by the European Space Agency for data processing 
[74]. First, the study area was divided into three zones: training, testing, and prediction 
zones (Figure 3). The training and testing zone data were used to train and evaluate the 
algorithms, respectively. The most accurate algorithm among the three algorithms was 
then used to detect the landslide locations in the prediction zone. The process was initiated 

Figure 2. Study area: (a) location of Japan capital (black star symbol) and Iburi region of Hokkaido,
Northern Japan (red square symbol), (b) The digital elevation map, and (c) location of landslides
occurred during and after the 2018 Iburi earthquake (white symbol).

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 28 
 

 

by digitizing a number of landslide samples from the training zone to be used in training 
U-Net, VGG-16, and VGG-19. To prepare the inventory layer (independent factor) for 
landslide susceptibility processing, the same number of non-landslide locations were se-
lected. Values of 1 and 0 were assigned to landslide and non-landslide locations, respec-
tively. All locations were split into training (70%) and testing (30%) groups [75,76].  

 
Figure 3. Training, testing, and predicted zones on a Sentinel-2 image. 

2.2.2. Factors Influencing Landslide Susceptibility 
To date, there is no predefined framework for the selection of factors influencing 

earthquake-induced landslides [77]. Researchers typically select factors with reference to 
the literature and expert knowledge. In this study, nine factors, i.e., elevation, slope, plan 
curvature, valley depth, topographic wetness index (TWI), land cover, rainfall, distance 
to rivers, and distance to roads (Figure 4), were selected based on a literature review to be 
used in landslide susceptibility mapping [78–80]. 

Elevation. Surface topography considerably affects the density and spatial extent of 
landslides by controlling the flow direction and soil moisture [81]. The minimum and 
maximum heights of the region can be defined using the elevation. A digital elevation 
model (DEM) with a spatial resolution of 30 m was downloaded from the United States 
Geological Survey website (Figure 4a). Other factors, i.e., the slope (Figure 4b), plan cur-
vature (Figure 4c), valley depth (Figure 4d), and TWI (Figure 4e) were derived from the 
DEM. 

Slope. The slope, which defines the steepness of the ground, affects landslide occur-
rence [82] owing to its influence on the moisture concentration, land instability, and hy-
draulic continuity. 

Plan Curvature. The curvature indicates the land geometry and slope variation [83]. 
Negative, positive, and zero curvatures indicate concave, convex, and flat regions, respec-
tively. Ohlmacher [84] highlighted the strong correlation between landslide susceptibility, 
type of landslide, and plan curvature of the region.  

Valley Depth. The valley depth refers to the vertical distance of a point from the base 
level of the channel network [85]. This factor controls the slope stability, transportation 
and accumulation of water, as well as the weathering process, thereby affecting landslide 
occurrences [86].  

Figure 3. Training, testing, and predicted zones on a Sentinel-2 image.



Remote Sens. 2023, 15, 4501 7 of 26

2.2.2. Factors Influencing Landslide Susceptibility

To date, there is no predefined framework for the selection of factors influencing
earthquake-induced landslides [77]. Researchers typically select factors with reference to
the literature and expert knowledge. In this study, nine factors, i.e., elevation, slope, plan
curvature, valley depth, topographic wetness index (TWI), land cover, rainfall, distance to
rivers, and distance to roads (Figure 4), were selected based on a literature review to be
used in landslide susceptibility mapping [78–80].
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Elevation. Surface topography considerably affects the density and spatial extent of
landslides by controlling the flow direction and soil moisture [81]. The minimum and
maximum heights of the region can be defined using the elevation. A digital elevation
model (DEM) with a spatial resolution of 30 m was downloaded from the United States
Geological Survey website (Figure 4a). Other factors, i.e., the slope (Figure 4b), plan
curvature (Figure 4c), valley depth (Figure 4d), and TWI (Figure 4e) were derived from
the DEM.

Slope. The slope, which defines the steepness of the ground, affects landslide oc-
currence [82] owing to its influence on the moisture concentration, land instability, and
hydraulic continuity.

Plan Curvature. The curvature indicates the land geometry and slope variation [83].
Negative, positive, and zero curvatures indicate concave, convex, and flat regions, respec-
tively. Ohlmacher [84] highlighted the strong correlation between landslide susceptibility,
type of landslide, and plan curvature of the region.

Valley Depth. The valley depth refers to the vertical distance of a point from the base
level of the channel network [85]. This factor controls the slope stability, transportation
and accumulation of water, as well as the weathering process, thereby affecting landslide
occurrences [86].

TWI. The TWI indicates the soil moisture [87]. Landslide occurrence probability is
negatively related to the TWI. Specifically, landslide susceptibility increases as cohesion
decreases due to moisture loss.

Land cover. Land cover represents human activities and land cover variations, which
considerably affect landslide occurrences [88]. For instance, the presence of vegetation may
increase water accumulation, thereby decreasing the slope stability [89]. In this study area,
the land cover cases involve trees, grassland, cropland, built-up area, barren land, and open
water (Figure 4f). The land cover map for 2018 was obtained from the Sentinel-2A satellite
image operated by the European Space Agency.

Rainfall. Rainfall intensity considerably affects landslide occurrences. Li et al. [90]
comprehensively analyzed the effect of rainfall on earthquake-induced landslide occurrence.
The mean annual rainfall map (2015–2020) was generated by the Climate Hazards Group
infraRed Precipitation with Stations dataset (https://chc.ucsb.edu/data/chirps) (Accessed
on 11 September 2023) (Figure 4g).

Distance to Rivers. Rivers may generate cuts in rocks. Moreover, the distance from
rivers affects the slope stability as the saturation degree of the slope-forming materials
varies with this distance [86]. According to Huang et al. [91], the probability of landslide
occurrence increases with the proximity to rivers. Figure 4h shows the map of the distance
to rivers.

Distance to roads. Roads are often the sources of slope instability and continuity. The
flow of water can be altered by a road segment, which can function as a barrier, source, sink,
or corridor, and its location in the mountains often results in it triggering landslides. The
Open Street Map portal (https://www.openstreetmap.org/) (Accessed on 11 September
2023) was used to identify the road and river locations (Figure 4i). The distances to rivers
and roads were measured in the ArcGIS Environment using the “Euclidean distance”
spatial analyst tool.

2.3. Landslide-Detection
2.3.1. U-Net

CNN is a form of DL that has the unique ability to take raw image data as input,
eliminating the need for the conventional and intricate processes of image preprocessing
and complex feature extraction [92]. U-Net is a CNN architecture that was designed in
2015 for pixel-based classification [93]. Unlike regular CNNs, which classify an image as a
whole, U-Net classifies each pixel [94]. This process is known as semantic segmentation and
is commonly used in biomedical and military applications [93]. An image is input to U-Net,
and a segmented image is output. U-Net has two parts: an encoder that reduces the image
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size and a decoder that increases it, resulting in a segmented image with the same size as
the input image [35]. The U-Net model consists of two parts, each with five levels. The first
part, the encoder, reduces the dimensions of the input image by half at each level through
two convolution layers, a max-pooling layer, and a dropout layer to avoid overfitting. The
second part, the decoder, reverses this process and increases the image dimensions using
information from corresponding levels in the encoder. This process results in an output
image with the same size as the input and same number of classes [93]. The scalability of
the architecture and use of data augmentation render it effective even with small training
sets. Figure 5 shows the network structure of U-Net.
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2.3.2. VGG Models

VGG models outperform the prior models in terms of both speed and accuracy [93],
owing to their deeper architecture and the use of pre-trained models. Furthermore, the
incorporation of additional layers with smaller kernels increases the nonlinearity of the
model, which is a key factor for successful DL [95]. VGG-16 is a 16-layer CNN that has
been pre-trained using over a million images from the ImageNet database [96]. The model
can recognize 1000 distinct object categories and consists of a combination of convolution
and max-pooling layers [97]. The network culminates in two fully connected layers (FC),
followed by SoftMax activation for prediction [98]. With approximately 138 million param-
eters, VGG-16 is a comprehensive model [99]. VGG-19 is a 19-layer DCNN that has been
pre-trained on over a million images from the ImageNet database [100]. Similar to VGG-16,
this model can also classify images into 1000 object categories, including objects such as
keyboards, pencils, mice, and other animals. Consequently, VGG-19 can learn rich feature
representations for a diverse range of images. The sizes of the input images for VGG-16
and VGG-19 are 224 × 224. Figure 6 shows the network structures of VGG-16 and VGG-19.
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2.4. Landslide Susceptibility Mapping
2.4.1. FR

The FR is used to evaluate the correlation between each class of every landslide
susceptibility-related factor and landslide occurrences [101]. Equation (1) is used to calculate
the proportion of pixels for each landslide factor to the pixels corresponding to landslides.

FR =
% pixel of landslide points

% pixel class of landslide effective factor
(1)

2.4.2. CNN

CNN is a DL algorithm that uses neural networks with layers for convolution, ac-
tivation, and pooling, along with an FC layer [102]. The convolutional layers identify
connections between feature classes using input image features for enhancing the per-
formance [103]. Nonlinear results from the convolutional process are processed in the
activation layer with the activation function being the rectified linear unit to enhance the
nonlinear properties of the neural network [104]. The pooling of layers after activation
helps prevent overfitting by reducing the dimension of feature classes through downsam-
pling [105]. The final layer, the FC layer, combines the network from pooling into one
neuron to produce the final output [106]. The CNN generates a nonlinear mapping from
the input to the output without the need for defining precise mathematical expressions
between the input and output [107]. A detailed description of the CNN algorithm can be
found in [108,109].

2.4.3. ICA

The ICA is a metaheuristic optimization algorithm that simulates imperialistic com-
petition to model national socioeconomic trends [110]. The starting population is referred
to as countries or empires, consisting of imperialists and colonies. The countries with low
costs are selected as imperialist countries, and colonies are divided among them based
on the power of the imperialists [65]. Competition starts when the empires grow and the
imperialists control a group of colonies, gaining more through their dominance [111]. The
positions of imperialists and colonies can be interchanged if the colonies become stronger,
resulting in the elimination of the losing empire and rise of the colonies as the dominant
country [112]. A detailed description of the ICA algorithm can be found in [65].

2.4.4. GWO

The GWO is a metaheuristic optimization algorithm that models the social hierarchy
and hunting behavior of gray wolves [113]. The gray wolf pack is divided into four levels:
alpha (α), beta (β), delta (δ), and omega (ω) [114]. Prey hunting consists of encircling,
hunting, and attacking [115]. The α wolf leads the pack with assistance from the β wolves.
The δwolves are responsible for tasks such as scouting, guarding, and hunting, whereas
the ω wolves occupy the lowest rank and serve as scapegoats [116]. To mathematically
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model the social hierarchy of wolves, the fittest solution is designated as α, and the second
and third best solutions are β and δ, respectively. The remaining candidate solutions are
grouped as ω. The hunting (optimization) is guided by α, β, and δ wolves, and the ω
wolves follow their lead. The encircling behavior of gray wolves during a hunt is defined as

→
D =

∣∣∣∣→C·→Xp(t)−
→
X(t)

∣∣∣∣ →
C = 2·→r 2 (2)

→
X(t + 1) =

→
Xp(t)−

→
A·
→
D

→
A = 2

→
a ·→r 1 −

→
a (3)

where
→
Xp and

→
X are the position vectors of a gray wolf and the prey at the current iteration

(t), respectively.
→
C and

→
A are coefficient vectors, and

→
r 1 and

→
r 2 are random vectors in

[0, 1].
→
C is the component that favors exploration and local optima avoidance. Due to the

lack of knowledge regarding the location of the prey (optimum solution) in an abstract
search space, it is assumed that α, β, and δ know the potential location of prey, and the
other wolves update their positions according to the positions of the α, β, and δ wolves,
as follows:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣, →Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣, →Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣ (4)

→
X1 =

→
Xα −

→
A1·

(→
Dα

)
,
→
X2 =

→
Xβ −

→
A2·

(→
Dβ

)
,
→
X3 =

→
Xδ −

→
A3·

(→
Dδ

)
(5)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(6)

Finally, the wolves attack the prey when
∣∣∣∣→A∣∣∣∣ is lower than 1. When

∣∣∣∣→A∣∣∣∣ > 1, the wolves

diverge from one another to search for prey [114].

2.5. Accuracy Assessment
2.5.1. Performance Assessment of Landslide Detection Algorithms

The landslide detection accuracy is evaluated using the precision, recall, and F1-
score [117]. The precision indicates the percentage of the correctly detected landslide pixels
to the total number of samples predicted as landslides. Recall refers to the proportion of
landslides that the algorithm correctly identifies out of the total pixels actually representing
landslides. A high precision indicates that the model predicts fewer non-landslide areas as
landslides, and a high recall indicates that the model misses fewer landslide areas [118]. A
model with high precision but low recall may miss several landslide areas, whereas a model
with high recall but low precision may predict many non-landslide areas as landslides.
Therefore, a balance between precision and recall is desirable [34,118,119]. The F1-score
represents the harmonic average among precision and recall, as these parameters assess dif-
ferent aspects of the model. A higher F1-score (maximum value = 1) corresponds to superior
landslide detection capability. The performance metrics are defined as follows [120]:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score = 2× Precision× Recall
Precision + Recall

(9)
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where TP and FP represent the numbers of pixels correctly and incorrectly classified as a
landslide, respectively. FN indicates the number of pixels mistakenly identified as non-landslide.

2.5.2. Assessment of Landslide Susceptibility Maps

The accuracy of the landslide susceptibility maps is assessed using the RMSE and
AUROC. AUROC is the most widely used validation parameter in natural hazard suscepti-
bility assessment [121]. This term represents the area enclosed by the receiver operating
curve, with values ranging from 0 to 1. A larger area corresponds to a more accurate
model, as it depicts the relationship between specificity and sensitivity [122]. The fitting
and predictive performance of the models is evaluated based on the training and testing
data, respectively.

3. Results
3.1. Correlation among the Landslide Location and Related Factors

The FR is used to define the correlation between the landslide occurrences and each
class of every landslide influencing factor. Figure 7 shows the measured values. Values
greater than 1 indicate a stronger impact on landslide occurrence.
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In terms of the elevation, areas with an elevation of 105–193 m receive the highest
FR, likely because of gravity and other factors [123]. In terms of the slope factor, steeper
slopes are associated with a higher landslide occurrence probability [124], likely because
of increased shear stress and the effect of gravity. In addition, sharp slopes are associated
with lower soil thicknesses [125]. In terms of the curvature, only the convex class receives
an FR greater than 1. FR values for the valley depth indicate that landslides are more
likely to occur at larger valley depths (>226). In terms of the TWI, the FR values linearly
increase from the lowest to the highest class. This finding is supported by other studies,
such as that of Yilmaz [126], who reported that landslides typically occur at higher TWIs.
In terms of the land cover, classes of grassland, built-up areas, and barren areas receive the
highest FR values of 2.41, 1.21, and 5.48, respectively. The lowest classes of rainfall (very
low, low, and moderate) receive higher FR values, showing the inverse correlation between
landslide occurrence and rainfall. In the case of distance to rivers, the highest FR value of
1.1 corresponds to the smallest distance of 0–80 m. Unlike the distance to rivers, the highest
FR value (1.08) for the distance to roads corresponds to the largest distance of >421 m.
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3.2. Landslide Detection

U-Net, VGG-16, and VGG-19 are trained using the training dataset from the training
zone (Figure 3). After being trained, the algorithms are applied to the test zone (Figure 3)
to detect landslides and predict their possible locations. Figure 8 shows the predicted
landslides in the test zone, along with the real landslides for visual comparison.
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After training the algorithms and testing their performances, they were applied to the
prediction zone (Figure 3). Figure 9 shows the outputs of the different algorithms.

The performances of the algorithm were evaluated using the precision, recall, and
F1-score. Figure 10a shows the accuracy assessment metrics for each algorithm in the
training stage. VGG-16 and VGG-19 receive the highest precision value of 0.85. The best
recall (0.81) corresponds to U-Net. The F1-score is comparable for all three algorithms.
Although U-Net achieves the lowest precision in the training step, it achieves the highest
precision (0.85) in the test step (Figure 10b). U-Net also achieves the lowest recall and
F1-score.

Figure 11 illustrates the validation loss curves for U-Net, VGG-16, and VGG-19. The
loss curves of all algorithms are similar, indicating improvements during the later steps of
the training. The accuracy of all three algorithms increases as the amount of loss decreases.

3.3. Landslide Susceptibility Mapping

VGG-16 yields the most accurate landslide inventory. Therefore, it is used to perform
earthquake-induced landslide susceptibility mapping by integrating CNN, CNN-ICA,
and CNN-GWO. The outputs derived from each method are classified into very low,
low, moderate, high, and very high susceptibility zones (Figure 12). To this end, the
quantile classification scheme is used, which has been commonly applied by researchers
in the natural hazard domain. The least overestimation can be observed in the very
high class in the landslide susceptibility map derived by the CNN-ICA. Figure 13, which
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shows the percentage of area in each susceptibility class, confirms this observation. The
landslide susceptibility of various geographic regions exhibits variability. The northern
areas demonstrate a low susceptibility to landslides, whereas the central regions situated
near roads and rivers are characterized by a higher predisposition to landslides (Figure 12).
As shown in Figure 13, the high susceptibility class in the maps derived from CNN and
CNN-ICA cover the largest area. According to the CNN model, most of the study area
has elevated levels of susceptibility to landslides, with 28.68% and 20.22% of the regions
classified as those with high and very high susceptibility, respectively. The CNN-GWO
model indicates that lower proportions (approximately 20.34% and 18.08%, respectively) of
areas exhibit high and very high susceptibility to landslide incidents. The regions with very
high susceptibility must be prioritized for deploying landslide risk mitigation strategies,
such as improved monitoring, introduction of early warning systems, and implementation
of land-use regulations aimed at restricting development in these vulnerable regions.
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3.4. Model Performance

The accuracy of the landslide susceptibility maps is evaluated using RMSE and AU-
ROC. The results from all three methods are evaluated statistically, and their outcomes
are compared.

The generalization error of a model is estimated by the mean square error (MSE), and
the forecasting errors are measured by the RMSE. An effective model is characterized by a
low MSE and RMSE. Figure 14 shows the assessment using both training and test datasets.
Two plots are presented for each method: error vs. number of samples and frequency
vs. errors. The plot of the error vs. number of samples displays the values of the MSE
and RMSE, whereas the plot of the frequency vs. errors illustrates the error mean and
standard deviation (StD). For the CNN in the training phase, the MSE, RMSE, error mean,
and error StD are 0.097, 0.312, 0.029, and 0.310, respectively. The corresponding values
for the CNN-ICA model are 0.094, 0.307, −0.083, and 0.296, and those for the CNN-GWO
model are 0.082, 0.286, 0.053, and 0.281. Overall, in the training phase, the CNN-GWO
incurs lower errors than the CNN and CNN-ICA. In the case of the test datasets, Among
the three methods, the lowest MSE (0.080), RMSE (0.284), and StD (0.280) values correspond
to CNN-GWO. As it achieves the lowest errors in both the training and test phases, the
CNN-GWO is more accurate and reliable than the other two methods.

Next, the landslide susceptibility maps are assessed using AUROC, as shown in
Figure 15. The CNN-GWO method exhibits the highest goodness-of-fit accuracy (0.84),
followed by the CNN-ICA model (0.83) and CNN model (0.74) during the training phase.
Furthermore, the CNN-GWO method exhibits the highest AUROC of 0.84, followed by the
CNN-ICA (0.81) and CNN (0.73). The AUROC results align with the MSE, RMSE, mean
error, and standard deviation error values obtained during model validation in both the
training and validation phases. Overall, the CNN-GWO model outperforms CNN and
CNN-ICA in predicting landslide locations.
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4. Discussion

The detection of landslide-prone areas is crucial for disaster management and mitiga-
tion. The objective of this study is to identify regions susceptible to landslides by using
standard and optimized CNN coupled with the ICA and GWO algorithms. The generation
of an inventory map is the first step toward developing a DL model. Landslide inventories
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offer essential information for analyzing the deformation mechanisms of landslide inci-
dents and causative factors [98]. The map can be constructed through various approaches,
including field surveys, RS, and aerial photography. In field surveys, experts examine the
terrain to identify signs of past landslides, such as scars, debris, and slope morphology.
However, this task is time-consuming and laborious. Therefore, methods based on the
analysis of RS imageries using DL methods have been proposed. Conventional image
processing techniques typically depend on manually created features, such as color his-
tograms or texture descriptors, which cannot fully capture the significant information
contained in an image [127]. Additionally, these techniques are often sensitive to changes
in the input image, such as in lighting or orientation. Moreover, conventional approaches
typically require users to process and prepare input images, such as by noise reduction
or image segmentation, which may be laborious and error-prone [128]. Because these
approaches depend on manual feature engineering, they may not be able to be scaled
to high-dimensional image data or complex tasks. In addition, the techniques rely on
fixed, predefined feature representations and exhibit limited flexibility given that they are
designed to function with certain types of images [129]. In real-world settings, these limita-
tions may deteriorate the accuracy and predictive performance. Because ML algorithms
can efficiently analyze and extract characteristics from large datasets of images, identify
patterns, and classify images, they are often employed for image processing [130]. DL
algorithms, as a subset of the ML algorithm, can learn complicated properties in images,
including textures, edges, and shapes, by processing multiple layers of neural networks.
Thus, DL algorithms can automatically learn hierarchical representations of image data,
resulting in improved accuracy and reliability of results [131]. Furthermore, DL algorithms
may be trained end-to-end: The input image is directly fed to the neural network, and
the outputs (prediction or classification) are generated without human intervention. This
eliminates the need for preprocessing and feature engineering, which are time-consuming
and difficult [132]. Furthermore, DL algorithms can be applied in scenarios with limited
labeled data. DL algorithms can leverage pre-trained models that have been trained on
large-scale datasets. This configuration allows the model to promptly learn new tasks
with smaller datasets [133]. Considering these aspects, in this study, three DL algorithms,
U-Net, VGG-16, and VGG-19, are used to generate landslide inventory maps from Sentinel-
2 data. According to the F1-score, VGG-16 outperforms the other models in predicting
landslide locations. The superior performance of VGG-16 compared with U-Net and
VGG-19 may be attributable to its deeper architecture and larger number of convolutional
layers, which allow it to more effectively extract more complex and high-level features
from the input images and better discriminate between landslide and non-landslide areas.
Nevertheless, increasing the number of convolutional layers in VGG-19 may lead to the
analysis of redundant features in the learning process and overfitting [134]. Li et al. [98]
compared the performances of DL models with different structures (e.g., VGG-19, VGG-16,
ResNet50, U-Net, DenseNet120, and ResUNet) in detecting seismic secondary landslides in
the Wenchuan earthquake area, China. The results showed that the performance of VGG-19
was inferior to that of VGG-16, and it introduced more uncertainties in landslide detection.
Moreover, the use of U-Net has been recommended for pixel-based landslide detection
when adequate samples are not available. Qin et al. [135] analyzed the predictive ability of
distant domain transfer learning, CNN, VGG-16, and VGG-19 for landslide detection in
Guangdong Province, China. VGG-16 and VGG-19, as pre-trained models, achieved higher
accuracies of 87.09% and 88.24%, respectively, compared with the other two models.

According to the AUROC, MSE, RMSE, and StD values obtained in the present study,
the prediction accuracy of the standard CNN is improved by using optimization algorithms.
The GWO algorithm is noted to be more effective than ICA in selecting optimum values for
the CNN hyperparameters in both the training and testing phases. The individual search
behavior and group hunting behavior in GWO enable the exploration of a larger part of the
search space, resulting in a better balance between exploration and exploitation compared
with that in ICA. Thus, the CNN hyperparameters can be better tuned by the GWO [64].



Remote Sens. 2023, 15, 4501 20 of 26

Additionally, GWO has fewer parameters to tune compared to the ICA, which makes it
easier to implement and less prone to overfitting [136]. The results are consistent with those
reported by Nosratabadi et al. [137] and Nur et al. [138].

The susceptibility maps indicate that the central regions are the most susceptible
to landslides, and the slope failure possibility is high in steep areas with high levels
of rainfall along fault lines, rivers, and roads. This finding is consistent with those of
previous studies that have highlighted the significant impact of anthropogenic activities,
temperature variation, vegetation structures, soil moisture, and topographic nature on
landslide occurrence [139–141]. The CNN-ICA is conservative compared to the CNN and
CNN-GWO, as it identifies 7.55% and 26.26% of the study area as having very high and
very low landslide susceptibility, respectively. In comparison, CNN is more aggressive and
classifies 20.22% of the area as having very high susceptibility.

Similar to previous studies, this study involves certain uncertainties attributable to the
selection and subjective classification of landslide conditioning factors, volume of datasets,
spatial distribution of training and testing samples, resolution/scale of conditioning factors,
and hyperparameter selection of DL models. Future studies can be aimed at performing
sensitivity and robustness analyses to identify the effect of classification of historical data
(70:30 for training and testing) and changes in input parameters on the reliability and
accuracy of the susceptibility model. Moreover, other DL algorithms (e.g., ResNet, AlexNet,
region-based CNN, and SegNet) can be used to extract historical landslide locations and
develop models for susceptibility mapping. Furthermore, other metaheuristic algorithms
(e.g., ant colony optimization, cuckoo optimization algorithm, and firefly algorithm) can be
used to appropriately tune the hyperparameters of the DL model. Understanding the limi-
tations, strengths, and uncertainties of models can help policymakers make better-informed
decisions regarding land-use planning, disaster mitigation, and other critical aspects.

5. Conclusions

This research involved two main phases: identification of earthquake-triggered
landslide-prone areas and the use of this information to train DL models and produce
maps indicating the susceptibility of landslides. To the best of our knowledge, the U-Net,
VGG-16, and VGG-19 algorithms have not been widely used for detecting landslides trig-
gered by earthquakes. Therefore, the objective of this study was to assess the effectiveness
of these algorithms in evaluating landslide susceptibility. This was achieved through the
following steps:

• Landslide inventory locations were extracted from Sentinel satellite imagery related to
the Iburi earthquake (2018) in northern Japan using U-Net, VGG-16, and VGG-19.

• Three DL methods, i.e., CNN, CNN-ICA, and CNN-GWO, were used to map the
landslide-prone areas.

• The outcomes were evaluated using the precision, recall, and F1-score. VGG-16 yielded the
most accurate inventory map. Therefore, it was used in landslide susceptibility mapping.

• The precision and reliability of the landslide susceptibility maps were evaluated using
AUROC and RMSE. CNN-GWO, with the lowest MSE (0.080), RMSE (0.284), and error
StD (0.280) values and the highest goodness-of-fit and prediction accuracies (0.84),
was noted to yield the most reliable outcomes.

Overall, DL methods can be used to effectively assess landslide susceptibility and
realize land-use planning and hazard management in areas prone to landslides.
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