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Abstract: Urban vegetation plays a crucial role in the urban ecological system. Efficient and accurate
extraction of urban vegetation information has been a pressing task. Although the development of
deep learning brings great advantages for vegetation extraction, there are still problems, such as ultra-
fine vegetation omissions, heavy computational burden, and unstable model performance. Therefore,
a Separable Dense U-Net (SD-UNet) was proposed by introducing dense connections, separable
convolutions, batch normalization layers, and Tanh activation function into U-Net. Furthermore, the
Fake sample set (NIR-RG), NDVI sample set (NDVI-RG), and True sample set (RGB) were established
to train SD-UNet. The obtained models were validated and applied to four scenes (high-density
buildings area, cloud and misty conditions area, park, and suburb) and two administrative divisions.
The experimental results show that the Fake sample set can effectively improve the model’s vegetation
extraction accuracy. The SD-UNet achieves the highest accuracy compared to other methods (U-Net,
SegNet, NDVI, RF) on the Fake sample set, whose ACC, IOU, and Recall reached 0.9581, 0.8977, and
0.9577, respectively. It can be concluded that the SD-UNet trained on the Fake sample set not only is
beneficial for vegetation extraction but also has better generalization ability and transferability.

Keywords: Gaofen-1 imagery; deep learning; dense connection; separable convolution; SD-UNet;
urban vegetation extraction; NIR

1. Introduction

In urban areas, vegetation holds a crucial position within the urban ecosystem, assum-
ing multifaceted and considerable important roles [1,2], including alleviating environmental
pollution [3-5], protecting biodiversity [6,7], regulating the ecosystem [8], reducing the
urban heat island effect [9,10], and improving the overall quality of life [11]. The high-
precision vegetation information is not only beneficial for decision-makers to exploit the
vegetation resources but also helps them to evaluate the urban ecological environment [12],
plan urban life [13], and establish sustainable cities [14]. How to efficiently, accurately,
and intelligently obtain urban vegetation information has aroused the interest of many
researchers.

In recent years, the rapid advancements in space optical remote sensing technology
have greatly promoted the Earth Observation System [15] and it has emerged as a potent
and impactful tool for acquiring regional and global vegetation information [16-19]. Cur-
rently, a variety of optical, hyperspectral, and radar remote sensing data have been widely
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utilized for vegetation extraction, such as Gaofen and ZY series data [20-22] from China,
Sentinel series data from the European Space Agency [23-25], and Landsat series data
from the United States [26]. For applying remote sensing technology to urban vegetation
research, a critical aspect is to extract ground truth vegetation information from images
swiftly and effectively. Traditional methods can be categorized into three kinds: visual
interpretation, pixel-based classification [27], and object-oriented classification [28-30].
Manual visual interpretation is usually considered the most accurate extraction method,
but there are some disadvantages such as human error, low efficiency, and high cost. The
pixel-based classification method was proposed by Roger M. Herold et al. in 1983. It can
identify targets based on pixel values, features, and variations. Bey classified land use
temporally via the spectral and textural features of Landsat data [31]. Shen proposed a
3D Dabor-wavelet-based method to identify each pixel and finally achieved hyperspec-
tral image classification [32]. Hadi found that maximum likelihood algorithms could
achieve higher accuracy by using a combination of original bands and the Ratio Vegeta-
tion Index [27]. Although relative research demonstrates that pixel-based classification
methods are more efficient than manual visual interpretation, they are limited by “the
different objects with the same spectrum” and “the same object with different spectrum”
problems. Some researchers also have demonstrated that object-oriented classification
methods surpass pixels-based classification methods in accuracy [33-36]. Object-oriented
classification methods aim to classify objects by calculating each object’s features, such as
image spectrum, shape, texture, and size [37]. However, the computational process is too
time-consuming and labor-intensive to extract ground truth information swiftly.

With the development of artificial intelligence (AI), deep learning has emerged as
a popular approach for extracting remote sensing information, owing to its remarkable
precision and efficiency. Deep learning is an important branch of Al, and its development
can be traced back to the 1950s. However, deep learning did not experience a breakthrough
until the 21st century; many world-renowned universities have invested huge human
and financial resources to conduct related research in the field. In recent years, with the
proposal of deep learning theory, the Convolutional Neural Network (CNN) has ushered
in an era of rapid development. CNN is one of the most successful and important deep
learning algorithms whose main network architecture consists of input layer, convolution
layer, pooling layer, full connection layer, and output layer [38]. The reasonable architecture
ensures powerful learning abilities to automatically learn features from massive samples,
making it a main algorithm for academic research such as image classification [39], semantic
segmentation [40,41], and land use classification [42,43]. Additionally, a series of seman-
tic segmentation convolutional neural networks have been proposed for providing more
options to extract urban vegetation information, including the full convolution network
(FCN) [44], U-Net [45], SegNet [46], etc. The study shows that deep learning algorithms
extract vegetation information with high accuracy and low cost, whose extraction accuracy
has obvious advantages over shallow machine learning algorithms such as Support Vector
Machine (SVM) and Random Forest (RF) [47,48], and which can also monitor large-scale
vegetation information [49]. However, previous research has primarily focused on visible
image data, which possesses limited spectral information for effectively distinguishing
vegetation and non-vegetation areas. To enhance the ability of deep learning models to
identify vegetation information [50], several scholars have utilized the spectral features
of vegetation in the near-infrared band (NIR) to enhance the gap between vegetation and
other ground objects. Nezami employed hyperspectral data to construct a training set and
determine the most efficient combination of features for tree species classification [51]; Li
introduced the red-edge band of GF-6WFV when establishing the training set [52]; Chen
evaluated the performance of a proposed neural network by using samples with NIR from
Sentinel-2A images [53]; Xu utilized the NIR from Gaofen-2 satellite images to establish a
dataset for urban green space classification [54]; Roberto E. Huerta evaluated the poten-
tial of two deep learning models for semantic segmentation of urban green spaces using
12 three-band compositions. The bands mainly include vegetation indices (normalized
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difference vegetation index (NDVI), two-band enhanced vegetation index (EVI2), normal-
ized difference water index (NDWI)) and spectral single bands (near-infrared (NIR), red
(R), green (G), blue (B)) obtained from the original WV2 data [55]. The findings indicate
that introducing red-edge bands or relevant vegetation indices into the dataset can further
enhance the accuracy of vegetation extraction. However, the most suitable sample set
may vary depending on the encoder used in different deep learning networks [55]. There-
fore, researchers often optimize the encoders of deep learning networks to achieve better
accuracy when dealing with irregular urban vegetation boundaries, complex vegetation
shapes, uneven vegetation coverage, and scattered vegetation distribution. Liu proposed
a multiple architecture method (DeepLabv3plus) for extracting urban green spaces from
Gaofen-2 images, employing an Atrous Spatial Pyramid Pooling (ASPP) module within
the encoder to capture rich contextual semantic information [47]. Men built a new model
known as Concatenated Residual Attention UNet (CRAUNet), which introduced a residual
module to preserve more feature information from the original image during the feature
extraction process [49]. While these methods demonstrate superior performance in extract-
ing urban green spaces, the price in exchange is that the excessive sampling rate of atrous
convolution in the ASPP module leads to the loss of details, and the introduction of the
residual network module increases the parameters, resulting in a higher computer burden.

To reduce ultra-fine vegetation omissions, minimize the computational burden, and
improve vegetation extraction accuracy, a deep learning network named separable densely
UNet (SD-UNet) is proposed, and it utilizes the vegetation spectral features in NIR during
network training. The general research process was divided into four steps. Firstly, the
acquired Gaofen-1 remote sensing images are preprocessed to ensure the accuracy of
subsequent experiments. Secondly, three high-resolution urban vegetation sample sets
are established to research the effect of NIR on vegetation extraction results. Each sample
set contains 3060 samples of 256 x 256 in size to support the training and verification of
the urban vegetation extraction model. Thirdly, SD-UNet, which consists of an encoder
and a decoder, is proposed. Specifically, SD-UNet introduces dense connections, separable
convolutions, batch normalization layers, and the Tanh activation function. This framework
can capture more ultra-fine vegetation features and reduce the computational burden.
Finally, the SD-UNet is compared with other methods. The SD-UNet is applied to four
different scenes and the best model is applied to two administrative divisions.

The key contributions of this article can be summarized as follows:

1.  An optimized convolutional neural network (SD-UNet) was proposed to effectively
extract urban vegetation from Gaofen-1 remote sensing images.

2. Three sample sets were established to evaluate the influence of the vegetation spectral
features on the model extraction results. The SD-UNet was trained on three sample
sets, finally obtaining the best model.

3. The SD-UNet’s performance on urban vegetation extraction was compared with U-
Net, SegNet, NDVI, and RE. The SD-UNet trained on three sample sets was applied
to four scenes and the best model was applied to two administrative divisions to
evaluate their generalization ability in vegetation extraction.

The remaining sections of this article are outlined as follows. Section 2 illustrates the
proposed network structure, experimental materials, and related works. Section 3 shows
the experimental results and provides a comprehensive analysis. Section 4 provides the
discussion, and Section 5 offers a conclusion.

2. Materials and Methods
2.1. Study Area and Data Sources

The main urban area of Chonggqing is situated in western Chonggqing (Figure 1), be-
longing to the subtropical wet monsoon climate. It is located among the Jinyun, Zhongliang,
Tongluo, and Mingyue mountains, at the intersection of the Yangtze River and Jialing River,
forming the Yuzhong Peninsula. The geographical scenes are complex: the buildings in the
mountainous area are densely arranged and the terrain is undulating; the urban vegetation



Remote Sens. 2023, 15, 4488

4 of 25

has serious fragmentation. Therefore, vegetation information extraction is more difficult
under cloud and misty conditions.
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Figure 1. The study area and location (main urban area of Chonggqing, China). (a) The geographical
location of Chonggqing; (b) Shaded relief map and DEM of the main urban area.

The Gaofen-1 satellite, launched on 31 March 2018, takes images with a panchromatic
band and four multispectral bands, offering spatial resolution of 2 m and 8 m, respectively.
The study data are Gaofen-1 remote sensing images of Chongging city, obtained from
the Application Center of the Chinese High-Resolution Earth Observation System. The
imaging time was in September 2021 and the cloud cover was less than 5%. Images were
preprocessed by radiometric calibration, atmospheric correction, orthorectification, and
image fusion. Finally, a multispectral image with 2 m spatial resolution was obtained, and
the digital number (DN) quantization depth is 16 bit, ranging from 0 to 65,535.

2.2. Experimental Process

The research workflow is shown in Figure 2. The research process was divided into
four parts, including preprocessing the Gaofen-1 images, establishing the vegetation sample
sets, training the models, and evaluating the model’s generalization ability. For remote sens-
ing image interpretation, preprocessing is a very important step. The goal of preprocessing
is to eliminate or reduce the influences (such as noise, uneven brightness, and geometric dis-
tortions), ensuring the reliability and accuracy of subsequent vegetation extraction results.
Therefore, in the first part, Gaofen-1 images are preprocessed by radiometric calibration,
atmospheric correction, orthorectification, and image fusion. Finally, a multispectral image
with 2 m spatial resolution is obtained. In the second part, three urban vegetation sample
sets are established by combining different bands, namely the Fake sample set (NIR-RG),
NDVI sample set (NDVI-RG), and True sample set (RGB). In the third part, SD-UNet is
proposed, and the specific structure and content are shown in Section 2.5.1. Additionally,
for evaluating the advantages of SD-UNet and the impacts of different vegetation spectral
features on the model’s vegetation extraction accuracy, this part trains different networks
using different sample sets, resulting in nine models. In the last part, nine models are
validated. The validation results are compared and analyzed. For evaluating SD-UNet’s
performance in practical application scenes, the SD-UNet is applied to four different scenes.
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To make the experimental results more convincing, the vegetation of two administrative
divisions is extracted by using the best model.

\
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Figure 2. Research flowchart.
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2.3. Sample Sets

Deep learning requires massive samples to automatically learn features and extract
targets. Three urban vegetation sample sets were employed to train and validate the deep
learning model. The following briefly describes the sample set.

The urban vegetation sample sets are composed of images and labels. The labels
consist of vegetation and background areas, where white areas represent urban vegetation
and black areas represent non-vegetation. All labels are established by manual visual
interpretation. The process is mainly realized through three steps. Firstly, the vector
boundaries of vegetation in the study area were delineated on Gaofen-1 images using
ArcGIS 10.2 software, with reference to high-resolution Google images. Secondly, these
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vector boundaries were corrected through field surveys (Figure 3). Notably, not all labels
were field surveyed, only the uncertain ground truth types in Gaofen-1 remote sensing
images were physically verified. Finally, the results are stored in the form of raster images
as labels. The labels (Figure 4a) in the sample set are binary images, where 1 represents
urban vegetation and 0 represents background. Since the sample size is fixed, both images
and labels were clipped to a size of 256 x 256.

(@) (d)
Figure 3. Field survey images. (a) Vegetation on both sides of the road; (b) vegetation under the
viaduct; (c) vegetation in the park; (d) vegetation on the plaza.

Figure 4. Sample sets. (a) Labels; (b) True sample set; (c) Fake sample set; (d) NDVI sample set. The
white and black pixels in (a) represent the vegetation and background, respectively. And the red
areas in (c,d) represent the vegetation.
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Three sample sets are used to train and validate SD-UNet, as well as to calculate
vegetation extraction accuracy. These sample sets include the standard false-color image
vegetation sample set (Fake sample set, Figure 4c), the normalized difference vegetation
index sample set (NDVI sample set, Figure 4d), and the true-color sample set (True sample
set, Figure 4b). The Fake sample set was synthesized by three bands: NIR, R, and G. Vege-
tation is particularly prominent in standard false-color images due to its higher reflectance
and distinct spectral features in the near-infrared region [56]. The NDVI sample set was
synthesized by NDVI, R, and G bands. NDVI is widely applied as a key parameter to
distinguish vegetation and non-vegetation areas [57,58]. Its value equals the ratio of the
difference between NIR and R to the sum of NIR and R. Generally, NDVI values for vegeta-
tion are greater than 0, while most of the values for non-vegetation are less than 0 (with
some exceptions, such as barren land of rock, sand, snow, and soil [59-61]). Thus, the NDVI
values were determined to range from 0.355 to 0.854 through numerical statistics. Finally,
the True sample set with R, G, and B bands was used as the research control group for
model training and scene application. Considering that training data must contain as many
different samples as possible to avoid over-fitting the generated model, data augmentation
techniques such as geometric transformations (flipping, rotation, and random cropping),
adding noise, and fuzzy transformations were applied. The final sample sets consisted of
2448 training samples and 612 validation samples, with a ratio of 8:2.

2.4. Scene Data

To verify the transferability and generalization ability of SD-UNet, four 1000 x 1000 pixel
images with typical mountainous urban scene characteristics were used to extract vegeta-
tion and analyze the results. Notably, all scene images did not participate in the sample set
construction. In addition, to make the verification results more convincing, the vegetation
of Yuzhong District and Nan’an District was extracted. In order to eliminate the influence
of the atmosphere condition and sunlight, four images were preprocessed via radiometric
calibration, atmospheric correction, orthorectification, and image fusion.

As shown in Figure 5: (a) represents a scene image with cloud and misty conditions.
Chonggqing City, a famous “fog city”, the biggest interference factors are clouds and misty
when extracting vegetation from remote sensing images. Hence, extracting vegetation
in this scene can evaluate the transferability of SD-UNet. (b) represents a scene image
located in the urban center where the vegetation and buildings are mixed. Thus, the
biggest challenge is how to avoid interference from buildings in the process of extracting
vegetation. Extracting vegetation in this scene can evaluate SD-UNet’s performance in
accurately extracting fine vegetation within building gaps. (c) represents a suburban scene
located at the edge of the city, where residential areas, factories, cultivated land, and roads
are intertwined, and the vegetation is distributed randomly. Extracting vegetation in this
scene can evaluate SD-UNet’s performance in a complex background. (d) represents park
vegetation in the city where vegetation is concentrated and covers a large area, but is
affected by interference from the lake. Extracting vegetation in this scene can evaluate
SD-UNet’s performance in large-scale areas.

(d)

(b)

Figure 5. Four scene images. (a) Cloud and misty conditions scene; (b) high-density building scene;

(c) suburban scene; (d) park scene. The red areas of the four scene images represent the vegetation.
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2.5. Methods
2.5.1. SD-UNet Model

U-Net, originally introduced in 2015 by Ronneberger et al. [45], is an improved net-
work based on a fully convolutional network (FCN), named after its U-shaped architecture.
Compared to other semantic segmentation networks, U-Net possesses significant advan-
tages, particularly its symmetric encoder—decoder structure and skip connections. The
encoder mainly reduces the spatial resolution of the input image through down-sampling
and gradually extracts high-level semantic features, while the decoder mainly restores the
spatial resolution of the feature maps through up-sampling. Skip connections enable the
decoder to directly obtain feature information from different levels of the encoder and
integrate these features with its own extracted features, thereby improving the capability of
image semantic segmentation. To address U-Net's overfitting and accuracy fluctuations
during training with small samples, SD-UNet (Figure 6) was proposed to enhance the
model’s generalization ability and transferability. The letter “S” in SD-UNet indicates two
meanings: one refers to the separable convolutions, and the other refers to “Septal” which
represents the alternating arrangement of ordinary convolution and separable convolution.
The letter “D” represents the dense connections.

Encoder Decoder

First level

/¢¢¢¢¢

A Y

dense connections

1

% % o 9

Second level

e oo A
upsampling

Third level conv1xl1 D

skip connection

Fourth level BN

separable_conv
s 5 e max pooling 2x2 l

conv 3 x 3, tanh
Figure 6. The structure of the SD-UNet.

The design of SD-UNet mainly focuses on optimizing the encoder by increasing
the network depth and introducing dense connections to enhance vegetation extraction
accuracy. For better fitting vegetation features and expanding the receptive field of the
network, the number of convolutions was increased at each level of the encoder. This
enhancement enables the network to capture global semantic contextual information more
effectively. At the same time, to better connect the feature information between the encoders,
the idea of dense connections was introduced. Specifically, a dense connection layer
was added at the input of each level to enhance its relationship with all the previous
levels. The dense connection can enhance the feature transfer and alleviate gradient
disappearance. By introducing dense connections, the utilization of feature maps at each
scale can be maximized, and low-level vegetation features can be retained as much as
possible, thereby reducing the loss of fine vegetation during the convolution process.
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However, the aforementioned two methods also increased network parameters, so that
the computational burden was increased significantly. To address this issue, separable
convolutions were introduced [62]. Compared to conventional convolutions, separable
convolutions have fewer parameters, which streamline the network backbone. However,
some details may be overlooked by the overuse of separable convolutions. Through
research, the separable convolutions finally were positioned in the second and fourth levels
of the network, which not only increases the network depth but also reduces computational
parameters, while preserving SD-UNet’s ability to identify and extract fine vegetation.
Furthermore, a batch normalization (BN) layer [63] was introduced after each convolution
layer. BN plays a crucial role in alleviating the issues of gradient disappearance and
exploding, while also accelerating the convergence speed of the network. It can not
only stabilize the network’s training process by normalizing the inputs and outputs at
each convolution operation but it can also effectively avoid overfitting and improve the
network’s overall performance. Particularly in scenes with limited samples, overfitting is
prone to occur in traditional U-Net architectures, but SD-UNet can reduce the dependence
on the data and enhance the convergence and fitting ability for urban vegetation extraction.
Finally, for a better convergent and fitting network, the Relu activation function [64] was
replaced with Tanh.

2.5.2. Experimental Environment

The TensorFlow framework was used to build SegNet, U-Net, SD-UNet, and train
network models. The hardware configurations mainly included an Inter Core i9-10900F
CPU and an NVIDIA GeForce RTX2060 GPU with 12-GB frame buffer in the experiment.
The image and label sizes in the sample set were set to 256 x 256 pixels, the initial learning
rate was set to 0.001, and the epoch was set to 200. Considering the limitation of GPU
memory size, the batch size was set to 4. The learning rate determined the step size of
parameter update during each iteration to decrease the model gradient until the best.
Batch size represents the sample number in one iteration. Epoch represents the number of
complete training samples.

2.5.3. Assessment Measures

A single image element is typically used to calculate accuracy evaluation metrics.
Four metrics were selected to evaluate the vegetation extraction results, namely accuracy
(ACCQ), intersection over union (IOU), Recall, and loss which is calculated by the cross-
entropy loss function. ACC is the proportion of the correctly identified subjects among all
ground subjects in model extraction results, IOU is the proportion of the correctly identified
vegetation in all actual and identified vegetation, and Recall is the proportion of all actual
vegetation that is correctly identified as vegetation.

Three metrics are calculated as follows:

TP + TN
ACC = TP + TN + FP + EN M)
TP
10U = TP + FP + FN @
TP
Recall = m (3)

where TP indicates the number of vegetation regions correctly classified as belonging to
vegetation (i.e., true positives), FN indicates the number of vegetation regions incorrectly
classified as belonging to non-vegetation (i.e., false negatives), FP indicates the number of
non-vegetation regions incorrectly classified as belonging to vegetation (i.e., false positives),
and TN indicates the number of non-vegetation regions correctly classified as belonging to
non-vegetation (i.e., true negatives).
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3. Results and Analysis

To evaluate the advantages of SD-UNet, SD-UNet was compared with SegNet, U-Net,

NDV], and RE

3.1. Results

3.1.1. SD-UNet Results

As shown in Figure 2, nine models were obtained. In this section, the nine models
are validated. The vegetation extraction results are shown in Table 1, where white areas
represent vegetation and black represent non-vegetation.

Table 1. Vegetation extraction results from different deep learning methods.

Fake Samples NDVI Samples True Samples

Methods
Block 1

Images

Labels

SegNet

U-Net

SD-UNet

Block 2 Block 1 Block 2 Block 1 Block 2

Note: The red areas of the images represent the vegetation. The colorful boxes in Block 1 and Block 2 represent the marked areas,
the white pixels represent the vegetation, and the black pixels represent the background.

From the vegetation extraction results of all models, it can be seen that the SegNet
performed the worst in urban vegetation extraction. The vegetation boundaries are dif-
ficult to accurately fit the labels, and the misclassification and omissions are pretty clear.
Especially in block 2, there was a loss of detail in the circular road region (red box), and the
extracted results were obviously different from the ground truth delineated by the labels.
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In contrast, the SD-UNet and U-Net showed significantly better results in extracting urban
vegetation information, with most of the extraction results matching labels. However, there
were still minor differences in the extraction results for fine vegetation. In block 1, the
SD-UNet showed an apparent ability to identify and extract finer strip vegetation along the
sides of roads (green box). In contrast, the U-Net model performed slightly less effectively
in this aspect. Taking a different perspective to compare the results obtained by models
trained on three sample sets, as shown in block 2 (yellow box), the model trained on the
True sample set showed obvious misclassification such as the playground, whose artificial
turf was misclassified as vegetation. In contrast, the models trained on the Fake sample set
and NDVI sample set successfully avoided such errors. Finally, the vegetation extraction
results of the same network trained on the Fake sample set and the NDVI sample set were
compared, as shown in the green box. It can be seen that the network trained on the Fake
sample set performed better. In conclusion, the SD-UNet trained on the Fake sample set is
the best model.

3.1.2. NDVI Results

The NDVI is a widely used traditional method in the realm of vegetation monitoring.
Its principle is to segment vegetation and non-vegetation by setting a threshold. Through
numerical statistics, the range of NDVI value was determined to be between 0.355 and
0.854. In the previous section, the best model was obtained. Comparing the best model
with the NDVI, it can be seen that there is a clear difference in the vegetation extraction
results of the two methods, as shown in Figure 7. (a) is the images, (b) is the fake samples;
(c) is the labels, (d) is the extraction results of NDVI, and (e) is the extraction results of
the best model. It can be clearly seen that the edges of the vegetation extracted by NDVI
are not smooth enough and appear obviously jagged. The overall results did not align
well with the labels, and many non-vegetation areas were misclassified as vegetation. For
example, when comparing the vegetation extraction results on the sides of narrow roads,
the obvious differences between the NDVI extraction results and labels can be seen just
from the human eye. In contrast, the vegetation results extracted by the best model were
closer to the labels. In general, the vegetation extraction results only relying on NDVI were
unsatisfactory, particularly the phenomenon of “same object with different spectra” and
“different objects with same spectra” in remote sensing images had an apparent impact on
NDVL. Therefore, to improve classification accuracy and enhance the model’s discriminative
capability between vegetation and non-vegetation, it is necessary to fuse multiple bands of
information [65].

Figure 7. Cont.
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(b) (e)

Figure 7. The urban vegetation extraction result of NDVI and the best model. (a) Images; (b) Fake

samples; (c) labels; (d) the extraction result of NDVI; (e) the extraction results of the best model. The
red areas in (b) represent the vegetation. The red boxes in (c—e) represent the marked areas, the white
pixels represent the vegetation, and the black pixels represent the background. 1-5 represent five
images in the sample set.

3.1.3. Random Forest Results

Random Forest is a relatively representative machine learning method to extract
targets or specific information from remote sensing images. It has been extensively applied
in various fields, including target detection, land cover classification, vegetation extraction,
etc. The principle of RF is to achieve target extraction by classifying or regressing pixels
in an image. The best model was compared with RF, and it was found that the vegetation
extraction results of the best model were significantly better than RF. To provide reliable
evaluation results, the same images were used, as shown in Figure 8. (a) shows the images,
(b) shows the fake samples; (c) shows the labels, (d) shows the extraction results of RF, and
(e) shows the extraction results of the best model. In Figure 8d, it can be clearly seen that
the extraction results not only exhibited a “salt and pepper” phenomenon but also showed
numerous omissions with noticeable “foggy” vegetation boundaries. Specifically, as shown
in the red box of the fourth row, omissions on narrow roads and buildings could be observed.
In contrast, the vegetation results extracted by the best model showed more integrity, and
the omission phenomenon was rarely produced in the same images. In addition to the
above-mentioned problems, the vegetation results extracted by NDVI and RF exhibited
opposite misclassification characteristics. The former misclassified more vegetation as
non-vegetation, while the latter misclassified more non-vegetation as vegetation.

Figure 8. Cont.
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(e)

Figure 8. The urban vegetation extraction result of RF and the best model. (a) Images; (b) Fake

samples; (c) labels; (d) the extraction result of RF; (e) the extraction results of the best model. The red
areas in (b) represent the vegetation. The red boxes in (c—e) represent the marked areas, the white
pixels represent the vegetation, and the black pixels represent the background. 1-5 represent five
images in the sample set.

3.2. Analysis
3.2.1. SD-UNet vs. U-Net, SegNet

SD-UNet, U-Net, and SegNet were trained on three urban vegetation sample sets with
the same hyperparameter settings. The accuracy curves show the fitting process of the
network macroscopically, as shown in Figure 9. It can be seen that each model was trained
for 200 epochs, and the accuracy curve trends of models obtained by training the same
network with different sample sets are similar. (a—c) show the accuracy curve during the
training SegNet. The three models showed noticeable fluctuations during the fitting process,
and all the loss curves showed a phenomenon from a downward trend to an upward trend.
(d-f) show the accuracy curve during the training U-Net. It can be seen that the accuracy
of the three models remained stable during the initial few epochs. Subsequently, the loss
curve sharply decreased and the other accuracy curves rapidly rose. Eventually, all the
curves gradually reached a stable fitting state. (g-i) show the accuracy curve during the
training SD-UNet. Compared to the previous accuracy curves, the accuracy curve of SD-
UNet appeared smoother and more uniform changes. Meanwhile, SD-UNet achieved an
accuracy of over 0.9 in the early few epochs, followed by a gradual increase.
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Figure 9. The accuracy curve of nine models. (a) The accuracy curve of SegNet trained on the Fake
sample set; (b) the accuracy curve of SegNet trained on the NDVI sample set; (c) the accuracy curve
of SegNet trained on the True sample set; (d) the accuracy curve of U-Net trained on the Fake sample
set; (e) the accuracy curve of U-Net trained on the NDVI sample set; (f) the accuracy curve of U-Net
trained on the True sample set; (g) the accuracy curve of SD-UNet trained on the Fake sample set;
(h) the accuracy curve of SD-UNet trained on the NDVI sample set; (i) the accuracy curve of SD-UNet
trained on the True sample set; (j) legend of all accuracy curves.

Nine models extracted the urban vegetation from the validation images and calculated
the accuracy based on labels. The final results are shown in Table 2. Overall, SegNet
showed the lowest extraction accuracy, followed by U-Net, while SD-UNet achieved the
highest extraction accuracy. In the same network, the model trained on the Fake sample set
showed higher extraction accuracy than other models trained on the NDVI sample set and
True sample set. In conclusion, the SD-UNet trained on the Fake sample set (best model)
achieved the highest results: ACC (0.9581), IOU (0.8977), and Recall (0.9577).
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Table 2. Accuracy comparison of nine models.

Fake Sample Set NDVI Sample Set True Sample Set
Meth
ethod ™) cc 10U Recall ACC 10U Recall ACC 10U Recall
SegNet 0.8902 0.7962 0.8895 0.8910 0.5659 0.8910 0.8673 0.5544 0.8568
U-Net 0.9432 0.7703 0.9419 0.9429 0.7658 0.9422 0.9182 0.8305 0.9163
SD-UNet 0.9581 0.8977 0.9577 0.9577 0.8942 0.9572 0.9447 0.8740 0.9442

3.2.2. SD-UNet vs. RE, NDVI

To further intuitively evaluate the best model, it was compared with traditional meth-
ods in accuracy, as shown in Table 3. The ACC of the best model achieved 0.9581, which
was 0.0678 higher than the RF and 0.1269 higher than the NDVI, indicating that it showed
better accuracy. The IOU of the best model achieved 0.8977, which was 0.2424 higher than
the RF and 0.2981 higher than the NDV], indicating that its extraction results had a higher
overlap with the labels. The Recall of the best model achieved 0.9577, which was 0.0843
higher than the RF and 0.1453 higher than the NDVI, indicating that it had a stronger ability
to correctly identify targets.

Table 3. Accuracy comparison of the best model and traditional methods.

Method ACC 10U Recall
NDVI 0.8312 0.5996 0.8124

RF 0.8903 0.6553 0.8734

The best model 0.9581 0.8977 0.9577

3.3. Scene Application

To further research the generalization ability of the SD-UNet in practical application
scenes, four images with dimensions of 1000 x 1000 pixels were selected. The four images
represent different urban scenes, respectively, namely the high-density buildings scene,
cloud and misty conditions scene, park scene, and suburban scene, as shown in Figure 10.
It can be seen that the extraction results of the SD-UNet trained on different sample sets
are significantly different. (1) is a scene with high-density buildings. In this scene, the
vegetation extraction results of SD-UNet trained on the True sample set generally showed
interference from buildings, and many buildings were misclassified as vegetation (red
box). In contrast, the SD-UNet trained on the Fake sample set and the NDVI sample set
had better performance. (2) is a scene with cloud and misty conditions. In this scene, the
differences between the extraction results were very obvious. Especially for the vegetation
along the river banks (red box), the extraction results of the SD-UNet trained on the Fake
sample set were obviously better than SD-UNet trained on the other two sample sets.
This is because vegetation has high reflectivity and water has strong absorption in the
near-infrared spectrum, so adding the NIR to the sample set not only improves the SD-
UNet’s anti-interference to water but also enhances the differences between vegetation
and background, thereby reducing misclassifications. (3) is the park scene, which has the
highest vegetation extraction accuracy among the four images. The main drawback of the
vegetation results extracted by SD-UNet trained on the True sample set was the blurred
vegetation boundaries (red box) and poor integrity when extracting large-area vegetation
(yellow box). The vegetation extraction results of the SD-UNet trained on the Fake sample
set and NDVI sample set were similar, but the difference was the omission of fine vegetation
(green box). The vegetation extraction result of SD-UNet trained on the NDVI sample
set had a higher omission rate. (4) is a suburban scene, which is the most difficult area
from which to extract vegetation. In this scene, the vegetation is too fragmented. It can be
seen that the extraction results of the SD-UNet trained on the True sample set had many
misclassifications (red box), while the extraction results of the SD-UNet trained on the
NDVI sample set had many omissions (yellow box). In contrast, the extraction results of
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the SD-UNet trained on the Fake sample set were closer to the labels. Moreover, the OA
and kappa of the three models were shown to more intuitively compare their performance,
as shown in Table 4. The SD-UNet trained on the True sample set performed the worst, the
SD-UNet trained on the NDVI sample set outperformed it, and the SD-UNet trained on the
Fake sample set was the best model.

(1)
(2)
©)
(4)
Figure 10. Vegetation extraction result of SD-UNet in four scenes. (1) High-density building scene;
(2) cloud and misty conditions scene; (3) park scene; (4) suburban scene; (a) four scene images with
standard false color; (b) labels; (c) the extraction result of SD-UNet trained on the Fake sample set;
(d) the extraction result of SD-UNet trained on the NDVI sample set; (e) the extraction result of
SD-UNet trained on the True sample set. The red areas in (a) represent the vegetation. The colorful
boxes in (b—e) represent the marked areas, the white pixels represent the vegetation, and the black
pixels represent the background.
Table 4. Accuracy comparison of SD-UNet trained on different sample sets in four scene images.
Fake Sample Set NDVI Sample Set True Sample Set
S
cenes anc(iq\l/}idssty Building Suburb Park anc(}(;\l/ll(iissty Building Suburb Park ar?c:(;\l/l[?ssty Building Suburb Park
OA 0.9256 0.9301 0.9214 0.9392 0.9085 0.9210 0.8605 0.9286 0.8238 0.8821 0.8817 0.8823
KAPPA 0.8631 0.8750 0.8832 0.8893 0.8055 0.8574 0.8102 0.8565 0.6589 0.7635 0.8325 0.7645

3.4. Qualitative Evaluation of Administrative Divisions

To further study the SD-UNet’s applicability to regions of different scales and com-
plexities, the qualitative analysis is carried out in this section by using the best model from
Section 3.3. For more contrast, Yuzhong District and Nan’an District were selected for
vegetation extraction. Both districts belong to the main urban area of Chongqing. Yuzhong
District is located in the center of the main urban area, covering an area of 23.24 km?. Nan’an
District is adjacent to Yuzhong District, covering an area of 262.43 km?. Both districts are
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characterized by high temperatures, limited sunshine, a long lengthy rainy season, high
humidity, and the frequent presence of clouds and mist. From the image selection perspec-
tive, two districts contain the four scenes. The Yuzhong District’s geography is particularly
complex, with dense and scattered buildings, undulating terrain, and extremely fragmented
vegetation. In contrast, the distribution of vegetation in Nan’an District is relatively good.
Although the scene near the residential buildings is complicated, the vegetation in most ar-
eas is relatively complete, and the terrain is relatively flat. From the validation perspective,
the urban vegetation extraction results of two districts can be evaluated visually by using
the available ground truth. Due to time and human resource limitations, large-scale ground
truths are lacking to evaluate accuracy, the accuracy metrics cannot be calculated. The
ground truth is obtained by manual visual interpretation, so it has a certain human error. In
addition, to better demonstrate the advantages of the best model, the vegetation extraction
results of the best model and deep learning (DL) framework [66] are compared. The DL
framework enables large-scale and general urban vegetation extraction. Its vegetation
extraction results can be downloaded from https://doi.org/10.57760/sciencedb.07049,
accessed on 10 September 2023. The visualization comparisons in the two districts are
shown in Figures 11 and 12.
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Figure 11. The vegetation extraction results of Yuzhong District. (a) The image of Yuzhong District
with standard false color; (b) the vegetation coverage map of Yuzhong District; (c) some example
images of Yuzhong District; (d) ground truth; (e) the vegetation extraction results of DL framework;
(f) the vegetation extraction results of the best model. The red areas in (a,c) represent the vege-
tation. The green pixels of (b) and (d—f) represent the vegetation, and the white pixels represent
the background.
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Figure 12. The vegetation extraction results of Nan’an District. (a) The image of Nan’an District with
standard false color; (b) the vegetation coverage map of Nan’an District; (c) some example images
of Nan’an District; (d) ground truth; (e) the vegetation extraction results of DL framework; (f) the
vegetation extraction results of the best model. The red areas in (a,c) represent the vegetation. The
green pixels of (b) and (d—f) represent the vegetation, and the white pixels represent the background.

From the overview images of Yuzhong Districts, it can be seen that the vegetation
extraction results were relatively good overall. Specifically, the best model performed well
in the extraction of ultra-fine vegetation alongside roadsides, riverbanks, and building
gaps, although they were complex and broken in morphology. In contrast, the vegetation
extraction results of the DL framework in these aspects were slightly insufficient. This
may be because the DL framework is more suitable for large-scale and general vegetation
extraction, so it has some limitations in ultra-fine vegetation. Similarly, the vegetation
extraction results of the best model also have some shortcomings. For example, the urban
vegetation extraction results of the best model are mainly influenced by the building
shadows. As shown in Figure 11f, the urban vegetation features were blocked by building
shadows, resulting in a relatively poor extraction effect. However, according to Figure 11e,
at the same location in the image, it can be seen that the building shadows were extracted as
vegetation and the vegetation was misclassified as non-vegetation. This may be caused by
the different angles of the images taken, and Shi’s article also validated this. Additionally,
the vegetation extraction results were also affected by the vegetation sparseness. When
an area is covered by sparser vegetation, it is more easily misclassified due to its similar
appearance to other land types. From the overview images of Nan’an Districts, it can be seen
that the vegetation extraction results were generally average. Compared to the Yuzhong
District, its results are slightly inferior, especially the vegetation near dense buildings. There
may be three reasons for this. Firstly, the area of Nan’an District is relatively large and the
vegetation distribution is uneven, so some details may be ignored when the model captures
the overall vegetation distribution. Secondly, the increase in the diversity of ground features
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can make it difficult for the model to accurately distinguish vegetation and non-vegetation.
Finally, it can be seen from Figure 12¢,f that the Nan’an District’s vegetation extraction
results are also affected by building shadows and vegetation sparseness. However, the
vegetation extraction results of the best model also have many advantages. For example,
the best model can extract large-area vegetation more completely without lake interference.
When the buildings are arranged regularly, the vegetation between the building gaps can
also be well extracted. In summary, despite the possible deficiencies, the best model still
has a strong generalization ability.

4. Discussion

Currently, the combination of high-resolution remote sensing images and deep learn-
ing methods is widely used in semantic segmentation [67] and change detection [68].
High-resolution remote sensing images have many advantages, including providing rich
geospatial information, enhancing classification accuracy, alleviating the problem of “the
different objects with the same spectrum” and “the same object with different spectrum”,
and supporting fine-grained classification. Especially in complex scenes, high-resolution
images can provide more detailed geospatial features and contextual information for finer
feature classification and detection. However, traditional methods selecting features ar-
tificially are not suitable for massive data and complex feature details. In contrast, deep
learning networks have become the preferred choice. Deep learning networks exhibit
stronger learning capabilities and higher levels of automation, enabling automatic extrac-
tion and analysis of various features from high-resolution images, such as vegetation,
buildings, and roads. In addition, deep learning models have better generalization capabil-
ities on new scenes. However, existing networks still have some problems in extracting
vegetation, such as blurred vegetation edges, misclassification, and omissions of ultra-fine
vegetation. To solve these problems, SD-UNet was proposed to improve the accuracy of
urban vegetation extraction. Considering the spectral features of vegetation in the NIR and
NDVI, two different spectral sample sets were additionally established. In this section, the
following three aspects are discussed. Firstly, the sample sets with NIR and NDVI are com-
pared with the True sample set, and the impact of NIR, sample sets quality, and quantity
on the model’s vegetation extraction accuracy are discussed. Secondly, the advantages of
SD-UNet’s structure are discussed in detail. Finally, SD-UNet’s generalization ability in
four scenes and two administrative divisions is discussed.

4.1. Sample Set Evaluation

The NIR band makes the vegetation extraction model perform better, which is similar
to Huerta’s research results using ResNet34 to extract urban vegetation information [55].
Moreover, Ayhan’s experiments also confirm this [69]. In the comparison of deep learning
methods, the CNN model trained on the Vasiliko dataset (RGB and NIR bands) exhibited
the best vegetation extraction results, followed by the DeeplabV3+ trained on the Vasiliko
dataset (NDVI-GB). The CNN model and DeeplabV3+ trained on the Vasiliko dataset (RGB
only) performed the worst. However, in previous deep learning studies, about half of the
researchers only used the R, G, and B band information from remote sensing images to
establish sample sets. Few researchers utilized the electromagnetic radiation features of
vegetation in the NIR. Similarly, there were also fewer comparisons between the sample set
with NIR and the True sample set (RGB) in the vegetation extraction results. In order to
study the effect of NIR on SD-UNet’s vegetation extraction results, a Fake sample set, an
NDVI sample set, and a True sample set were established. Training three deep networks
on three sample sets, nine urban vegetation extraction models were obtained. Then, the
validation images were used to extract urban vegetation, and the extraction results and
accuracy of nine models were obtained. Through the previous analysis, it has been proven
that the models trained on the Fake sample set and NDVI sample set can improve the urban
vegetation extraction accuracy. This is because the spectral feature sample set with NIR
and NDVI can provide a more comprehensive feature representation, which can enhance
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models’ identification and extraction capabilities for vegetation [70,71]. Moreover, the
vegetation extraction results of the model trained on the Fake sample set were slightly
superior to the model trained on the NDVI sample set under the same network and research
area. This is because the reflectance difference between the NIR and R band was lower
than normal, making NDVI unable to reach the threshold value for identifying vegetation.
As a result, omissions were produced in the process of vegetation extraction. In general,
the sample sets with different spectral features have many potential possibilities for the
application. In the future, more detailed vegetation spectral features can be utilized to train
deep learning networks, thereby achieving the classification of different vegetation types
and monitoring vegetation changes (seasonal changes, degradation, etc.).

In addition, the quality and quantity of the sample set is also an important influencing
factor for vegetation extraction results. Training different quality sample sets will lead to
the SD-UNet'’s accuracy difference. Deep learning is a big data-driven approach, so sample
sets are particularly important for the extraction accuracy of deep learning models. The
vegetation sample set established by manual visual interpretation inevitably has certain
human errors, so it is impossible to completely guarantee that the ground truths fit the
labels. However, the labels were delineated on the Gaofen-1 remote sensing images by
using ArcGIS and referring to the high-precision Google images. This step ensures the
quality of the sample set to a certain extent. High-quality samples can provide accurate
label and feature information, while an adequate number of samples can help the model
learn and generalize more effectively. For better learning the statistical characteristics
and patterns of the data, numerous samples are required to train deep learning networks.
Therefore, the sample data were augmented by geometric transformation, adding noise,
and fuzzy transformations, and 2448 training samples and 612 validation samples were
finally obtained.

4.2. SD-UNet’s Superiority in the Structure

The optimized SD-UNet is beneficial for urban vegetation extraction. It is an op-
timized version of U-Net, with several enhancements. Firstly, the SD-UNet introduces
additional convolutions at each level of the U-Net’s encoder, capturing deeper semantic
information and enhancing the accuracy, continuity, and integrity of vegetation extraction
results. Secondly, dense connections are introduced at the input side of each encoder layer.
By directly connecting all layers, multiscale feature reuse can be strengthened and the
information flow between layers can be maximized [72,73]. Therefore, the SD-UNet can
preserve vegetation details from low levels as much as possible and reduce the omissions
in ultra-fine vegetation. Thirdly, the separable convolutions are reasonably arranged. Al-
though adding traditional convolutional layers can capture deeper semantic information, a
large number of parameters are generated [74]. To further reduce the computation cost of
the networks, some traditional convolutions are replaced by separable convolutions [75,76].
Fourthly, a BN layer is introduced after each convolutional layer. The BN layer can improve
the network training speed [77], prevent over-fitting [78], and enhance the stability of
the model [79]. Therefore, adding BN can not only save SD-UNet’s training time and
resources but also improve the accuracy and stability of the urban vegetation extraction
model. Finally, the activation function Relu is replaced with Tanh. Experimental findings
indicated that, compared to the Relu activation function, the Tanh activation function could
reduce loss in SD-UNet and accelerate convergence.

4.3. SD-UNet’s Applicability

To verify the generalization ability of SD-UNet in practical applications, four
1000 x 1000 pixels scene images that do not participate in the construction of urban
vegetation sample sets were selected to extract vegetation. Four images represent different
urban scenes: high-density buildings, cloud and misty conditions, park, and suburban
scenes. To more intuitively compare the urban vegetation extraction results, overall ac-
curacy (OA) and Kappa were used to quantify the accuracy. The experimental results
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show that the best model achieved the highest vegetation extraction accuracy in the same
scene. In other words, the sample set with NIR can avoid interference from other ground
objects. In addition, the results and analysis in the preceding sections also indicate that
the vegetation extraction accuracy was the highest in the park scene and the lowest in
the suburban scene and the results” contrast was the most obvious in the cloud and misty
conditions scene. In the park, the vegetation is dense and has a high reflection in NIR, so the
extensive vegetation areas can be more completely and accurately extracted. In contrast, the
relationship among ground subjects in a suburban scene is highly complex, and the spectral
difference between vegetation and non-vegetation is small, so the precision of vegetation
extraction is the lowest. At the same time, the suburban environment varies from one
city to another. The suburban scene only represents partial suburban features and lacks
strict representativeness compared with the other three scenes. Therefore, the extraction
results and conclusions about the suburban scene only have a certain reference value. In
the cloudy and misty conditions scene, visible light images are significantly impacted. The
cloud and mist can blur vegetation details and reduce the contrast between vegetation and
non-vegetation. However, NIR with higher vegetation reflectance can penetrate clouds,
so images with NIR can provide more vegetation features. In this case, SD-UNet trained
on the Fake sample set can learn these vegetation features to distinguish vegetation and
non-vegetation in the cloud and misty condition scene.

While the previous evaluations and comparisons have proven the best model’s ad-
vantages and validity in vegetation extraction, its potential utility is not very convincing
due to the smaller scene images compared to the study area. Therefore, the vegetation in
Yuzhong District and Nan’an District was extracted to further display the best model’s
performance. Since the lack of large-scale and complete urban vegetation ground truth,
a visual comparison was made. The experimental results showed that the vegetation
extraction results in the Yuzhong District were good, while the vegetation extraction results
in the Nan’an District were generally average. Considering the difference in complexity
and area between the two regions, the following suggestion is made: To efficiently and
accurately obtain urban vegetation in a large area (with complex areas and general areas),
the vegetation area can be divided into several small areas according to the complexity.
The best model is used to extract vegetation in complex regions, and other methods (such
as the DL framework [66]) are used to extract vegetation in general regions. However,
even though the best model has proven to be practicable for complex vegetation extraction,
it still has to be pointed out that there may be a small number of missing labels in the
sample set, especially for the vegetation covered by building shadows. As analyzed above,
building shadows easily affect the model’s vegetation extraction performance. This also
affects the establishment of labels. Fortunately, despite the possible deficiencies, the best
model can still learn different vegetation features from a large number of accurate labels
due to its strong generalization ability.

5. Conclusions

To effectively solve the problem of misclassification, ultra-fine vegetation omissions,
and heavy computational burden, a new convolutional neural network SD-UNet is pro-
posed to extract urban vegetation from Gaofen-1 remote sensing imagery. At the same
time, three sample sets are established to evaluate the impact of the NIR on the model’s
vegetation extraction accuracy, namely the Fake sample set, the NDVI sample set, and the
True sample set. SD-UNet is also compared with U-Net, SegNet, NDVI, and RF on the
sample sets created in Section 2.3. To ensure the fairness and reliability of the experiment,
the same training data and parameters are used. Additionally, three metrics are selected to
intuitively evaluate the vegetation extraction performance of the model, including ACC,
IOU, and Recall. The experimental results show that the Fake sample set can effectively
improve the accuracy of urban vegetation extraction results. The SD-UNet can achieve the
highest performance; the ACC, IOU, and Recall of the SD-UNet trained on the Fake sample
set reached 0.9581, 0.8977, and 0.9577, respectively. Based on the accuracy evaluation results,
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it can be concluded that the SD-UNet trained on the Fake sample set is the best model to
extract urban vegetation. Finally, the SD-UNet trained on three sample sets are applied to
four scenes to evaluate its generalization ability and transferability. To make the result more
convincing, the best model is applied to two administrative divisions to extract vegetation.
The result shows that the best model is suitable for small-scale vegetation extraction. It
also shows that the research in this article can provide decision-making support for the
sustainable development of the urban environment.

Although the SD-UNet can achieve satisfactory extraction results, limitations still exist.
Firstly, the SD-UNet still produces omissions for ultra-fine vegetation among other ground
subjects. The reason is probably that the ultra-fine vegetation information is continuously
lost in the pooling process of down-sampling with the increasing network depth, so it
cannot be correctly judged and identified. Secondly, the vegetation covered by building
shadows also cannot be accurately identified and extracted. These problems need to be
further improved in future research.
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