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Abstract: Landslides are a common geodynamic phenomenon that cause substantial life and property
damage worldwide. In the present study, we developed models to evaluate landslide susceptibility
in forest-covered areas in Lin’an, southeastern China using logistic regression (LR), decision tree (DT),
and random forest (RF) techniques. In addition to conventional landslide-related natural and human
disturbance factors, factors describing forest cover, including forest type (two plantations (hickory
and bamboo) and four natural forests (conifer, hardwood, shrub, and moso bamboo) and understory
vegetation conditions, were included as predictors. Model performance was evaluated based on
true-positive rate, Kappa value, and area under the ROC curve using a 10-fold cross-validation
method. All models exhibited good performance with measures of ≥0.70, although the LR model
was relatively inferior. The key predictors were forest type, understory vegetation height (UVH),
normalized differential vegetation index (NDVI) in summer, distance to road (DTRD), and maximum
daily rainfall (MDR). Hickory plantations yielded the highest landslide probability, while conifer and
hardwood forests had the lowest values. Bamboo plantations had probability results comparable
to those of natural forests. Using the RF model, areas with a shorter UVH (<1.2 m), a lower NDVI
(<0.70), a heavier MDR (>115 mm), or a shorter DTRD (<500 m) were predicted to be landslide-prone.
Information on forest cover is essential for predicting landslides in areas with rich forest cover,
and conversion from natural forests to plantations could increase landslide risk. Across the study
areas, the northwestern part was the most landslide-prone. In terms of landslide prevention, the RF
model-based map produced the most accurate predictions for the “very high” category of landslide.
These results will help us better understand landslide occurrences in forest-covered areas and provide
valuable information for governments in designing disaster mitigation.

Keywords: decision tree; forest type; landslide susceptibility; logistic regression; random forests;
understory vegetation

1. Introduction

Landslide, the most serious and common geological disaster, causes severe casualties
and economic loss yearly [1,2]. To mitigate the risk of landslide hazards and guide disaster
response, knowing where landslides may happen is indispensable. Toward this end, efforts
have been made to develop landslide prediction models. Following landslide mechanics,
these models often used natural factors, such as geology, topography, hydrology and
rainfall, as predictors [3–5]. Nonetheless, landslide is a complicated phenomenon, and
adopting measures to predict landslide is difficult due to the heterogeneous environments
between regions. In forest-covered mountainous areas, alternations of forest type are
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expected to insert a substantial impact on landslide occurrence, which, however, has not
been well investigated.

One of the primary changes in forest type during recent years is the extensive expan-
sion of plantations in particular economic forests. China has experienced a rapid transition
from natural forests to forest plantations, with the area of plantations expanding from
20.57 million hectares in 2000 to 79.54 million hectares in 2019 [6]. The positive roles of
natural forests in preventing landslides are well known. For example, tree roots reinforce
soil layers and form buttresses against soil movement. However, the extent of protection
varies with forest type. In plantation forests, intensive management is routinely applied,
leading to changes in conditions, especially understory conditions, thereby reducing their
roles in mitigating landslides. While the importance of land-use changes on landslide
occurrence has been recognized [5,7–9], previous studies [10–12] often grouped all forest
types together as forestland without accounting for the differences between them. Over-
all, our understanding of how landslide occurrence varies with forest type remains far
from complete.

Lin’an, the target area of this study, is rich in natural forests composed of conifer,
hardwood, moso bamboo, and shrub. Driven by an increasing desire for higher economic
returns, large-scale forest-type changes, primarily the conversion of natural forests to
economic plantations (for example, bamboo (Phyllostachys praecox) and Chinese hickory
(Carya cathayensis Sarg) plantations), have become normal phenomena [13–15]. In the past
three decades, hickory plantations have continuously increased and reached an area of
28,700 hectares in Lin’an [16]. Both bamboo and Chinese hickory plantations are pure stands
(i.e., single tree species) with a relatively simple canopy structure; these plantations are
intensively managed by frequently applying herbicides to control understory vegetation,
as well as fertilizers and insecticides to improve productivity [17–19]. This intensive
management likely exacerbates soil erosion from rainfall-induced runoff and causes slope
instability and other landslide triggers, particularly in hilly regions [17,20]. There are
differences between hickory and bamboo plantations, with the former having a lower
density and greater distribution on steeper slopes [16]. Evidently, conversions will continue
due to their high economic benefits. People have expressed great concerns that intensively
managed hickory and bamboo plantations may increase landslides, but information on this
phenomenon is limited.

Landslide susceptibility (LS) mapping plays an important role as it presents the spatial
distribution and occurrence probability of landslides using key landslide conditioning fac-
tors (LCFs) [21]. The effectiveness of LS mapping always depends on model accuracy. Over
the years, various models, e.g., physical models [22], heuristic models [23], and statistical
models [24], have been developed. Among the statistical methods, logistical regression
is especially attractive due to its simple structure and strong interpretability [3,25]. More
recently, machine learning techniques have become popular in this field of study [5,26]
due to their relative objectiveness [27]. Decision trees [11] and random forests [11,28] are
also widely used in modeling landslides. Decision trees are used to classify landslides
by constructing a tree-structured classifier feasible for visualizing the classification of
landslides [29], while random forests combine multiple decision trees to improve model
performance, accompanied by a loss in model interpretability [30]. However, no consen-
sus currently exists on which methods are most suitable for modeling LS, as the choice
of method is often dependent on data. At present, logistical regression, decision trees,
and random forests paired with GIS technologies have been widely used in modeling
landslides [3,11,28,31–33].

In this case study, we modeled landslide occurrences in the forest-covered areas of
Lin’an. Specifically, the objectives of this study were: (1) to compare the efficiency in
modeling landslides among the models including logistical regression, decision tree, and
random forest; (2) to identify key LCFs, particularly factors related to forest cover; and (3) to
construct LS maps. This research represents one of the few studies comparing landslide
occurrences between different forest types and provides important information for decision-
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making in forest planning and management in landslide-prone areas. These results could
be used to develop warning systems and thereby help governments and farmers take
measures for landslide prevention and mitigation.

2. Materials and Methods
2.1. Study Area

This study was conducted in Lin’an (29◦56′N–30◦23′N; 118◦51′E–119◦52′E), located
in the western part of Zhejiang, southeastern China (Figure 1). The altitude of the region
varies from 5 to 1771 m, decreasing from the west towards the east. The region has a typical
subtropical climate, with the annual rainfall ranging from 1270 to 2406 mm and an average
temperature from 13 to 22 ◦C between 2010 and 2020 [17,34].
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2.2. Data Preparation

In LS mapping, future landslides are expected to occur under the same conditions
that caused past landslides [26]. Thus, in this study, we used landslide occurrence as the
response variable and LCFs as the predictors. There are two types of LCFs: predisposing
and triggering. In addition to conventional predisposing LCFs, we included factors reflect-
ing forest cover as LCFs: forest type, understory vegetation, and normalized differential
vegetation index (NDVI). The triggering LCFs were precipitation-related variables.

Landslide inventory: Data on recorded landslides between 2010 and 2020 were ob-
tained from the Lin’an Bureau of Land and Resources [35]. During the study period,
228 total landslides occurred in the forest-covered areas (Figure 1). For each landslide, the
landslide head was selected using Google Earth to represent its geographic location [36].
Most of the landslides occurred in northwestern mountainous areas, with fewer in eastern
and central areas. We used an imbalanced data method [11,37] by additionally sampling
556 locations as non-landslide samples. For this process, two non-landslide samples around
each landslide location were randomly selected with the following limitations: each sample
was (1) at least 500 m away from the landslide location [38,39] and (2) located within a forest.
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Thus, the dataset included 784 total locations, with “1” representing landslide occurrence
and “0” representing no landslide occurrence.

Topographic features: Topographic data for each location, including elevation, slope,
aspect, curve, plan curve (PLC), profile curve (PRC), roughness, relief amplitude (RA),
and landforms, were derived from the NASA Shuttle Radar Topography Mission Digital
Elevation Model (DEM) [40] with a cell size of 30 m by 30 m. We download DEM data
for the study area from the Google Earth Engine (GEE) [41]. The relevant aspects were
reclassified to north, northeast, east, southeast, south, southwest, west, or northwest.

Geology: Distance to fault (DTF) data were obtained based on the Zhejiang lithology
map at a scale of 1:500,000 [42].

Hydrology: Data on topographic wetness index (TWI) [43] and the distance to rivers
(DTR) were calculated using DEM and the second national land survey of China [44],
respectively.

Soil: Data on soil type (ST), soil depth (SD), and humus thickness (HT) for all locations
were obtained from the second soil census in Zhejiang Province [45]. There were six STs:
skeletal, yellow, red, paddy, calcareous, and purplish soil. The HT was classified as none,
thin, medium, or thick humus.

Human disturbance: Data on distance to road (DTRD), an indicator of human distur-
bance, were derived from the second national land survey of China [44].

Forest type (FT): Each location was assigned to one of the six categories, with four being
natural forests (conifer, hardwood, moso bamboo, and shrub) and two being plantations
(hickory and bamboo plantation). Moso bamboo forests are natural bamboo forests that
usually occur on steep slopes with low economic value, while economic bamboo plantations
are typically established on flatland and intensively managed for shoot production. Data
on FT were obtained from the Zhejiang Forest Resources Class 2 Survey [46], which covered
2010 to 2020. Conifer, hardwood, moso bamboo, shrub, hickory plantations, and bamboo
plantations, respectively, accounted for 21.1%, 38.8%, 9.8%, 1.8%, 17.0%, and 11.5% of
the area.

Understory vegetation: Data on the understory vegetation type (UVT) and understory
vegetation height (UVH) at each location were obtained from the Zhejiang Forest Resources
Class 2 Survey [46]. The UVT was classified into grass, shrub, or a mix of grass and shrub.

Normalized differential vegetation index (NDVI): The NDVI values in summer (ND-
VIs) and winter (NDVIw) at each location were obtained using Landsat 8 Operational Land
Imager Surface Reflectance data obtained from the GEE platform [41] in 2016.

Precipitation: Hourly precipitation data between 2010 and 2020 were collected from
230 Lin’an weather stations [47]. These data were interpolated using the inverse distance
weighted method [17] to cover the study area and used to construct five precipitation maps:
annual precipitation (AP), precipitation in the wet season (PWS) from June to August,
precipitation in the dry season (PDS) from November to February, annual torrential rain
days, and maximum daily rainfall (MDR). The precipitation data were generated from the
corresponding precipitation maps.

A summary of continuous variables can be found in Appendix A. Based on the
coefficient of variation, the curve-related variables displayed relatively larger variation,
while the precipitation variables and NDVIs presented less variation. Maps describing
the geographic distribution of some categorical variables are presented in Appendix B.
Correlation coefficients among some predictors are listed in Appendix C. Clearly, the forest
cover variables (FT, UVT, UVH, and NDVI) were strongly or moderately intercorrelated, as
were the precipitation variables.

2.3. Model Development

First, data were cleaned and outliers (≥3 standard deviations) were removed. Three meth-
ods, logistical regression, decision trees, and random forests, were used to develop individ-
ual models, which were then used to derive LS maps.
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2.3.1. Logistical Regression (LR)

Since the response variable was a binary variable, the LR method seemed appropriate.
The data were fitted to the model as follows:

y = a + b1x1 + b2x2 + b3x3 + . . . + bixi (1)

where y is the intermediate variable, x1, x2, . . ., xi are explanatory variables, a is a constant,
and b1, b2, . . . bi are model coefficients.

The value y was then transformed to landslide occurrence using the following
sigmoid function:

Probability =
ey

1 + ey (2)

LR model development, which was accomplished using the R “glm” function, involved
a few steps. In the first step, all predictors were included and the key predictors were
screened using the stepwise option. To mitigate the issue of multicollinearity, selected
predictors with a high variance impact factor (VIF > 5) were removed one by one, and
the remaining predictors were refitted to the model until all VIFs met the criterion. The
selected predictors were then used to develop the final model and their importance was
calculated using “varImp” function. The odds of a predictor, while holding the others in
the model as constant, were calculated, and the odds ratio (OR) and probability (P) were
calculated as:

OR = ebi (3)

P =
Odds

1 + Odds
(4)

2.3.2. Decision Tree (DT)

Decision trees are used to develop flowchart-like tree structures that include nodes,
branches, and leaves [31]. DT model development in this study involved several steps:
we (1) identified the best attribute (predictor) to split the data, (2) made that attribute a
decision node to break the data into subsets, and (3) built the tree by repeating the above
steps recursively until the conditions matched the desired increase in entropy to obtain the
final leaves. To overcome the issue of overfitting, we removed the less important variables
(curvature, PLC, PRC, SD, HD, HT, TWI, AP, PDS, and ATRD) based on the information
gained. Additionally, pruning was used to mitigate overfitting. We applied pruning by
setting proper hyperparameters using a grid search based on the 10-fold cross validation
method. The final hyperparameters with max depth = 5, criterion = “entropy,” max leaf
nodes = 14, max feature = 7, and min impurity decrease = 0.005 were applied. The R
libraries “rpart” and “caret” were used to develop the tree, and the “varImp” [48] function
was used to calculate feature importance. The results indicated how much predictive power
was possessed by each predictor.

2.3.3. Random Forest (RF)

Random forest is a typical type of tree-based classification algorithm based on the
ensemble learning and bagging technique [30]. RF uses decision trees as classifiers, and
each of the decision trees is built using random training datasets and variables. The final
classification results are voted on by the integrated results of each decision tree. Out-of-bag
errors are used to tune the model parameters, which refers to the proportion of misclassified
samples for all classifications.

To find the appropriate hyperparameters for model building, we used the 10-fold cross-
validation method. Our preliminary analyses suggested the following hyperparameters
for model training: number of trees = 300 and max depth = 6. To simplify the model
and improve model performance, we used the recursive feature elimination method to
remove the variables that contributed least to the model [49,50]. Specifically, a model
was developed using all the predictors, and the predictors were ranked by importance,
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expressed as the Gini index [51], which reflects the impurity of the sample after predictor
selection. The least important predictor was pruned, and the remaining predictors were
refitted to the model. This process was repeated until a specified number of predictors was
achieved (11 in this study).

2.4. Model Evaluation

For each method, model performance was evaluated via independent data using
the 10-fold cross-validation method. All models predicted the probability of a landslide
occurring for a given pixel based on a threshold probability value of z = 0.5, e.g., if <0.5, the
pixel was labeled as “non-landslide” and as “landslide” otherwise. Notably, a confusion
matrix is highly dependent on the threshold probability value z. Four statistical measures—
accuracy (ACC), true-positive rate (TPR), Kappa index, and area under the ROC curve
(AUC)—were calculated. The ACC and TPR were calculated using the following equations:

ACC =
TP + TN

TP + FP + TN + FN
(5)

TPR =
TP

TP + FN
(6)

where TP (true positive) is the number of landslide samples correctly predicted, FP (false
positive) is the number of landslide samples incorrectly predicted, TN (true negative) is
the number of non-landslide samples correctly predicted, and FN (false negative) is the
number of non-landslide samples incorrectly predicted. Unlike the ACC, the Kappa index
reflects the actual performance of the model when handling an imbalanced sample size.
The Kappa index was calculated using the following equation:

Kappa =
p0 − pe

1− pe
(7)

where p0 and pe were observed and expected agreements, respectively. The value of the
Kappa index typically ranges from 0 to 1. A value of >0.4 indicates moderate agreement
and >0.7 indicates strong agreement. The ROC curve was constructed using FP and TP
rates. The performance was considered poor with an AUC of <0.6, average with 0.6–0.7,
good with 0.7–0.8, and very good with ≥0.8.

2.5. Developing the Landslide Susceptibility Maps

After evaluating each model, the whole dataset was refitted to the model for calibration.
The result was then used to develop LS maps. All the selected pixels in the study areas
were calculated using the corresponding models to generate LS maps [32]. To make the
maps more intuitive, we reclassified LS into five categories using the equal-interval method:
very high (probability of landslide occurrence > 0.8), high (0.6–0.8), moderate (0.4–0.6), low
(0.2–0.4), and very low (<0.2). Class-specific accuracy (pi) was calculated to evaluate the
predictability for each LS class in each LS map, as follows:

pi =
Ai
Bi
× 100% (8)

where Ai and Bi are the numbers of landslides that occurred and all pixels, respectively,
in the ith class. A reliable LS map is considered to have high class-specific accuracy in
high-risk areas and low class-specific accuracy in low-risk areas.

3. Results
3.1. Logistical Regression

The predictors selected for the final model in decreasing order of importance (as judged
by Wald statistics) were FT, NDVIs, DTRD, MDR, aspect, DTF, and elevation (Table 1).
The impacts of these predictors on landslide occurrence were all statistically significant at
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α = 0.05. The importance of FT was especially significant, with a Wald chi-squared value of
76.84, which was almost twice as high as that of the NDVIs and DTRD. The collinearity of
all selected predictors was weak, with VIFs of <5.

Table 1. Model predictors of the final logistic regression model and their significance.

Factors DF Wald Chi-Squared Pr > ChiSq

Elevation 1 7.0745 0.0078
Aspect 7 17.6894 0.0135

DTF 1 9.9524 0.0016
FT 5 76.8426 <0.0001

DTRD 1 37.0597 <0.0001
NDVIs 1 42.5864 <0.0001
MDR 1 22.8069 <0.0001

Table 2 lists the ORs, and Figure 2 presents the probability estimated based on
predictors while keeping other model predictors constant (specifically, FT = “hickory”,
aspect = “north”, and the continuous predictors used the averages provided in Appendix A).
Among the FTs, hickory plantations presented the highest risk, followed by shrub and moso
bamboo, while conifer, hardwood, and bamboo plantation had comparably lower risk.
Based on the OR values, conifer forests, hardwood, bamboo plantations, moso bamboo,
and shrub had 96.0%, 92%, 93%, 79%, and 67% lower landslide occurrence, respectively,
compared to hickory plantations (Table 2). For every 1 mm increase in MDR, the odds
of occurrence increased by 7.7%. The stands facing southeast had the highest odds in
terms of aspect, followed by the stands facing east, northeast, north, southwest, west, and
northwest. Compared to areas facing north, areas facing southeast had twofold higher
landslide occurrence. The probability (Figure 2) was 60% for hickory plantations compared
to 5.6% for conifer forests—about 10 times higher. The probability was high when the ND-
VIs value was ≤0.60, but thereafter decreased with an increase in NDVIs. The probability
decreased with an increase in DTRD up to 800 m and thereafter maintained a very low
value. The probability also increased with an increase in the MDR from 80 mm to 160 mm
and thereafter remained stable at a very high level.

Table 2. Calculated odds ratio (OR) values and their 95% Wald confidence limits for key predictors of
the logistical regression model.

Factors OR Lower Limit Upper Limit

Forest type Conifer vs.
hickory 0.040 0.013 0.117

Hardwood vs. hickory 0.019 0.006 0.061
Shrub vs. hickory 0.325 0.040 2.653

Bamboo vs. hickory 0.066 0.026 0.165
Moso bamboo vs. hickory 0.208 0.090 0.480

NDVI in summer <0.001 <0.001 <0.001
Distance to roads 0.992 0.989 0.995
Maximum daily rainfall 1.077 1.045 1.110

Aspect Northeast vs.
North 1.327 0.446 3.948

East vs. North 1.934 0.675 5.539
Southeast vs. North 2.000 0.662 6.041

South vs. North 0.331 0.104 1.051
Southwest vs. North 0.736 0.221 2.452

West vs. North 0.640 0.210 1.949
Northwest vs. North 0.540 0.157 1.855

Distance to faults ~1.000 ~1.000 ~1.000
Elevation 0.997 0.995 0.999
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Figure 2. Estimated probability of occurrence of landslides using the key predictors of the logistical
regression model: (a) forest type (FT; 1—hickory, 2—conifer, 3—hardwood, 4—shrub, 5—bamboo
plantation, and 6—moso bamboo), (b) normalized differential vegetation index in summer (NDVIs),
(c) distance to road (DTRD), and (d) maximum daily rainfall (MDR).

3.2. Decision Tree

Based on the feature importance, FT, NDVIs, UVH, UVT, DTRD, NDVIw, and MDR
were the top predictors.

The root node was based on FT, with data split into two branches: high-risk hickory
plantations (right) and other low-risk FTs (left) (Figure 3). In the hickory branch, the data
were further divided by DTRD, MDR, and UVH. A location with DTRD ≤ 164 m and
MDR ≤ 123 mm was classified as an area subject to landslide occurrence. In contrast, the
occurrence of landslides was minimal in regions where the DTRD exceeded 164 m, and the
MDR was below 118 mm. UVH was used for splitting when the DTRD was >164 m, MDR
was >118 mm, and DTRD was >204 m. When UVH was 0.15 m or higher, this feature acted
as a preventative factor, mitigating landslide occurrences in the location. In the other FT
branch, NDVIs was the most important, not only representing the first decision feature but
also appearing three times as a decision classifier. The probability of landslide occurrence
was low when NDVIs was ≥0.77 but became high otherwise. DTRD was also an important
predictor. With NDVIs ≤ 0.77 and DTRD ≤ 309 m, the location was predicted to be likely
landslide-prone. Note that the key predictors on the tree were similar to, but not exactly
the same as, those based on feature importance. This result was a consequence of handling
surrogate variables with the R “rpart” function.
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3.3. Random Forests

The most important predictor was NDVIs, which had a Gini index of 0.15 (Figure 4),
followed by DTRD, UVH, FT, and UVT, each with an index of ≥0.12. MDR and PWS each
had an index close to 0.10. Two topographic factors, aspect (0.03) and roughness (0.06),
were also selected as predictors.
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The partial dependence plots (Figure 5) provided purely data-driven relationships
between the response variables and key predictors. Hickory plantations had about a
1.25-fold higher probability of landslides compared to moso bamboo forests, which in
turn presented a substantially higher probability compared to other types. As the UVH
increased from 0 to 1.2 m, the probability of landslides gradually reduced and then leveled
off. In terms of UVT, the probability of grass-type landslides exceeded that of shrubs
or a combination of grass and shrubs, with the latter two being very close to each other.
The probability of landslides exhibited a gradual decline with an increase in NDVIs, from
0.55 at an NDVIs of 0.65 to 0.25 at an NDVIs of 0.85. The decreasing trend of landslide
probability with an increase in DTRD was pronounced when DTRD was <600 m. However,
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the subsequent probability remained at a low level. Considering MDR, the landslide
probability remained relatively flat when the MDR was 110 mm or less and increased as
the MDR increased from 110 to 120 mm, leveling off thereafter.
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Figure 5. Partial dependence of landslide occurrence with key predictors identified by the random
forests model: (a) FT (1—hickory; 2—conifer; 3—hardwood; 4—shrub; 5—bamboo plantation;
6—moso bamboo), (b) UVH, (c) UVT (1—grass, 2—grass–shrub, 3—shrub), (d) DTRD, (e) NDVIs,
and (f) MDR.

3.4. Model Evaluation

Model evaluation based on independent data (Table 3) showed that the RF and DT
models achieved comparably satisfactory performance, with all values being 0.80 or more.
The RF model had slightly higher ACC and AUC values, while the DT model outper-
formed slightly in TPR and Kappa. Compared to the RF model, the LR model achieved
lower, yet comparable, ACC and AUC values, but much lower TPR (0.76) and Kappa
index (0.70) results.

Table 3. Calculated model accuracy (ACC), true-positive rate (TPR), Kappa index, and area under
the ROC curve (AUC), as well as their standard deviations (Std), produced by the models.

Model
ACC TPR AUC Kappa

Mean Std Mean Std Mean Std Mean Std

LR 0.866 0.034 0.764 0.095 0.918 0.028 0.700 0.043
DT 0.876 0.038 0.821 0.093 0.905 0.047 0.792 0.039
RF 0.880 0.037 0.803 0.095 0.938 0.031 0.782 0.029

3.5. Landslide Susceptibility Mapping

The areas predicted to have high and very high classes accounted for 14.71%, 12.50%,
and 10.91% of the total area, respectively, under the LR, DT, and RF models (Table 4). All LS
maps (Figure 6) predicted higher LS in the west, particularly in northwestern areas (almost
all hickory plantations) and in areas close to roads. Some inconsistencies were observed
between the LR map and the maps of DT and RF (Figure 6). Relative to the other two
maps, the LR map was more heavily impacted by the DTRD and thus predicted higher
susceptibility around the roads. In addition, in forests located in the central parts of the
study areas, DT and RF predicted a low risk, while LR suggested a medium to high risk.
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Table 4. Class-specific accuracy based on the landslide susceptibility maps by models.

Model Class Grid Cells Ratio of Class (%) Landslides Class-Specific Accuracy (%)

LR Very low 1,520,764 47.10 33 0.31
Low 866,549 26.84 29 0.47

Moderate 366,571 11.35 26 1.00
High 267,445 8.28 40 2.12

Very high 207,664 6.43 100 6.82

DT Very low 2,321,912 71.91 17 0.10
Low 252,847 7.83 7 0.39

Moderate 250,744 7.77 7 0.40
High 121,021 3.75 51 5.97

Very high 282,469 8.75 146 7.32

RF Very low 1,948,686 60.35 18 0.13
Low 581,266 18.00 10 0.24

Moderate 346,651 10.74 7 0.29
High 189,968 5.88 56 4.17

Very high 162,422 5.03 137 11.95Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
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Class-specific accuracy varied with the LS class and method (Table 4). The accuracy
achieved was the highest for the very high class and decreased with a decrease in the LS
level, regardless of the method. Among the three maps, the RF map outperformed the
others in modeling the very high class (11.95%), the DT map achieved the highest accuracy
in modeling the high class (5.97%), and the LR map had the worst performance in general.

4. Discussion

Landslide susceptibility mapping is needed, but remains a methodological challenge,
since landslides are complex events involving many correlated factors. The LR method has
been widely used in modeling LS [52,53]. This method, however, requires assumptions
such as little multicollinearity and the linearity of predictors and lacks the ability to account
for complex interactions among predictors. In this study, the limitations of this method
demonstrated that (1) the model was inferior, albeit not substantially, to the DT and RF
models in accuracy (Table 3), and (2) important predictors such as understory vegetation
type and height were excluded from the model, likely due to their correlations with forest
type and NDVIs (Appendix C). Nonetheless, the LR model generally performed well, with
all accuracy measures being ≥0.70 (Table 3). Furthermore, the LR model allowed us to
predict the risk probability for a location using model parameter estimates (Figure 2), which
is attractive to landowners.

Machine-learning modeling techniques fit with the best-possible classification based
on data, rather than a predefined relationship as in the LR method. Thus, as expected,
both the DT and RF models outperformed the LR model in accuracy (Table 3). While the
DT model provided an interactive visual classification tree structure feasible for decision-
making, this method remains costly in terms of the necessary sample size, and thus the
split under this method is likely more accurate for the root node than the bottom leaf.
Additionally, the one-tree based DT model can be unstable because small variations in data
may result in the generation of a completely new decision tree. Thus, RF, which is based on
multiple trees, often outperforms DT in modeling LS [11,26]. Nonetheless, in this study,
the DT model achieved high accuracy comparable to that of the RF model (Table 3), partly
due to the use of imbalanced data. Indeed, for extremely imbalanced datasets, DT can
outperform RF [28]. Recently, more complex models such as stacking have been proposed
to further improve accuracy. These approaches, however, are accompanied by reduced
model interpretability [54–56].

While the examined methods varied in their accuracy measures and interpretation,
the key causal factors identified by each model were similar, including FT, NDVIs, DTRD,
aspect, and MDR. Information on understory vegetation was found to be important in the
machine-learning models, but not in the LR model.

Knowing the differences in landslide susceptibility among forest types is of great
value in planning forest management to mitigate landslides. Natural forests, in general,
can mitigate landslides [57,58]. However, the extent of protection varies with FT. Among
the four nature FTs, the moso bamboo forests under the LR and RF models and shrub
forests under the LR model presented a much higher risk than the conifer or hardwood
forests (Figures 2 and 5). Both moso bamboo and shrub forests have shallow root systems
(distributed over a soil depth of 0–30 cm), which are conducive to landslides. Additionally,
moso bamboo forests often feature high stand density (i.e., many trees per hectare), pre-
venting the growth of understory vegetation and deteriorating the conditions necessary for
resisting landslides. A higher risk is expected in intensively managed plantations. In this
study, hickory plantations were confirmed to have a much higher probability of landslide
occurrence than any other FTs (Figures 2 and 5). Using the LR model, hickory plantations
were predicted to have a probability as high as 0.60, which was twice as high as that of shrub
forests (0.30), the type with the second-highest risk (Figure 2). The high landslide risk in
hickory plantations was further supported by the DT model, which showed that data were
divided into hickory plantations and other types at the root node (Figure 3). Clearly, forest
management activities such as removing understory vegetation in hickory plantations
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could greatly increase landslide occurrence, although other characteristics, such as often
planting hickory in areas with high elevations (482.93 m) and steep slopes (on average,
24.3◦), might also contribute to this high probability. Nevertheless, bamboo plantations that
were managed intensively as hickory plantations did not show significantly increased land-
slide probability over the natural FTs as expected. Under the LR model, bamboo plantations
had a probability about 0.10, which was higher only than the probability values of conifer
and hardwood forests (Figure 2). Similar results were also confirmed by the RF model
(Figure 5). Bamboo plantations were mostly located in the northeast and southeast areas of
Lin’an (Appendix B), where the altitude and rainfall are relatively low and the slope (on
average 15.7◦) is gentle, thereby reducing landslide occurrence in the plantations. Therefore,
conversion from natural forests to forest plantations paired with intensive management
could increase landslide occurrences substantially. This effect, however, is complicated
and may be compromised by other factors such as low rainfall and gentle slope. In recent
years, researchers have identified land-use changes as important aggravators of landslide
occurrences [52,59]. Clearly, this topic deserves further investigation.

The NDVI, which reflects the overall density of vegetation on the ground and the
crown position, is often used as a land-cover variable in modeling landslides. As expected,
the NDVIs was correlated with other variables of forest cover (r = 0.36, 0.28, and 0.28
with FT, UVT, and UVH, respectively; Appendix C). For hickory plantations, an NDVIs
of 0.60 or less reflected high landslide susceptibility, but further increasing the NDVIs
quickly reduced this probability (Figures 2 and 5). Our DT model (Figure 3) suggested
that NDVIs is especially important in predicting landslides in FTs other than hickory
plantations; any forest types with NDVIs > 0.77 are unlikely to experience landslides. In
parallel with our results, DTRD as a human disturbance indicator has been widely used as
a causal factor to predict landslides [38,60]. The closer a location is to a road, the higher
that area’s susceptibility to landslides. However, this trend disappeared when the location
was 500 m or further from a road (Figures 2 and 5). Although the threshold value varied,
the importance of DTRD in classifying landslides was significant under all forest types
(Figure 3). In the LR model, aspect, a topographic factor, was selected as a predictor. Slopes
facing east (southeast, east, and northeast) were also predicted to have higher probabilities
than others in previous studies [61]. This result might be linked to the strong summer
monsoon and typhoon in the region, resulting in windward-slope rainfall contributing to
landslide occurrence. Overall, aspect was not ranked as a top predictor in the LR and RF
models and was not selected in the DT model.

The incidence of landslides is often inversely related to understory vegetation condi-
tions. Denudation, such as the removal of vegetation from the hickory plantations in this
study, influenced the rate of erosion from rainfall-induced runoff and generated landslides,
particularly in hilly regions [62]. Increasing UVH was accompanied by a reduction in
landslide occurrence when UVH was ≤1.2 m. The trend disappeared as UVH increased
further (Figure 5), and this impact was stronger than other types in hickory plantations
(Figure 3). Unsurprisingly, grass presented a much higher probability, but our results
suggest that using a different shrub type or a mix of shrub and grass could greatly reduce
landslide occurrence (Figure 5). Few studies have investigated the effects of understory
vegetation on landslide occurrence, mainly due to a lack of data. In areas where understory
vegetation data are limited, the potential use of radar and lidar data to reflect understory
vegetation should be further explored [63,64]. Overall, understory vegetation conditions
are important factors and should be included when modeling landslide occurrence in
forest-covered areas.

According to all model results, MDR was the main triggering factor in the study areas.
Based on probability, if the MDR were about 130 mm or higher, landslides would become
a large concern in these areas (Figures 2, 3 and 5). The negative impact of rainfall would
also become more obvious in the hickory plantations (Figure 3). Not all hickory plantations
presented a very high risk of landslides. Plantations located in northern and southern areas
had a relatively lower risk (Figure 6), which was accompanied by lighter rainfall.
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The development processes of landslides are controlled by basic predisposing factors
and are induced by heavy rainfall and excessive human activities. Other studies have
found predictors such as slope, curvature, RA, and soil to be important contributing factors
both theoretically and empirically [65–67]. These factors were not selected as predictors in
this study under either model. Nonetheless, the roles that these factors play in influencing
landslide occurrence were not negligible. Likely, these roles are overshadowed by other key
predictors, such as forest cover, in model development. Effects of these basic predisposing
factors could be improved by increasing the resolution of the DEM data [68].

The developed models were applied to map landslide susceptibility in the study areas.
The percentages of areas predicted to have very high or high landslide susceptibility were
comparable among the maps, ranging from 10.91% (RF) to 14.71% (LR). Particular attention
should be paid to the western portion of the study area, particularly the northwestern
area, where landslides occur most frequently and hickory plantations are common. In
LS mapping, accurately predicting very high landslide susceptibility zones is especially
important. In this regard, the map produced via RF is preferred since it offers higher
map-based class-specific accuracy (pi) than the other two model-based maps for the very
high category.

The results of this research have important implications for mitigating future landslides
in the study areas. The high landslide occurrence in the hickory plantations represents a
major concern. Maintaining the understory vegetation of hickory plantations is expected
to reduce landslide risks, but increase difficulty in harvesting hickory nuts. Suggestions
such as planting other understory economic species in hickory plantations [34] have been
proposed; these suggestions seek not only to increase economic benefits but also improve
the understory vegetation conditions. Nonetheless, the actual benefits of such interventions
remain uncertain and deserve further investigation. While these bamboo plantations are not
a concern in terms of landslide occurrence, the intensive management applied to plantations
prevents the growth of understory vegetation, a potential driver of landslide occurrence.
Thus, selecting a density that balances shoot production and understory conditions to
reduce landslides is important. Natural moso bamboo forests are also a concern in the
region. Moso bamboo continues to spread into adjacent natural forests and may eventually
dominate the forests by outcompeting conifer and hardwood trees. From 2000 to 2020,
moso bamboo forests expanded from 203 to 248 km2, representing an increase of 22% [16].
To reduce the risks of landslides in moso bamboo areas, forest management activities must
be applied to limit bamboo expansion.

5. Conclusions

The present study developed models for predicting landslide occurrence in forest-
covered areas in Lin’an, southeast China using LR, DT, and RF techniques. We then
constructed LS maps. All three models achieved reasonable accuracy according to indepen-
dent data, with all accuracy measures being ≥0.70. However, the LR model was inferior
compared to the others. The key LCFs for the areas included forest type, UVH, NDVIs,
and DTRD, and the key trigger factor was the MDR. The conifer and hardwood forests
had the lowest probability of landslide occurrences, while hickory plantations had the
highest probability, about double that of conifer or hardwood forests. However, bamboo
plantations had a landslide probability comparable to the conifer and hardwood forests.
According to the RF model, a location in a forest with UVH < 1.20 m, DTRD < 500 m,
or NDVIs < 0.60 was predicted to have a high landslide risk. This probability increased
with an increase in MDR when the MDR was >110 mm. Among the three maps, the map
produced via RF yielded the highest map-based class-specific accuracy for the very high
category and should be used in landslide prevention. This present research was a case study.
Thus, caution should be taken when generalizing our results to other regions. Nevertheless,
findings of the application and feature analysis methods of LR, DT and RF in our study
may be extended to other areas with rich forests and other natural hazard analyses, such as
wildfire and flood hazard analyses. Overall, conversions from natural forests to economic
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forest plantations paired with applying intensive management on the plantations could
substantially increase the probability of landslide occurrence. The negative effect, however,
can be reduced if the plantations are established in areas located on gentle slopes with low
rainfall and managed using proper forest management strategies. These findings should be
incorporated into forest management strategies to reduce the risk of geohazards and thus
achieve the Sustainable Development Goals.
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Appendix A

Table A1. Summary of data of continuous variables.

Variable Mean CV (%) Std

Elevation (m) 453.54 64.249 291.396
Slope (◦) 23.051 41.919 9.663

Curvature −0.100 −1904.250 1.918
PLC 0.002 56,796.020 0.984
PRC 0.105 1111.040 1.162

Roughness 1.110 9.904 0.109
DTF (m) 2229.600 98.766 2202.06

DTRD (m) 302.420 114.899 347.476
SD (m) 5.656 19.573 1.107
HD (m) 2.789 22.940 0.639
UVH(m) 0.889 69.162 0.615
NDVIs 0.787 9.847 0.077
NDVIw 0.480 24.678 0.118

TWI 6.355 58.256 3.702
DTRR (m) 790.830 87.311 690.489
AP (mm) 1803.400 8.642 155.850

PWS (mm) 701.110 9.549 66.954
PDS (mm) 264.420 6.9130 18.279

ATRD (day) 5.264 16.706 0.879
MDR (mm) 117.120 13.082 15.322

CV—Coefficient of Variation, Std—Standard deviations.
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Appendix C

Table A2. Coefficients of correlation between predictors (only those with value greater than 0.30 were
included).

PLC PRC Landform Roughness ST FT UVH UVT DTR NDVIs AP PWS PDS MDR

Elevation 0.35 0.39 0.38 0.37 0.57 0.55
Slope 0.35
Curvature 0.86 −0.90 0.61
PLC 0.55 0.55
PRC 0.53
RA 0.80
Roughness 0.34
ST 0.32
FT 0.79 0.48 0.48 0.36 0.40 0.37 0.37
UVH 0.77 0.38
UVT 0.39
DTR 0.39
NDVIs
AP 0.88 0.72 0.79
PWS 0.57 0.87
PDS 0.51
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