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Abstract: Detecting small ship targets in large-scale synthetic aperture radar (SAR) images with
complex backgrounds is challenging. This difficulty arises due to indistinct visual features and noise
interference. To address these issues, we propose a novel two-stage detector, namely a convolutional
and visual transformer fusion network (CViTF-Net), and enhance its detection performance through
three innovative modules. Firstly, we designed a pyramid structured CViT backbone. This design
leverages convolutional blocks to extract low-level and local features, while utilizing transformer
blocks to capture inter-object dependencies over larger image regions. As a result, the CViT backbone
adeptly integrates local and global information to bolster the feature representation capacity of targets.
Subsequently, we proposed the Gaussian prior discrepancy (GPD) assigner. This assigner employs the
discrepancy of Gaussian distributions in two dimensions to assess the degree of matching between
priors and ground truth values, thus refining the discriminative criteria for positive and negative
samples. Lastly, we designed the level synchronized attention mechanism (LSAM). This mechanism
simultaneously considers information from multiple layers in region of interest (RoI) feature maps,
and adaptively adjusts the weights of diverse regions within the final RoI. As a result, it enhances
the capability to capture both target details and contextual information. We achieved the highest
comprehensive evaluation results for the public LS-SSDD-v1.0 dataset, with an mAP of 79.7% and
an F1 of 80.8%. In addition, the robustness of the CViTF-Net was validated using the public SSDD
dataset. Visualization of the experimental results indicated that CViTF-Net can effectively enhance
the detection performance for small ship targets in complex scenes.

Keywords: synthetic aperture radar (SAR); small ship targets; transformer; convolutional and visual
transformer fusion network (CViTF-Net); ship detection

1. Introduction

SAR sensors actively emit pulse radar signals and can provide high-resolution images,
unrestricted by weather or lighting conditions, through echo signal processing [1,2]. With
the rapid development of the marine economy and navigation technology, SAR image ship
target detection has become increasingly important in maritime traffic management [3] and
sea rescue [4]. However, the targets in SAR images are often mixed with background noise
and clutter [5], making it difficult to detect small ship targets.

Constant false alarm rate (CFAR) detection [6–9] is a popular algorithm in traditional
SAR image ship target detection. CFAR typically calculates thresholds based on preset
statistical models. This threshold adaptively adjusts according to the statistical charac-
teristics of the background noise surrounding the target echo signal. When the target
echo signal exceeds this threshold, it is recognized as a target. However, the actual noise
environment may significantly deviate from the statistical model, leading to a decline in
CFAR’s performance. Moreover, an appropriate threshold must be determined based on
the specific application scenario and target characteristics. In a multi-target or target-dense
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environment, CFAR can also be influenced by neighboring targets, decreasing detection
performance.

With the significant breakthroughs in object detection achieved by deep learning, deep
learning-based SAR ship target detection algorithms have become a research hotspot [10].
There are two main detector architectures used in this field: two-stage detectors and
one-stage detectors.

The typical representatives of two-stage detectors include Faster R-CNN [11] and
the feature pyramid network (FPN) [12], etc. These types of detectors generally include
two main stages: the region proposal, followed by object classification and localization.
Firstly, the region proposal stage generates a series of candidate boxes that may contain
targets using the region proposal network (RPN). Then, during the object classification
and localization stage, these candidate boxes undergo feature extraction via convolutional
neural networks (CNNs) or other relevant methods, further classifying and localizing the
target. Two-stage detectors can better balance detection accuracy and recall, providing
more precise target localization and suitability for tasks requiring high accuracy in target
positioning. However, a downside is their relatively complex architecture and slower
detection speed. Li et al. [13] constructed the publicly available SAR image dataset for
ship detection, known as the SSDD. They improved the Faster R-CNN detector in the field
of ship target detection through feature fusion and hard negative mining techniques. By
fine-tuning a pre-trained model on ImageNet for transfer learning purposes, they achieved
an AP of 78.8% for the SSDD dataset. Cheng et al. [14] proposed a method based on
Cascade RCNN [15] with rotational bounding boxes. They employed an embedded cascade
structure to reduce false positives and utilized a rotated anchor-aided detection module to
refine the rotational bounding boxes, enabling a flexible detection approach. Su et al. [16]
proposed a spatial information integration network (SII-Net) based on PANet [17]. By
adding a channel–location attention mechanism to the ResNet [18] backbone network, the
model’s feature extraction capability is enhanced. Furthermore, additional refinement
branches in the FPN improve the model’s ability to differentiate between the target and the
background. Li et al. [19] proposed an attention-guided balanced feature pyramid network
(A-BFPN) based on BFPN [20]. They used an enhanced refinement module to enhance the
model’s robustness to complex backgrounds and employed a channel attention-guided
fusion network to extract better multi-scale features.

The typical representatives of one-stage detectors include the You Only Look Once
(YOLO) [21] series, Fully Convolutional One-Stage Object Detection (FOCS) [22], and the
Single Shot Multi-Box Detector (SSD) [23], among others. These detectors merge object
classification and bounding box regression into single CNNs, achieving simultaneous
object classification and localization. Using single forward propagation, one-stage detectors
complete detection tasks faster. However, when they use coarser feature maps for object
detection, their target localization accuracy is relatively lower than two-stage detectors [24].
Yang et al. [25] designed a lightweight SAR ship detector based on YOLOv5 [26]. They
enhanced the feature extraction capability and significantly reduced the parameter count
by incorporating the IMNet backbone network and Slim-BiFPN, thereby improving the
performance of the lightweight ship detector. Muhammad et al. [27] enhanced the C3 and
FPN + PAN structures and attention mechanisms based on YOLOv5s, thereby augmenting
the model’s capability to detect multi-scale SAR vessels. Zheng et al. [28], on the other
hand, lightened the backbone network of YOLOv5s and improved the feature fusion mod-
ule. The improved model heightened the spatial interaction capability of the ship feature
information. Zhang et al. [29] proposed an MLBR-YOLOX based on YOLOX [30]. They
utilized a standalone spatial patch to filter out the ocean background and employed a deep
spatial feature detector to extract the deep semantic features of the images. Yang et al. [31]
proposed an anchor-free detector based on FCOS [22]. They employed a multi-level feature
attention mechanism to extract global information from images and utilized a feature re-
finement module to effectively refine the features of small ships. Wang et al. [32,33] applied
the integrated transfer learning SSD detector to SAR image ship detection, improving
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the model’s detection performance for ships in scenarios with limited dataset availability.
Additionally, Bao et al. [34] and Ganesh et al. [35], respectively, employed transfer learning
for ship classification and detection, further demonstrating the effectiveness of transfer
learning in ship detection tasks. Zong et al. [36] utilized transfer learning to address the
demand for extensive datasets and enhance the model’s generalization capacity.

For small object detection, Chen et al. [37] improved the detection of small target
areas using a multi-scale pre-training mechanism and a multi-scale feature fusion strat-
egy. Yang et al. [38] employed inception–attention to achieve weighted multi-scale feature
outputs, extracting both global and local features. Zhou et al. [39] effectively integrated
information from various oriented gradients using multi-scale convolutions, thus extracting
more robust features. Gong et al. [40] proposed SSPNet for small ship detection, where
they employed context attention and scale-enhanced attention mechanisms to make the
model more attentive to small-scale targets. Qian et al. [41], by combining the deep Long
Short-Term Memory network (LSTM) with genetic algorithms (GA), proposed the GA-
LSTM model, significantly enhancing the accuracy and speed of trajectory prediction.
Zheng et al. [42] introduced a Sine chaos mapping-based improved sparrow search algo-
rithm (SSA), achieving higher prediction accuracy and stronger stability for inland vessel
trajectories. Predicting vessel motion trajectories provides novel insights for our further
exploration of dynamic ship detection using SAR images.

In addition to using traditional CNNs, building object detectors using transform-
ers [43] has become a trend in the object detection field [44,45]. The transformer is a neural
network based on the self-attention mechanism, initially introduced in the natural language
processing field. Dosovitskiy et al. [46] migrated it to computer vision tasks, naming it the
Vision Transformer (ViT). The transformer primarily comprises self-attention layers and
feedforward neural network layers. Unlike convolution layers, which excel at local feature
extraction, the transformer can globally correlate elements in a sequence. It can perceive
global semantics and model long-distance dependencies more effectively. Based on the
Swin Transformer [47], Xia et al. [48] proposed a SAR ship detector, CRTransSar, that com-
bines CNNs and visual transformers. Using the CR backbone, it enhances SAR ship feature
representation, while simultaneously extracting global context feature information. The
CRTransSar is the first detector to introduce visual transformers into SAR ship detection.
Experimental results show that detectors incorporating these transformers exhibit excellent
adaptability when facing complex-background SAR images.

In summary, to enhance the detection performance for small ship targets in large-
scale complex-background SAR images, we propose a new two-stage detector, CViTF-Net,
which unites CNNs with visual transformers. Experiments on the LS-SSDD-v1.0 and SSDD
public datasets show that, compared to other existing methods, CViTF-Net improves the
accuracy and robustness of small ship target detection in complex backgrounds. The main
contributions from this paper are as follows:

1. We constructed a new CViT backbone consisting of CNNs and visual transformers,
which helped CViTF-Net obtain powerful feature representation capabilities. As a
result, it significantly reduced the detector’s attention to the background and enhanced
the robustness of small ship target detection.

2. We proposed a Gaussian prior discrepancy (GPD) assigner. This assigner leverages
the discrepancy in two Gaussian distributions to judge the matching degree between
the prior and ground truth. GPD helps CViTF-Net optimize the discrimination criteria
for positive and negative samples.

3. We designed a level-sync attention mechanism (LSAM). It convolves and fuses multi-
layer region of interest (RoI) feature maps, subsequently and adaptively allocating
weights to different regions of the feature map. LSAM helps CViTF-Net better utilize
low-level features for detecting small ship targets.
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2. Materials and Methods
2.1. Method Motivation and Overview

Detecting small ship targets in large-scene SAR images is challenging. The first reason
is the low signal-to-noise ratio. As shown in Figure 1a, the inshore part of large-scene SAR
images is often affected by noise and clutter interference from land, resulting in poor image
quality. Therefore, distinguishing the edges and detailed features of small ship targets is
difficult. The second reason is target deformation. As shown in Figure 1b, ships’ movement
causes geometric deformation and rotation of their shapes in SAR images, which can cause
the blurring or offsetting of the ships’ target positions. These issues could result in missed
detections. Finally, there is the issue of data imbalance. In large-scene SAR images, ship
targets are typically the minority class in the whole image, with the background occupying
the majority. This class imbalance problem may result in the detector’s poor performance
when detecting ship targets.
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Figure 1. Examples from the LS-SSDD-v1.0 dataset. (a) Low signal-to-noise ratio; (b) deformation of
the target.

To address the above issues, we propose CViTF-Net, a detector focused on improving
the detection performance for small ship targets in large-scale complex-background SAR
images. The three innovative parts of this detector are described as follows.

Firstly, we designed a new backbone network consisting of CNNs and visual trans-
formers, called the CViT backbone. CNNs excel at extracting low-level and local features,
demonstrating strong perceptual capabilities for details, such as textures. However, in SAR
images, small ship targets are often occluded by surrounding noise and clutter, demanding
that models possess a robust contextual understanding. Visual transformers, when dealing
with sequential data, have the ability to capture global dependencies, which is highly
beneficial for target detection in low signal-to-noise ratio environments. The self-attention
mechanism of transformers enables networks to consider the global context, while better
capturing the relationships between the targets and backgrounds, thus alleviating the
challenge of distinguishing targets from backgrounds due to a data imbalance. Therefore,
the CViT backbone can simultaneously consider both local and global features, thereby
enhancing the accuracy and robustness of small ship target detection.

Secondly, we proposed a GPD assigner, which utilizes two-dimensional Gaussian
priors to optimize the discrimination criteria for positive and negative samples. In SAR
images, small ship targets may have blurry and offset positions, and noise and clutter may
interfere with the target’s position. The center of the two-dimensional Gaussian distribution
represents the target’s position, while the variance represents the uncertainty and blurriness
of the target’s position. The prior and ground truth boxes are modeled as two-dimensional
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Gaussian distributions. The discrepancy between these Gaussian distributions measures
the similarity between the prior and ground truth. This approach accurately describes the
target’s position distribution.

Lastly, we designed an LSAM that simultaneously considers multiple levels in RoI
feature maps. Given that low-level features carry more informative details for detecting
small ship targets, we first performed convolutional pre-processing on the features from
different levels. Then, we fused them into a single feature map. LSAM adaptively assigns
different weights to each region within the feature map, allowing for a more precise
capturing of details and contextual information on small ship targets. Consequently, even
in scenarios marked by a data imbalance, CViTF-Net remains effective in detecting small
ship targets.

As shown in Figure 2, CViTF-Net consists of five parts: the CViT backbone, FPN,
RPN head, RoI extractor, and RoI head. The CViT backbone relies on fused CNNs and
visual transformers to extract features from the input image, outputting four feature maps
on different scales, from S1 to S4. The FPN performs feature fusion on the four scales of
input feature maps, outputting five new feature maps, from P2 to P6. Three prior boxes
with different aspect ratios are generated for each feature point on the five feature maps.
The GPD assigner initially converts the priors and ground truths into their corresponding
two-dimensional Gaussian distributions, then calculates the discrepancy between these two
distributions using the Kullback–Leibler divergence (KLD). This discrepancy can measure
the similarity between the ground truth and the prior box, identifying whether a prior
box is a positive sample. For each image, the RPN head outputs 1000 region proposals.
The RoI uses four feature maps with different scales of output by the FPN, transforming
different region size proposals into four groups of 7 × 7 in the RoI feature maps. The
LSAM performs convolutional fusion pre-processing on the four RoI feature map groups,
assigning weights based on different attention scores within the feature maps. Small ship
targets are classified and regressed using two bounding box heads cascaded on the RoI
head to enhance detection performance.
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Figure 2. Architecture of CViTF-Net.

2.2. CViT Backbone

In SAR images, small ship targets often confront complex spatial features, such as
noise and clutter. The backbone network must process local and global information for
feature representation. Therefore, we developed a CViT backbone, as shown in Figure 3.
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The Meta Conv Block extracts and transforms the input features via grouped convolution
and a multi-layer perceptron (MLP). The Meta ViT Block, comprising the multi-head, self-
attention and MLP, models the global dependencies and high-level abstract features of the
input features.
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Inspired by PVTv1 [49], the CViT backbone’s integrated visual transformers maintain
a pyramid structure. This structure includes a stem and four stages. Each stage outputs
a feature map with the corresponding scale. As shown in Figure 3, the stem consists of
four ConvBNReLU layers, where ConvBNReLU combines convolutional operations, batch
normalization, and ReLU activation functions. By setting the stride to 2 in the first and
fourth ConvBNReLU layers, the resolution of the input image is reduced to one-fourth
of its original size, preparing for the subsequent feature extraction stages. Each stage
can learn feature representations at different depth levels, with earlier stages focusing
more on lower-level visual features, such as edges and textures. As the depth increases,
the later stages can learn higher-level abstract features, such as parts of the targets and
shapes. This hierarchical feature representation improves the network’s ability to model
and discriminate input data, enhancing the performance of small ship target detection in
SAR images.

2.2.1. Meta Conv Block

To propose our new design, we first examined recent convolutional block structures.
ConvNeXt [50] is a refined convolutional block structure. It bolsters the interaction and
integration of features by introducing cross-channel communication in the convolutional
layer. However, it remains reliant on local receptive field convolutional operations. Con-
vNeXt refers to the Swin Transformer architecture for its structure. It includes a series of
improvements, such as a macro design and an inverted bottleneck. These enhancements
successfully increased the feature extraction power of CNNs, indicating that the convo-
lutional block’s design can gain new insights from visual transformers. Recent studies
have shown [51] that the key to the outstanding competitiveness of visual transformers
lies in their use of a universal architecture, called the MetaFormer. Therefore, we propose
the Meta Conv Block, built upon the MetaFormer structure. This new design employs a
convolution block, substituting the transformer’s self-attention mechanism. Moreover, it
uses advanced MLP for nonlinear transformation and feature extraction.
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As shown in Figure 4a, we referenced ResNeXt [52] and constructed a convolution
block using group convolution to alleviate the computational burden and better handle
multi-channel feature maps. The definition of group convolution is as follows:

Y = Concat(Conv2d(X1, W1), Conv2d(X2, W2), . . . , Conv2d(Xi, Wi)) (1)

Y represents the final concatenated feature map, Concat denotes the operation of concate-
nating subgroups along the channel dimension, Xi represents the input of the i-th group,
and Wi represents the convolution kernel of the i-th group. We used a 3 × 3 convolution
kernel to divide the feature map channels into multiple subgroups, with the number of
channels set to 32 in each group. Each subgroup was assigned an independent convolution
kernel to learn different feature representations. This group convolution helps the detector
better capture the relationship between features. As a result, the detector’s nonlinearity,
and its receptive field size, increase.
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After the group convolution, we used a batch normalization layer and ReLU activation
function. The batch normalization operation can standardize the feature maps for different
channels, thereby improving the stability and trainability of the features. Through the
nonlinear transformation of the ReLU activation function, the salient features of the target
can be better captured. Consequently, the target’s distinguishability is bolstered. Finally,
we applied a 1 × 1 convolution for linear projection, which maintains the same number of
channels as the input feature map.

We used multi-layer perceptron (MLP) to introduce nonlinear transformations and
feature mappings in neural networks. We used a 1 × 1 convolution to replace the fully
connected layer (Figure 4b), handle the spatial structure and channel relationships in the
feature maps more effectively, and reduce the number of parameters. Firstly, through a
1 × 1 convolution in the MLP, the channel number of the input feature map is adjusted
to the hidden layer’s dimension. To better fit the training data, we set the dimension
of the hidden layer to three times the input dimension. This approach ensures the full
transmission of the input features’ information to the hidden layer to avoid information loss.
Then, we applied an ReLU activation function to the adjusted feature map to perform a
nonlinear transformation. The dropout helps prevent overfitting and enhances the model’s
robustness. Next, we applied another 1 × 1 convolution, mapping feature maps from the
hidden layer dimensions to the output dimensions. This process ensures consistency in the
channel numbers between the input and output feature maps.
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2.2.2. Meta ViT Block

In SAR images, small ship targets are surrounded by noise and clutter. Our aim is
to help the detector efficiently capture the complex relationship between the target and
background. As depicted in Figure 4c, we used the MetaFormer architecture as the basis
of our design. We designed the Meta ViT Block incorporating multi-head, self-attention
and MLP.

Firstly, batch normalization is used to normalize the input features, improving the
model’s training stability and generalization capabilities. Based on the input dimensions
and the set head dimensions of 32 channels, the required number of heads is calculated.
Then, the linear transformation layer constructs three learnable weight matrices. These
matrices are used to calculate the queries, keys, and values, respectively. Before calculating
the keys and values, we first apply average pooling. This pooling operation serves a dual
purpose: on the one hand, it reduces computational complexity, while on the other hand,
it diminishes the model’s reliance on the input sequence length, enhancing the model’s
adaptability to variations in the details of the input image blocks. After downsampling, the
input tensor is applied to the linear transformations of the keys and values, respectively.
Finally, based on the calculation results for the queries and keys, the self-attention weights
are calculated. The attention weights are normalized by Softmax and multiplied by the
values to obtain the final self-attention representation. Then, it is mapped to the dimension
of the output features through a linear transformation. The multi-head self-attention
mechanism is defined by the following formula:

MSA(X) = Concat(Head1(X1), Head2(X2), . . . , Headi(Xi)) ·WP (2)

where X is the input image block sequence, Headi represents the self-attention compu-
tation of the i-th head, and Xi is the i-th subset of the input X obtained through a linear
transformation. Concat represents concatenating the outputs of multiple attention heads
by dimension, and WP is the weight matrix for projection. In this paper, each self-attention
head is defined as follows:

Head(X) = Attention
(

X ·WQ, Pd

(
X ·WK

)
, Pd

(
X ·WV

))
(3)

where X represents the input sequence; WQ, WK, and WV are the weight matrices for the
query, key, and value, respectively; and Pd represents input sequence processing through
average pooling and downsampling. In addition, the self-attention computation can be
represented as follows:

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (4)

where QKT represents the product of the query vector and the transpose of the key vector,
V represents the value vector, and dk represents the dimension of the key used to calculate
the scaling factor. Finally, through MLP, the Meta ViT Block can extract higher-level feature
representations and semantic information.

During processing, multi-head self-attention merges the height and width of the
feature maps from the Meta Conv Block into a single dimension and then, after computing
the attention, restores this dimension to the pre-merge height and width dimensions, thus
preserving the scale of the feature maps. The 1 × 1 convolution in the MLP performs
channel-wise linear transformations without altering the width and height of the feature
maps, still maintaining the scale of the feature maps. Consequently, within the same stage,
the feature map scales in the outputs from both the Meta ViT Block and the Meta Conv
Block remain consistent.
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2.3. Gaussian Prior Discrepancy (GPD) Assigner

Given the presence of noise and clutter in SAR images, the boundary information for
small ship targets may be unclear. Traditional IoU assigners may not accurately match
the target’s position. This inaccuracy can decrease detection performance. We propose a
GPD assigner to address these issues. This assigner optimizes the similarity measurement
between small ship targets’ ground truth and the prior boxes. This method models the
ground truth and prior boxes as two-dimensional Gaussian distributions. It uses KLD
to measure the similarity between the prior and the ground truth, which describes the
position distribution of the target more accurately.

We first generated the prior boxes and used the stride of the five feature maps output
from the FPN to generate the corresponding base prior boxes. We began calculating the
offset positions of the base prior boxes with respect to the size of the original image.
Following this, we added these base prior boxes to the offset positions. In the end, we
obtained all the prior boxes from the original image corresponding to the five feature maps.

Algorithm 1 shows the GPD assigner in pseudocode. We first calculated the similarity
between all the ground truths and priors. Based on these similarities, we determined
whether each prior was a positive sample. To model a two-dimensional Gaussian distri-
bution, we needed the mean vector µe and the covariance matrix Σe. Therefore, for each
ground truth and prior box, we had to calculate its center coordinates, as well as its width
and height.

µe = [
x
y
], Σe =[

σ2
x 0

0 σ2
y
] (5)

here, x and y are the center coordinates of the prior or ground truth boxes, and σx and σy
are half of the box width and height, respectively. Finally, the KLD was used to determine
the matching degree between the prior and ground truth. The KLD [53] is a method for
measuring the similarity between two probability distributions. In the case of this paper,
these two probability distributions are the two-dimensional Gaussian models of the ground
truth box and the prior box. The KLD is defined, as follows, in the formula:

KL =

(
w2

2
w2

1
+

h2
2

h2
1
+

4 · (x1 − x2)
2

w2
1

+
4 · (y1 − y2)

2

h2
1

+ log

(
w2

1
w2

2

)
+ log

(
h2

1
h2

2

)
− 2

)
(6)

KLD =
1

1 + KL
(7)

where x1, y1 are the center coordinates of the ground truth box; x2, y2 are the center
coordinates of the prior box; w1 and h1 are the width and height of the ground truth box,
respectively; and w2 and h2 are the width and height of the prior box, respectively. The
value of the KLD is between 0 and 1. The closer it is to 1, the more similar the prior box
is to the ground truth box. For each prior box, we calculated its maximum KLD value
with all the ground truth boxes. If it was <0.8, we set the prior box as a negative sample.
Next, for each ground truth box, we set the top three prior boxes related to its maximum
KLD as positive samples. The positive and negative samples were used for the subsequent
classification and regression target calculations for the RPN.

Figure 5 demonstrates the difference between the GPD assigner and the IoU assigner.
In a traditional IoU assigner, if a prior box has a small overlapping area with a ground
truth box, its IoU value would be small, even if their centers are very close. Consequently,
some prior boxes near the ground truth box but without full overlap could be mislabeled
as negative samples. On the contrary, the GPD assigner emphasizes the center position of
the box, while considering the shape and size of the box, thus providing a more refined
measurement of the similarity between the two boxes. In GPD, two-dimensional Gaussian
modeling is employed for prior boxes and ground truth boxes. The center of the two-
dimensional Gaussian distribution represents the target’s location, while the variance
signifies the uncertainty and fuzziness of the position. This enables us to better represent
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the potential location range of small ship targets. Moreover, the Gaussian distribution has
higher probability density near the target’s location, indicating that our method is more
likely to distinguish the targets from background clutter in this area. Therefore, GPD can
retain a greater number of effective positive samples.

Algorithm 1. GPD assigner

//Calculate the similarity between a single ground truth and a single prior
function CalculateSimilarity(gt, prior)

x1 ← (gt [0] + gt [2])/2
y1 ← (gt [1] + gt [3])/2
x2 ← (prior [0] + prior [2])/2
y2 ← (prior [1] + prior [3])/2
w1 ← gt [2] − gt [0] + ε

h1 ← gt [3] − gt [1] + ε

w2 ← prior [2] − prior [0] + ε

h2 ← prior [3] − prior [1] + ε

kl← Formula (7)
kld←Formula (8)
return kld

end function

//Assign a ground truth index to each prior, the default index is 0, representing negative samples.
function AssignGtIndices(gts, priors)

//For each prior, the max kld of all gts, shape (length(priors),)
prior_max_kld← Call CalculateSimilarity() using gts and priors

assigned_gt_indices← Create empty array, shape (length(priors),)
neg_inds← Indices of prior where 0 ≤ prior_max_kld < 0.8

assigned_gt_indices[neg_inds]← 0
for i← 1 to length(gts) do
pos_indices← Indices of top 3 klds related to gts[i] in prior_max_kld
assigned_gt_indices[pos_indices]← i
end for
return assigned_gt_indices
end function
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2.4. Level-Sync Attention Mechanism (LSAM)

Generally, the contrast between the targets and the background in SAR images is low.
We proposed the LSAM to help the model effectively capture the subtle feature differences
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between small ship targets and the background. In the extraction of the RoI feature maps,
we used RoI align [54]. Firstly, we mapped the RoI coordinates onto the feature maps
output using the FPN. The RoI area is then divided into small regions. Each small region
is either upsampled or downsampled to obtain the feature values. Finally, we assembled
these into 7 × 7 feature maps with 256 channels.

Algorithm 2 demonstrates the idea of the LSAM in pseudocode. For the input RoI
feature maps with different scales, LSAM uses a 5 × 5 convolution kernel in the pre-
processing stage to perform the convolution separately, and the output feature maps have
the same number of channels as the input. The convolution slides over the input feature
map with a stride of 1 and pads 2 pixels around the edges. This setup helps extract richer
features and maintains the same size of the output feature maps as the input. Following this,
we stacked four layers of RoI feature maps to obtain a comprehensive feature representation
containing multi-level abstract information. The above process can be expressed as follows:

f eats′ =
3

∑
i=0

Conv2D( f eatsi, 5, 5) (8)

where f eatsi represents the i-th layer of the feature maps output by RoI align, and f eats′

represents the composite features after stacking.
In the post-processing stage, the input feature map was first mapped to the query, key,

and value vectors through a 1 × 1 convolution layer. The query is a feature map with a
channel number of 1, while the key and value maintain a channel number of 256. Then, the
Softmax function was applied to obtain the attention scores, which indicate the importance
of each region, while ensuring that the sum of the scores across all regions is 1. A context
vector is calculated by multiplying each region’s key with its corresponding attention score
and summing up the products of all the regions. This context vector contains the weighted
feature information of all the regions, where the weight of each region is determined by its
corresponding attention score.

context_vector =
N

∑
i=1

(ki · attention_scoresi ) (9)

here, N is the number of regions in the feature map, ki is the key vector of the i-th region,
and attention_scoresi is the attention score of the i-th region. Finally, the value is multiplied
by the context vector to obtain the weighted feature representation. This representation is
then projected back to a channel size of 256 dimensions.

Algorithm 2. Level Sync Attention

function LevelSyncAttention(input_features)
//Preprocessing Stage
conv_features← Create empty array

for scale← 1 to length(input_features) do
conv_features[scale]← Conv2D(input_features[scale],5,5)

end for
combined_features← Sum of conv_features

//Postprocessing Stage
query, key, value← Conv2D(combined_features,1,1)
attention_scores← Softmax(query)
context_vector←Weighted sum of key and attention_scores
weighted_features← ReLU(value)·context_vector
output_features← Conv2D(weighted_features,1,1)
return output_features

end function
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Figure 6 describes the architecture of the LSAM. This attention mechanism can auto-
matically adjust the weights of different regions to enhance the target’s visual expression.
When processing SAR images with noise, the detector can focus more on the important
features of the small ship targets.
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3. Results
3.1. Introduction of the Datasets

LS-SSDD-v1.0 [55] is an open dataset for detecting small ships from large-scale Sentinel-
1 SAR images. It contains 15 large-scale images with dimensions of 24,000 × 16,000 pixels
and a swath width of 250 km. We divided these large-scale images into 9000 sub-images,
each measuring 800 × 800 pixels, to facilitate network training. In addition, LS-SSDD-v1.0
focuses on small ship detection, with a total of 6015 ships. Among them, 6003 are small
ships, accounting for 99.80% of the total. LS-SSDD-v1.0 uses VV polarization to annotate
ship locations. It contains pure background images that do not include annotated ships.
The backgrounds incorporated encompass a variety of elements, such as the pure sea
surface, urban areas, rivers, land, islands, and ports. The coastline of the imaged area in
the dataset is complex, with the area of land being smaller than that of the sea. Ships are
densely distributed in rivers.

The SAR ship detection dataset (SSDD) is the first open dataset in the field of SAR
image ship detection based on deep learning. We use the official version of the SSDD [56].
Unlike LS-SSDD-v1.0, the image resolution in the SSDD is not fixed, with widths ranging
from 214 to 668 pixels, and heights from 160 to 526 pixels. The median size of the images
is 500 × 333 pixels. Following the original paper setting, 232 images with the last digit of
the file number being 1 and 9 are uniquely determined as the test set, while the remaining
928 images are considered the training set. Ships in the SSDD have rich diversity, including
densely distributed small targets and ships docked in parallel in ports.

Table 1 describes basic information about the two datasets, including the satellite
source, image size, number of images, etc. The size of the SAR images in LS-SSDD-v1.0 is
larger, and the size of the ship targets is smaller. Figure 7 reflects the distribution of the
width and height pixel values for the ship targets’ ground truth in the two datasets. The
width and height of most ship targets in the LS-SSDD-v1.0 are smaller, while the size of the
ship targets in the SSDD varies more.
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Table 1. Dataset information.

Parameter LS-SSDD-v1.0 SSDD

Satellite Sentinel-1 RadarSat-2, TerraSAR-X,
Sentinel-1

Image size (pixel) 800 × 800 500 × 333
Image number 9000 1160
Train/test ratio 6000/3000 928/232

Ship number 6015 2456
Avg. ship size (pixel2) 381 1882

Scenes Inshore and offshore Inshore and offshore
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3.2. Evaluation Criterions

In line with the evaluation criteria in the original paper for LS-SSDD-v1.0, we used
the precision, recall, F1 score, and mean average precision (mAP). The precision and
recall help determine the model classification accuracy and missed detection situations.
The F1 synthesizes information from both, and the mAP assesses the balance between the
accuracy and recall of the object detection model. These indicators provide a comprehensive
evaluation of model performance.

Precision, also known as the positive predictive value, represents the proportion of
targets identified as ships by the model that are actually ships. True positives (TPs) refers
to the number of targets correctly identified as ships by the model. False positives (FPs)
refer to the number of targets incorrectly identified as ships by the model (which are not
actually ships). Precision is calculated as follows:

Precision =
TP

TP + FP
(10)

Recall, also known as sensitivity, represents the proportion of all the actual ship targets
that are successfully identified by the model. TPs are as previously described, and false
negatives (FNs) are the number of targets incorrectly identified as non-ships by the model
(which are actually ships). Recall is calculated as follows:

Recall =
TP

TP + FN
(11)
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The F1 score is the harmonic mean of the precision and recall that can be used as a
measurement standard for both the precision and recall.

F1 = 2× Precision · Recall
Precision + Recall

(12)

The mAP is a measure of the model’s precision at different recall. It can reflect the
stability of the model’s precision when the recall varies, as well as the model’s overall
performance.

mAP =
∫ 1

0
P(R) · dR (13)

P(R) represents the precision at a given recall.

3.3. Implementation Details

Table 2 describes the experimental environment described in this paper.

Table 2. Experimental environment.

Configuration Parameter

CPU AMD EPYC 7543 32-Core Processor
GPU NVIDIA RTX A5000 ×4

Operating system Ubuntu 20.04.4 LTS
Development tools Python 3.10.8, Pytorch 1.13.0+cu117

Our experiments were based on MMDetection [57], and the number of training epochs
for both the LS-SSDD-v1.0 and SSDD datasets was 12. The original dataset settings were
adopted for the training set, test set, inshore test set, and offshore test set. We used an
AdamW optimizer, with an initial learning rate of 0.0001. The weight decay of the optimizer
was 0.05, and the learning rate was dynamically adjusted using cosine annealing with
learning rate restarts. The learning rate restart cycle was 6 epochs, and the minimum
learning rate was 5 × 10−6. The batch size was set to 16, with four samples per GPU
for four GPUs. During the testing phase, the image size was set to 1000 × 1000, and the
score threshold was set to 0.5. We conducted three separate runs of the experiments and
calculated the averages of the obtained results to ensure the stability and reliability of the
experimental outcomes.

3.4. Results for LS-SSDD-v1.0

As depicted in Table 3, we conducted detailed experiments on the LS-SSDD-v1.0
dataset to validate CViTF-Net’s performance in detecting small ship targets in large-scale
complex-background SAR images.

Table 3. Results for the entire LS-SSDD-v1.0 scene.

Method Precision Recall mAP F1

FPN [12] 0.805 0.706 0.680 0.752
Cascade R-CNN [15] 0.822 0.700 0.694 0.756

Libra R-CNN [20] 0.821 0.690 0.678 0.749
Double Head R-CNN [58] 0.815 0.704 0.685 0.755

DCN [59] 0.766 0.730 0.700 0.747
YOLOX-L [30] 0.687 0.732 0.698 0.708
YOLOv7-X [60] 0.690 0.728 0.686 0.708
HR-SDNet [61] 0.849 0.705 0.688 0.770
MHASD [62] 0.834 0.679 0.755 0.748
SII-Net [16] 0.682 0.793 0.761 0.733

A-BFPN [19] 0.850 0.736 0.766 0.788
CMA-SSJC [63] 0.704 0.803 0.772 0.750

CViTF-Net 0.784 0.834 0.797 0.808
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In Table 3, we present the comparative results against existing state-of-the-art SAR
ship detectors for the entire test dataset. The first seven rows represent general object
detection methods, while rows 8 to 13 (from HR-SDNet to CMA-SSJC) display results from
other researchers on the LS-SSDD-v1.0 dataset. The final row, CViTF-Net, represents our
proposed approach. YOLOX and YOLOv7 are single-stage object detectors. In this study,
we employed YOLOX-L and YOLOv7-X models, using larger model architectures and more
parameters to enhance detection performance. From Table 3, it can be observed that HR-
SDNet excels on precision with a high score of 0.849, effectively reducing false positives. The
F1 score is also relatively high, but it suffers from a lower recall rate, indicating the presence
of more false negatives, and a relatively lower mAP. MHASD boasts high precision at 0.834,
but a recall rate of only 0.679, indicating more missed detections, thus limiting the mAP and
F1 scores. SII-Net excels on the recall rate and achieves a relatively high mAP of 0.761, but
it has a lower precision at 0.682, suggesting more false positives. A-BFPN’s strength lies in
the highest precision at 0.850, but with an average recall rate. CMA-SSJC achieves a recall
rate of 0.803, a relatively high mAP, but a lower precision of 0.704, indicating more false
positives. Compared to other research, our proposed CViTF-Net demonstrates outstanding
performance on the recall rate, mAP, and F1 scores, reaching the highest levels. However,
some other models have a certain advantage in the precision metric, such as HR-SDNet
and A-BFPN, both showing strong precision performance. The results for LS-SSDD-v1.0
further establish the superiority of CViTF-Net in detecting small ship targets in large-scale
complex-background SAR images.

Tables 4 and 5 list the results for inshore and offshore scenes in the LS-SSDD-v1.0
test set. Large-scale SAR images often include inshore scenes with complex background
interference. In these scenes, ships typically exhibit smaller sizes and low contrast. This
complexity generally results in lower ship detection performance in inshore areas. In
Table 4, CViTF-Net is the best-performing detector with an mAP of 0.579 and an F1 of
0.649, indicating that it can more effectively cope with inshore scene challenges, such
as complex backgrounds, noise interference, and small target sizes. Table 5 shows that
CViTF-Net also demonstrates the best performance on offshore scenes. However, the gap
with A-BFPN is not significant. Compared to inshore scenes, offshore scenes usually have
a simpler background. Simple backgrounds allow the detectors to focus more easily on
ship target areas.

Table 4. The inshore scene results for LS-SSDD-v1.0.

Method Precision Recall mAP F1

FPN [12] 0.698 0.376 0.341 0.488
Cascade R-CNN [15] 0.739 0.369 0.358 0.492

Libra R-CNN [20] 0.734 0.342 0.313 0.466
Double Head R-CNN [58] 0.743 0.373 0.338 0.496

DCN [59] 0.683 0.408 0.364 0.510
YOLOX-L [30] 0.686 0.431 0.392 0.529
YOLOv7-X [60] 0.504 0.414 0.327 0.454
HR-SDNet [61] 0.760 0.378 0.348 0.504
MHASD [62] 0.576 0.422 0.438 0.487
SII-Net [16] 0.461 0.554 0.469 0.503

A-BFPN [19] 0.770 0.545 0.471 0.638
CMA-SSJC [63] 0.502 0.586 0.522 0.540

CViTF-Net 0.643 0.656 0.579 0.649
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Table 5. The results on the offshore scene for LS-SSDD-v1.0.

Method Precision Recall mAP F1

FPN [12] 0.836 0.901 0.876 0.867
Cascade R-CNN [15] 0.845 0.895 0.889 0.869

Libra R-CNN [20] 0.843 0.897 0.869 0.869
Double Head R-CNN [58] 0.835 0.899 0.870 0.865

DCN [59] 0.792 0.920 0.892 0.851
YOLOX-L [30] 0.687 0.909 0.877 0.782
YOLOv7-X [60] 0.766 0.913 0.882 0.833
HR-SDNet [61] 0.875 0.899 0.883 0.886
MHASD [62] 0.905 0.857 0.915 0.880
SII-Net [16] 0.819 0.934 0.916 0.872

A-BFPN [19] 0.921 0.889 0.921 0.904
CMA-SSJC [63] 0.827 0.931 0.909 0.875

CViTF-Net 0.875 0.939 0.923 0.905

Figure 8 presents the visualization results for the inshore scenes in the LS-SSDD-
v1.0 test set. Figure 8a represents the ground truths, and Figure 8b shows the Double
Head RCNN results. Figure 8c displays the YOLOX-L results, and Figure 8d displays the
CViTF-Net results. Inshore areas usually contain a large amount of complex background
interference, including terrain, buildings, vegetation, etc. These interferences may have
similar textures, shapes, and sizes to the ship targets, making it difficult to distinguish
the ships from the background. Additionally, noise and speckles may create variations in
image brightness, further blurring target edges and details. Compared to Double Head
RCNN and YOLOX-L, CViTF-Net’s detection results still exhibit cases of missed detections
and false alarms, but are closer to the ground truth. It can identify more small ship targets
on complex backgrounds, indicating that CViTF-Net effectively enhances inshore scene
detection performance. Our method is specialized for the task of detecting small ship
targets in large-scale complex-background SAR images, and the model leans towards
minimizing false negatives by emphasizing the detection of more targets, even if it results
in lower confidence scores for certain smaller or atypical targets.

3.5. Results on SSDD

As shown in Table 6, we conducted comparative experiments on the SSDD dataset
to explore the detector’s stability and generality, and provide a more comprehensive
performance evaluation. The first seven rows represent general object detection methods,
while rows 8 to 13 (from HR-SDNet to A-BFPN) display results from other researchers on
the SSDD dataset. The final row, CViTF-Net, represents our proposed approach. HR-SDNet
excels on precision (precision) with a score of 0.964, indicating a reduction in false positives
during detection. However, it falls short on the recall rate (recall), suggesting limitations
in its performance for small target detection. SER Faster R-CNN exhibits slightly lower
precision and average recall. Quad-FPN shines on the recall rate, achieving a score of
0.957, indicating its ability to capture targets effectively, but it has relatively lower precision,
potentially leading to more false positives. RIF performs exceptionally well on the mAP
(mean average precision), reaching 0.962, indicating strong overall performance. SII-Net
achieves a very high recall rate of 0.968, signifying high performance on target capture,
but it has relatively lower precision, potentially experiencing some false positive issues.
A-BFPN demonstrates high precision and mAP, indicating a strong overall performance. In
contrast, our CViTF-Net excels on the recall rate, mAP, and F1 metrics, reaching 0.981, 0.978,
and 0.961, respectively. This indicates that it can maintain high accuracy, while ensuring
comprehensive target detection. It also demonstrates the robustness and adaptability of
CViTF-Net, showcasing its potential in the field of ship target detection. Although the
design of the CViTF-Net structure did not yield the highest precision, our model shows
competitive advantages on its overall performance compared to other models.
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Table 6. The results for the entire SSDD scene.

Method Precision Recall mAP F1

FPN [12] 0.884 0.941 0.936 0.911
Cascade R-CNN [15] 0.914 0.939 0.934 0.926

Libra R-CNN [20] 0.861 0.946 0.939 0.901
Double Head R-CNN [58] 0.905 0.945 0.942 0.924

DCN [59] 0.931 0.952 0.950 0.941
YOLOX-L [30] 0.797 0.965 0.950 0.872
YOLOv7-X [60] 0.843 0.917 0.899 0.878
HR-SDNet [61] 0.964 0.909 0.908 0.935

SER Faster R-CNN [64] 0.861 0.922 0.915 0.890
Quad-FPN [65] 0.895 0.957 0.952 0.924

RIF [66] 0.946 0.932 0.962 0.938
SII-Net [16] 0.861 0.968 0.955 0.911

A-BFPN [19] 0.975 0.944 0.968 0.959
CViTF-Net 0.943 0.981 0.978 0.961

Following the SSDD test set configuration, we also conducted experiments on inshore
and offshore scenes. Table 7 shows the results for ship target detection in the inshore
scenes. CViTF-Net achieved the best comprehensive evaluation results for the inshore
scenes. Table 8 presents the offshore scene results. The offshore scenes in the SSDD
dataset are characterized by simple backgrounds, larger target sizes, and higher contrasts,
facilitating ship target detection. Therefore, CViTF-Net’s performance is comparable to
current methods. The mAP and F1 for CViTF-Net for both the inshore and offshore scenes
further verify its accuracy and comprehensive performance in ship target detection.

Table 7. The results for the inshore SSDD scene.

Method Precision Recall mAP F1

FPN [12] 0.741 0.848 0.823 0.790
Cascade R-CNN [15] 0.786 0.837 0.810 0.810

Libra R-CNN [20] 0.686 0.854 0.817 0.760
Double Head R-CNN [58] 0.769 0.854 0.838 0.809

DCN [59] 0.862 0.877 0.869 0.869
YOLOX-L [30] 0.626 0.924 0.874 0.746
YOLOv7-X [60] 0.655 0.808 0.748 0.723
HR-SDNet [61] 0.907 0.744 0.736 0.817

SER Faster R-CNN [64] 0.663 0.790 0.745 0.720
Quad-FPN [65] 0.747 0.877 0.846 0.806

RIF [66] 0.903 0.762 0.852 0.826
A-BFPN [19] 0.935 0.756 0.883 0.836
CViTF-Net 0.883 0.965 0.958 0.922

Figure 9 shows the visualization results for the inshore scenes for the SSDD dataset.
Figure 9a represents the ground truth of the ships, Figure 9b represents the Double Head
R-CNN results, Figure 9c represents the DCN results, Figure 9d represents the YOLOX-
L results, and Figure 9e represents our CViTF-Net results. By comparing the results
with actual ships, we have marked false positive cases with red circles. Based on our
observations, we found that humans can easily distinguish non-ship targets on land and at
sea. However, identifying targets along the shoreline can also be challenging for humans.
According to the visualization results, CViTF-Net’s detection results are close to the ground
truth, with accurate bounding boxes and corresponding high confidence scores, indicating
that it can accurately identify and locate ship targets in complex scenes from the SSDD
dataset. In the last scenario, CViTF-Net successfully avoided mistaking large port facilities
for ships. The LSAM allows CViTF-Net to effectively process feature information at different
scales, thereby enhancing its detection ability for multi-scale ship targets.
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Table 8. The results for the SSDD offshore scene.

Method Precision Recall mAP F1

FPN [12] 0.958 0.984 0.982 0.970
Cascade R-CNN [15] 0.976 0.986 0.985 0.980

Libra R-CNN [20] 0.958 0.989 0.988 0.973
Double Head R-CNN [58] 0.973 0.986 0.986 0.979

DCN [59] 0.963 0.986 0.985 0.974
YOLOX-L [30] 0.904 0.984 0.977 0.942
YOLOv7-X [60] 0.940 0.967 0.961 0.953
HR-SDNet [61] 0.986 0.986 0.985 0.986

SER Faster R-CNN [64] 0.968 0.983 0.982 0.975
Quad-FPN [65] 0.973 0.994 0.993 0.983

RIF [66] 0.985 0.982 0.992 0.983
A-BFPN [19] 0.989 0.987 0.995 0.987
CViTF-Net 0.983 0.994 0.993 0.988
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In observing the experimental results for the LS-SSDD-v1.0 and SSDD datasets, CViTF-
Net exhibits a precision value that may not be the highest; however, it attains superior
levels in terms of the recall, mAP, and F1. The underlying rationales for this phenomenon
can be delineated as follows:

1. Design of CViTF-Net: The architecture of CViTF-Net is configured such that the global
feature information extracted by the CViT backbone aids the model in effectively
managing background interference, consequently elevating the true positive rate
for object detection, thereby augmenting recall. The GPD assigner leverages a two-
dimensional Gaussian distribution centered on the target’s position, with the variance
representing the uncertainty in the target’s location. This approach allows for more
accurate matching of targets to prior boxes, even in cases of slight positional offsets or
blurriness, thereby reducing the false negative rate and enhancing recall. The LSAM
component excels in capturing intricate target details and contextual information,
further reducing the false negative rate and enhancing recall.

2. Precision–recall trade-off: Typically, when a model endeavors to increase recall (i.e., re-
duce false negatives), it may inadvertently classify some non-target regions as targets,
leading to a decrease in precision (an increase in false positives). This phenomenon
represents a common trade-off.

3. Comprehensive evaluation with F1 and mAP: The F1 score takes both precision and re-
call into account simultaneously, while mAP provides a comprehensive assessment of
the model’s performance at various thresholds. Consequently, even though CViTF-Net
may exhibit relatively lower precision, its overall performance remains outstanding.

4. Ablation Experiment

To understand the specific contributions from the three innovative components in
CViTF-Net, as shown in Table 9, we conducted an ablation study on the entire test set of LS-
SSDD-v1.0. Figure 10 shows a bar chart on the mAP and F1 in the ablation study, describing
the detectors’ comprehensive performance when different components are combined. From
the ablation experiment results, we can see that when using the CViT backbone, GPD
assigner, and LSAM simultaneously, the mAP and F1 are 0.797 and 0.808, respectively. This
performance is better than using any single component or combination of two components,
indicating that CViTF-Net, as a whole, is effective.
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Figure 10. mAP and F1 analysis of the different components.

The analysis for each individual component is as follows:

1. CViT backbone (CViT): The detector’s recall, mAP, and F1 improved when only the
CViT was enabled compared to not enabling any components, especially the recall and
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mAP, which increased by 3.6% and 3.1%, respectively. However, a slight decrease was
observed in the precision, which can be attributed to CViT’s proficiency in capturing
global information, possibly at the expense of some detail features. Despite this, the
CViT significantly improves the overall performance of the detector.

2. GPD assigner (GPD): When only the GPD was enabled, compared to not enabling
any components, the detector’s recall increased by 3.4%, the mAP increased by 2.8%,
and the F1 increased by 1.8%, while maintaining the same precision. Meanwhile,
compared to enabling the CViT and LSAM, but not the GPD, the precision rose
from 0.763 to 0.802. This finding indicates that the GPD’s utilization of the two-
dimensional Gaussian prior notably optimizes the sample discrimination criteria. It
plays a crucial role in boosting the performance of the detector. Since the GPD assigner
is an optimization strategy for allocating positive and negative samples and does not
involve changes to the model architecture, the model’s GFLOPs and Params(M) are
not affected by the GPD.

3. LSAM: When only the LSAM was enabled, and not the CViT or GPD, compared to not
enabling any components, the impact on the precision was slightly insufficient. The
recall and mAP improved, but the F1 remained essentially unchanged. This finding
suggests that the LSAM played a positive role in processing the RoI feature maps,
helping the detector reduce the missed detection rate.

Table 9. The results for different components for the entire LS-SSDD-v1.0 scene.

CViT GPD LSAM Precision Recall mAP F1 GFLOPs Params(M)

- - - 0.804 0.737 0.714 0.769 171.94 79.62√
- - 0.789 0.773 0.745 0.780 205.74 90.97

-
√

- 0.802 0.771 0.742 0.786 171.94 79.62
- -

√
0.793 0.748 0.722 0.769 191.76 83.3√ √

- 0.797 0.806 0.773 0.801 205.74 90.97√
-

√
0.763 0.791 0.757 0.776 225.56 94.65

-
√ √

0.759 0.801 0.768 0.779 191.76 83.3√ √ √
0.784 0.834 0.797 0.808 225.56 94.65

Figure 11 presents the PR curve for the ablation study. Overall, each component
contributes to the performance improvement of the detector. CViTF-Net achieves the
largest area under the curve and the best overall performance when all the components are
enabled. This highlights the importance of the collaborative work of the CViT, GPD, and
LSAM. Additionally, it validates the rationality and effectiveness of CViTF-Net’s design.
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We created a feature map visualization experiment to understand the degree of attention
each component in CViTF-Net pays to the different areas in the SAR images, as shown in
Figure 12. Here, the colors range from deep blue to bright red, indicating attention levels
from low to high. Figure 12a shows the ground truth, illustrating the actual positions of
the small ship targets. Figure 12b displays the scenario without any enabled components,
serving as a baseline (Cascade R-CNN) for comparison with the three innovative components
proposed in our approach. The baseline detector is clearly influenced by noise, manifesting
a tendency towards false alarms. Figure 12c demonstrates a situation when only the CViT
backbone is activated. At this point, the detector demonstrates a stronger capability for global
feature representation. In addition, the region of interest becomes more concentrated on small
ship targets, while attention to the background significantly decreases. Figure 12d depicts
a scenario where only the GPD assigner is employed. In this case, the detector pays more
accurate attention to the location of the small ship targets. It refines the discrimination criteria
for positive and negative samples using the two-dimensional Gaussian prior. Consequently,
the detector emphasizes regions near the target center more during training. Figure 12e
illustrates a case where only the LSAM is enabled. Due to the LSAM’s ability to better capture
the details and context information about the target, observing the third and fourth rows in
Figure 12, it can be observed that the detector’s perception range of the target is more refined,
with a certain noise suppression effect when compared to the baseline (Figure 12b).
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5. Conclusions

To address the challenge of detecting small ship targets in large-scale complex-
background SAR images, we propose a new two-stage detector, CViTF-Net, which in-
tegrates CNNs and visual transformers in a novel manner. CViTF-Net includes three
innovative components: a CViT backbone, Gaussian prior discrepancy (GPD) assigner,
and level-sync attention mechanism (LSAM). By integrating local and global information,
optimizing the sample discrimination criteria using two-dimensional Gaussian priors, and
adaptively enhancing the feature representation of the RoI feature maps with the LSAM,
CViTF-Net effectively improves the accuracy and robustness of small ship target detection.

Firstly, we conducted comparative experiments with CViTF-Net and the current
advanced SAR ship detectors using the LS-SSDD-v1.0 dataset, which is specifically designed
for small ship targets. Our experimental results indicated that CViTF-Net achieved the
best performance for both the mAP and F1. The SAR image detection visualization shows
that it closely aligns with the ground truth and that it significantly improves the detection
performance for ships in complex inshore scenes. The experimental results on the SSDD
dataset demonstrate the robustness and versatility of CViTF-Net.

Moreover, we also conducted ablation experiments and feature map visualization
experiments to verify the effectiveness and rationality of our method. Our ablation studies
indicate that all three innovative components of CViTF-Net contribute to the overall en-
hancement of detection performance. Using our method, visualization of the feature map
shows that the detector can more accurately focus on the locations of small ship targets,
while suppressing background noise.

We will explore the use of oriented bounding boxes to accurately describe ships’
shapes and directions in future research. We will investigate how to improve self-attention
mechanisms or introduce new visual transformer structures to enhance the detection
accuracy for small ship targets.

Author Contributions: Conceptualization, M.H. and Y.C.; methodology, M.H.; software, M.H. and
T.L.; validation, M.H., Y.C. and T.L.; formal analysis, M.H.; investigation, M.H.; resources, Y.C.; data
curation, M.H.; writing—original draft preparation, M.H., Y.C. and T.L.; writing—review and editing,
M.H. and Y.C.; visualization, M.H. and T.L.; supervision, M.H.; project administration, Y.C.; funding
acquisition, M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Foundation of Hebei Technology Innovation Center of
Intelligent IoT (grant number KFZD2201) and by the Defense Industrial Technology Development
Program (grant number JCKYS2022DC10).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.; Yang, W.; Chen, J.; Kuang, H.; Liu, W.; Li, C. Azimuth Sidelobes Suppression Using Multi-Azimuth Angle Synthetic

Aperture Radar Images. Sensors 2019, 19, 2764. [CrossRef] [PubMed]
2. Chang, W.; Tao, H.; Sun, G.; Wang, Y.; Bao, Z. A Novel Multi-Angle SAR Imaging System and Method Based on an Ultrahigh

Speed Platform. Sensors 2019, 19, 1701. [CrossRef] [PubMed]
3. Sonkar, A.; Kumar, S.; Kumar, N. Spaceborne SAR-Based Detection of Ships in Suez Gulf to Analyze the Maritime Traffic Jam

Caused Due to the Blockage of Egypt’s Suez Canal. Sustainability 2023, 15, 9706. [CrossRef]
4. Malyszko, M. Fuzzy Logic in Selection of Maritime Search and Rescue Units. Appl. Sci. 2022, 12, 21. [CrossRef]
5. Bai, L.; Yao, C.; Ye, Z.; Xue, D.; Lin, X.; Hui, M. Feature Enhancement Pyramid and Shallow Feature Reconstruction Network for

SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1042–1056. [CrossRef]
6. Chen, S.; Li, X. A New CFAR Algorithm Based on Variable Window for Ship Target Detection in SAR Images. Signal Image Video

Process. 2019, 13, 779–786. [CrossRef]
7. Ai, J.; Mao, Y.; Luo, Q.; Xing, M.; Jiang, K.; Jia, L.; Yang, X. Robust CFAR Ship Detector Based on Bilateral-Trimmed-Statistics

of Complex Ocean Scenes in SAR Imagery: A Closed-Form Solution. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1872–1890.
[CrossRef]

https://doi.org/10.3390/s19122764
https://www.ncbi.nlm.nih.gov/pubmed/31248226
https://doi.org/10.3390/s19071701
https://www.ncbi.nlm.nih.gov/pubmed/30974738
https://doi.org/10.3390/su15129706
https://doi.org/10.3390/app12010021
https://doi.org/10.1109/JSTARS.2022.3230859
https://doi.org/10.1007/s11760-018-1408-4
https://doi.org/10.1109/TAES.2021.3050654


Remote Sens. 2023, 15, 4373 24 of 26

8. Liu, T.; Yang, Z.; Yang, J.; Gao, G. CFAR Ship Detection Methods Using Compact Polarimetric SAR in a K-Wishart Distribution.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3737–3745. [CrossRef]

9. Li, N.; Pan, X.; Yang, L.; Huang, Z.; Wu, Z.; Zheng, G. Adaptive CFAR Method for SAR Ship Detection Using Intensity and
Texture Feature Fusion Attention Contrast Mechanism. Sensors 2022, 22, 8116. [CrossRef]

10. Yasir, M.; Jianhua, W.; Mingming, X.; Hui, S.; Zhe, Z.; Shanwei, L.; Colak, A.T.I.; Hossain, M.S. Ship Detection Based on Deep
Learning Using SAR Imagery: A Systematic Literature Review. Soft Comput. 2023, 27, 63–84. [CrossRef]

11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28.

12. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 936–944.

13. Li, J.; Qu, C.; Shao, J. Ship Detection in SAR Images Based on an Improved Faster R-CNN. In Proceedings of the 2017 SAR in Big
Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6.

14. Yu, Y.; Yang, X.; Li, J.; Gao, X. A Cascade Rotated Anchor-Aided Detector for Ship Detection in Remote Sensing Images. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 1–14. [CrossRef]

15. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

16. Su, N.; He, J.; Yan, Y.; Zhao, C.; Xing, X. SII-Net: Spatial Information Integration Network for Small Target Detection in SAR
Images. Remote Sens. 2022, 14, 442. [CrossRef]

17. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

19. Li, X.; Li, D.; Liu, H.; Wan, J.; Chen, Z.; Liu, Q. A-BFPN: An Attention-Guided Balanced Feature Pyramid Network for SAR Ship
Detection. Remote Sens. 2022, 14, 3829. [CrossRef]

20. Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra R-CNN: Towards Balanced Learning for Object Detection. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 821–830.

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

22. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 9626–9635.

23. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. Available online:
https://arxiv.org/abs/1512.02325v5 (accessed on 21 August 2023).

24. Lu, X.; Li, Q.; Li, B.; Yan, J. MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection. In Computer Vision—
ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2020; Volume 12359, pp. 541–557. ISBN 978-3-030-58567-9.

25. Yang, Y.; Ju, Y.; Zhou, Z. A Super Lightweight and Efficient SAR Image Ship Detector. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5.
[CrossRef]

26. Ultralytics. YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 25 March 2023).
27. Yasir, M.; Shanwei, L.; Mingming, X.; Hui, S.; Hossain, M.S.; Colak, A.T.I.; Wang, D.; Jianhua, W.; Dang, K.B. Multi-Scale Ship

Target Detection Using SAR Images Based on Improved Yolov5. Front. Mar. Sci. 2023, 9, 1086140. [CrossRef]
28. Zheng, Y.; Zhang, Y.; Qian, L.; Zhang, X.; Diao, S.; Liu, X.; Cao, J.; Huang, H. A Lightweight Ship Target Detection Model Based

on Improved YOLOv5s Algorithm. PLoS ONE 2023, 18, e0283932. [CrossRef]
29. Zhang, J.; Sheng, W.; Zhu, H.; Guo, S.; Han, Y. MLBR-YOLOX: An Efficient SAR Ship Detection Network with Multilevel

Background Removing Modules. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5331–5343. [CrossRef]
30. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [CrossRef]
31. Yang, S.; An, W.; Li, S.; Wei, G.; Zou, B. An Improved FCOS Method for Ship Detection in SAR Images. IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens. 2022, 15, 8910–8927. [CrossRef]
32. Wang, Y.; Wang, C.; Zhang, H.; Zhang, C.; Fu, Q. Combing Single Shot Multibox Detector with Transfer Learning for Ship

Detection Using Chinese Gaofen-3 Images. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall
(PIERS—FALL), Singapore, 19–22 November 2017; pp. 712–716.

33. Wang, Y.; Wang, C.; Zhang, H. Combining a Single Shot Multibox Detector with Transfer Learning for Ship Detection Using
Sentinel-1 SAR Images. Remote Sens. Lett. 2018, 9, 780–788. [CrossRef]

34. Bao, W.; Huang, M.; Zhang, Y.; Xu, Y.; Liu, X.; Xiang, X. Boosting Ship Detection in SAR Images with Complementary Pretraining
Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8941–8954. [CrossRef]

35. Ganesh, V.; Kolluri, J.; Maada, A.R.; Ali, M.H.; Thota, R.; Nyalakonda, S. Real-Time Video Processing for Ship Detection Using
Transfer Learning. In Proceedings of the Third International Conference on Image Processing and Capsule Networks, Bangkok,
Thailand, 20–21 May 2022; pp. 685–703.

https://doi.org/10.1109/JSTARS.2019.2923009
https://doi.org/10.3390/s22218116
https://doi.org/10.1007/s00500-022-07522-w
https://doi.org/10.1109/TGRS.2020.3040273
https://doi.org/10.3390/rs14030442
https://doi.org/10.3390/rs14153829
https://arxiv.org/abs/1512.02325v5
https://doi.org/10.1109/LGRS.2023.3284093
https://github.com/ultralytics/yolov5
https://doi.org/10.3389/fmars.2022.1086140
https://doi.org/10.1371/journal.pone.0283932
https://doi.org/10.1109/JSTARS.2023.3280741
https://doi.org/10.48550/ARXIV.2107.08430
https://doi.org/10.1109/JSTARS.2022.3213583
https://doi.org/10.1080/2150704X.2018.1475770
https://doi.org/10.1109/JSTARS.2021.3109002


Remote Sens. 2023, 15, 4373 25 of 26

36. Zong, C.; Wan, Z. Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation.
Brodogradnja 2022, 73, 23–35. [CrossRef]

37. Chen, J.; Wang, Q.; Peng, W.; Xu, H.; Li, X.; Xu, W. Disparity-Based Multiscale Fusion Network for Transportation Detection.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 18855–18863. [CrossRef]

38. Yang, M.; Wang, H.; Hu, K.; Yin, G.; Wei, Z. IA-Net: An Inception–Attention-Module-Based Network for Classifying Underwater
Images from Others. IEEE J. Ocean. Eng. 2022, 47, 704–717. [CrossRef]

39. Zhou, L.; Ye, Y.; Tang, T.; Nan, K.; Qin, Y. Robust Matching for SAR and Optical Images Using Multiscale Convolutional Gradient
Features. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

40. Gong, Y.; Zhang, Z.; Wen, J.; Lan, G.; Xiao, S. Small Ship Detection of SAR Images Based on Optimized Feature Pyramid and
Sample Augmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7385–7392. [CrossRef]

41. Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A New Method of Inland Water Ship Trajectory Prediction Based on Long
Short-Term Memory Network Optimized by Genetic Algorithm. Appl. Sci. 2022, 12, 4073. [CrossRef]

42. Zheng, Y.; Li, L.; Qian, L.; Cheng, B.; Hou, W.; Zhuang, Y. Sine-SSA-BP Ship Trajectory Prediction Based on Chaotic Mapping
Improved Sparrow Search Algorithm. Sensors 2023, 23, 704. [CrossRef]

43. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

44. Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A Survey of Modern Deep Learning Based Object Detection
Models. Digit. Signal Process. 2022, 126, 103514. [CrossRef]

45. Lin, Z.; Wang, H.; Li, S. Pavement Anomaly Detection Based on Transformer and Self-Supervised Learning. Autom. Constr. 2022,
143, 104544. [CrossRef]

46. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

47. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 10–17 October 2021.

48. Xia, R.; Chen, J.; Huang, Z.; Wan, H.; Wu, B.; Sun, L.; Yao, B.; Xiang, H.; Xing, M. CRTransSar: A Visual Transformer Based on
Contextual Joint Representation Learning for SAR Ship Detection. Remote Sens. 2022, 14, 1488. [CrossRef]

49. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone
for Dense Prediction without Convolutions. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), Montreal, QC, Canada, 10–17 October 2021.

50. Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022.

51. Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. MetaFormer Is Actually What You Need for Vision. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022.

52. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 5987–5995.

53. Hershey, J.R.; Olsen, P.A. Approximating the Kullback Leibler Divergence between Gaussian Mixture Models. In Proceedings of
the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07, Honolulu, HI, USA, 15–20
April 2007; pp. IV-317–IV-320.

54. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.

55. Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A Deep Learning Dataset
Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [CrossRef]

56. Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD):
Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [CrossRef]

57. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open MMLab Detection
Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155. [CrossRef]

58. Wu, Y.; Chen, Y.; Yuan, L.; Liu, Z.; Wang, L.; Li, H.; Fu, Y. Rethinking Classification and Localization for Object Detection. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 10183–10192.

59. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

60. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. arXiv 2022, arXiv:2207.02696.

61. Wei, S.; Su, H.; Ming, J.; Wang, C.; Yan, M.; Kumar, D.; Shi, J.; Zhang, X. Precise and Robust Ship Detection for High-Resolution
SAR Imagery Based on HR-SDNet. Remote Sens. 2020, 12, 167. [CrossRef]

https://doi.org/10.21278/brod73102
https://doi.org/10.1109/TITS.2022.3161977
https://doi.org/10.1109/JOE.2021.3126090
https://doi.org/10.1109/LGRS.2021.3105567
https://doi.org/10.1109/JSTARS.2023.3302575
https://doi.org/10.3390/app12084073
https://doi.org/10.3390/s23020704
https://doi.org/10.1016/j.dsp.2022.103514
https://doi.org/10.1016/j.autcon.2022.104544
https://doi.org/10.3390/rs14061488
https://doi.org/10.3390/rs12182997
https://doi.org/10.3390/rs13183690
https://doi.org/10.48550/ARXIV.1906.07155
https://doi.org/10.3390/rs12010167


Remote Sens. 2023, 15, 4373 26 of 26

62. Yu, N.; Ren, H.; Deng, T.; Fan, X. A Lightweight Radar Ship Detection Framework with Hybrid Attentions. Remote Sens. 2023, 15,
2743. [CrossRef]

63. Jiang, Z.; Wang, Y.; Zhou, X.; Chen, L.; Chang, Y.; Song, D.; Shi, H. Small-Scale Ship Detection for SAR Remote Sensing Images
Based on Coordinate-Aware Mixed Attention and Spatial Semantic Joint Context. Smart Cities 2023, 6, 1612–1629. [CrossRef]

64. Lin, Z.; Ji, K.; Leng, X.; Kuang, G. Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images. IEEE Geosci.
Remote Sens. Lett. 2019, 16, 751–755. [CrossRef]

65. Zhang, T.; Zhang, X.; Ke, X. Quad-FPN: A Novel Quad Feature Pyramid Network for SAR Ship Detection. Remote Sens. 2021, 13,
2771. [CrossRef]

66. Li, D.; Liang, Q.; Liu, H.; Liu, Q.; Liu, H.; Liao, G. A Novel Multidimensional Domain Deep Learning Network for SAR Ship
Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs15112743
https://doi.org/10.3390/smartcities6030076
https://doi.org/10.1109/LGRS.2018.2882551
https://doi.org/10.3390/rs13142771
https://doi.org/10.1109/TGRS.2021.3062038

	Introduction 
	Materials and Methods 
	Method Motivation and Overview 
	CViT Backbone 
	Meta Conv Block 
	Meta ViT Block 

	Gaussian Prior Discrepancy (GPD) Assigner 
	Level-Sync Attention Mechanism (LSAM) 

	Results 
	Introduction of the Datasets 
	Evaluation Criterions 
	Implementation Details 
	Results for LS-SSDD-v1.0 
	Results on SSDD 

	Ablation Experiment 
	Conclusions 
	References

