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Abstract: Identifying important factors (e.g., features and prediction models) for forest aboveground
biomass (AGB) estimation can provide a vital reference for accurate AGB estimation. This study
proposed a novel feature of the canopy height distribution (CHD), a function of canopy height,
that is useful for describing canopy structure for AGB estimation of natural secondary forests
(NSFs) by fitting a bimodal Gaussian function. Three machine learning models (Support Vector
Regression (SVR), Random Forest (RF), and eXtreme Gradient Boosting (Xgboost)) and three deep
learning models (One-dimensional Convolutional Neural Network (1D-CNN4), 1D Visual Geometry
Group Network (1D-VGG16), and 1D Residual Network (1D-Resnet34)) were applied. A completely
randomized design was utilized to investigate the effects of four feature sets (original CHD features,
original LiDAR features, the proposed CHD features fitted by the bimodal Gaussian function, and the
LiDAR features selected by the recursive feature elimination algorithm) and models on estimating the
AGB of NSFs. Results revealed that the models were the most important factor for AGB estimation,
followed by the features. The fitted CHD features significantly outperformed the other three feature
sets in most cases. When employing the fitted CHD features, the 1D-Renset34 model demonstrates
optimal performance (R2 = 0.80, RMSE = 9.58 Mg/ha, rRMSE = 0.09), surpassing not only other
deep learning models (e.g.,1D-VGG16: R2 = 0.65, RMSE = 18.55 Mg/ha, rRMSE = 0.17) but also
the best machine learning model (RF: R2 = 0.50, RMSE = 19.42 Mg/ha, rRMSE = 0.16). This study
highlights the significant role of the new CHD features fitting a bimodal Gaussian function and the
effects between the models and the CHD features, which provide the sound foundations for effective
estimation of AGB in NSFs.

Keywords: AGB; UAV-LiDAR; machine learning models; deep learning models; canopy height
distribution; bimodal gaussian function

1. Introduction

Northeastern China, along with northeastern North America and Europe, is home to
one of the World’s three great temperate mixed-species forests [1]. Accurate assessment of
the carbon stocks of natural secondary forests (NSFs) in northeastern China is urgent and
crucial for the regional carbon cycle, carbon source/sink, climate change mitigation, and
sustainable regional development [2], particularly in light of China’s recent implementation
of a carbon neutrality policy [3]. Given the equivalence of carbon stocks and biomass,
forest carbon stocks are typically converted from forest biomass estimation using a biomass
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expansion factor (BEF) [4]. Remote sensing inversion has recently been identified as a
valuable approach for assessing large-area forest AGB, enabling accurate monitoring at a
landscape scale and providing a spatially explicit distribution of forest AGB [5].

Forest AGB can generally be inversed using either an area-based or individual tree-
based approach [6]. For the area-based approach (ABA), plot- or stand-level features are
extracted from remotely sensed data and applied to establish a global prediction model for
forest AGB estimation [7]. For ABA, due to heterogeneous geographical areas, many factors
influence the accuracy of AGB estimation based on remotely sensed data, including forest
type, data source, and biomass estimation model [8]. During the past two decades, various
remote sensing data have been applied for regional and global AGB estimation [9–11].
Among them, Light Detection and Ranging (LiDAR) has become a mainstream tool for
characterizing the parameters of complex forests because of its ability to capture fine
and accurate three-dimensional forest canopy structure [12,13]. It can also reduce AGB
saturation, which often occurs when using passive optical data for biomass estimation [14].
More recently, Unmanned Aerial Vehicle LiDAR (UAV-LiDAR) has a lower flight altitude
and a higher point cloud density (around 50 pts/m2 to 350 pts/m2), which provides a
reliable data source for fine-scale AGB estimation [15].

What types of input features or attributes are used in forest biomass estimation models
substantially affects AGB estimation [16]. Most research extracted canopy height and
intensity metrics (e.g., mean, variance, coefficient of variation, and percentiles) from LiDAR
point cloud data [17]. Although these metrics have achieved promising results in forest
attribute estimation, the selection of the LiDAR metrics is different due to the variety of
regions and forest types [15,16,18]. The canopy height distribution (CHD) is the probability
of observing the canopy surface at height h [19]. It has great potential for forest AGB
estimation as a canopy structural feature that contains numerous pieces of information and
has less information loss compared to LiDAR metrics such as height metrics [19,20]. In the
subtropical forests of southeast China, CHD features fitted with a Weibull function have
been found to produce accurate AGB estimations [20]. In northeastern China, however,
the major forest types are mixed-species stands with a more complex stand structure. To
our best knowledge, it is uncertain and unclear how effectively the CHD features can be
applied to depict the vertical structure of mixed-species forests to estimate their AGB. It is
crucial to identify a probability function associated with CHD that can properly describe
the vertical structure of the forest canopy. In addition, the number of model input features
is an important factor affecting the model’s accuracy and efficiency [21]. Thus, feature
selection is commonly used to determine the best subset of features, which include Filter
(e.g., Pearson) [22], Wrapper (e.g., recursive feature elimination) [23], and Embedded (e.g.,
L1 regularization) [24]. Previous studies have demonstrated that the accuracy and efficiency
of AGB prediction can be significantly enhanced by employing feature selection to identify
the optimal subset of features [25].

A prediction model is another important factor in AGB estimation. For restricted
data sources and samples, using a model with superior prediction performance is a useful
alternative for improving AGB estimation. A plentiful number of non-parametric machine
learning (ML) models, such as support vector machines (SVM) and random forests (RF),
have been applied to estimate forest AGB. These models have the advantage over multiple
linear regression for dealing with complex nonlinear problems and high-dimensional data.
However, further improvement is necessary to enhance the accuracy of machine models for
AGB estimation in forests with complex conditions [26,27]. Since 2014, deep learning (DL)
algorithms have been attracted to the remote sensing community and have been successfully
applied in various image classification and regression tasks [28]. Convolutional Neural
Networks (CNNs) are a representative of deep learning that is particularly effective and
frequently employed in target detection and image recognition [29]. In recent years, the
rapid development of some series of CNN models with deep convolutional networks (e.g.,
Visual Geometry Group Network (VGG [30], Inception [31], Resnet [32]) has given a reliable
result for forest AGB estimation. These CNN models have shown outstanding performance
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in the fields of image classification and target detection. Using these DL models in the point
cloud data to explore their role in forest parameter estimation can have a positive effect
on improving the accuracy of forest AGB estimation and achieving more accurate carbon
stock estimation.

Given that suitable features are significant for forest AGB estimation in NSFs, this
study aims to identify a new LiDAR metric that can describe the vertical structure of forest
canopy and estimate forest AGB to replace the traditional metrics (e.g., LiDAR height and
intensity metrics) and to identify the important factors affecting forest AGB estimation. The
specific objectives of this study are to: (1) develop an efficient function for fitting CHD that
is suitable for the AGB estimation of two-story forest stands; (2) explore the performance
of four groups of CHD features (i.e., original CHD features, LiDAR metrics, fitted CHD
features, and selected LiDAR metrics) and six models (i.e., SVR, RF, Xgboost, 1D-CNN4,
1D-VGG16, and 1D-Resnet34) in forest AGB estimation; and (3) identify the important
factors (features, prediction models, and their interactions) affecting forest AGB estimation
using a completely randomized design (CRD).

2. Materials and Methods
2.1. Study Area

The study area is located in the Maoershan Experimental Forest Farm, Shangzhi City,
Heilongjiang Province, China (Figure 1). It spans from 127◦29′E to 127◦44′E and 45◦14′N to
45◦29′N, covering a total area of 26,048 hectares. The study area has an average altitude of
300 m, with a peak of 805 m. The average annual temperature and precipitation are 2.8 ◦C
and 723 mm, respectively, and the climate is categorized as continental monsoon. The study
area is dominated by mixed conifer-deciduous, deciduous, and coniferous forests, with an
average canopy closure of about 0.8.
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Figure 1. (a) The location of Heilongjiang Province in China (China Map Examination No. is GS
(2019) 1822); (b) the location of the study area in Maoershan Forest Farm over a digital Orthophoto
map with four UAV flight areas and 62 sample plots; and (c) one UAV flight area with 13 sample
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2.2. Data and Preprocessing
2.2.1. Field Inventory Data

A total of 62 mixed conifer-deciduous sample plots (30× 30 m) were surveyed between
2019 and 2022. The tree species composition of these mixed forests is complex, and a variety
of vertical structures exist in the stands, including single-story and two-story forests. The
diameter at breast height (DBH, cm), tree height (m), and locations for all trees with the
DBH greater than 5 cm were measured using a perimeter ruler, the Vertex IV ultrasound
instrument system, and the real-time kinematic (RTK) global navigation satellite system,
respectively. Tree species and health conditions were also recorded for all the trees in the
plots. Major tree species include Manchurian ash (Fraxinus mandshurica Rupr.), Manchurian
walnut (Juglans mandshurica Maxim.), white birch (Betula platyphylla Suk.), Mongolian
oak (Quercus mongolica Fisch. ex Ledeb.), elm (Ulmus pumila L.), Korean aspen (Populus
davidiana), Miyabe maple (Acer miyabei Maxim.), Korean pine (Pinus koraiensis Sieb. et
Zucc.), and Changbai larch (Larix olgensis Henry).

Using species-specific additive biomass equations (see Equation (1)), we calculated the
biomass of each tree’s components, including stems, branches, and foliage, for northeastern
China [1,33]. The AGB of each individual tree was calculated by adding the biomass of
each tree’s components according to different tree species’ parameters, and the stand-level
AGB (Mg/ha) was aggregated by all the individual tree AGBs in each plot.

lnWa = ln(Ws + Wb + W f ) = ln(as · Dbs + ab · Dbb + a f · Db f ) + εa (1)

where Wa represents AGB, Wi is biomass (kg) of different components; D is DBH (cm);
ln is the natural logarithm; εa is the error term; ai and bi are regression coefficients,
i = [s, b, f ] represents stem, branch, and foliage, respectively. The ai and bi for all the
tree species are listed in Table A1. The descriptive statistics of individual tree Height and
DBH for the 62 plots are presented in Figure 2. The statistical information of the sample
plots is shown in Table 1.
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Figure 2. Histograms of individual tree (a) height and (b) DBH for the 62 sample plots.

Table 1. Statistical information for the 62 sample plots.

Max Min Mean Std

Stand mean height 17.8 12.6 14.5 3.2
Stand mean DBH 16.8 11.4 13.4 2.9

Slope(◦) 21.0 3.0 12.3 4.1

2.2.2. UAV-LiDAR Data and Preprocessing

The UAV-LiDAR data was acquired using a Feima D200 UAV equipped with a Li-
DAR200 system in August 2019–2022. Flights were conducted at an altitude of 80 m, with
a flying speed of 5.0 m/s and a route overlap rate of 50%. The LiDAR sensor uses the
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RIEGL mini VUX-1UAV to record multiple echoes (up to 5 times), with a wavelength
of 905 nm and a laser divergence angle of 1.6 × 0.5 mrad. The UAV-LiDAR data was
collected with a scanning angle of ±45◦, an average point cloud density of 200 pts/m2,
and a point cloud accuracy of 15 mm. Three preprocessing steps were applied to the raw
point cloud: (1) removal of isolated noise points; (2) classification between ground and non-
ground points by an improved progressive triangular irregular network with a maximum
terrain angle of 88◦, an iteration angle of 8◦, and an iteration distance of 1.4 m [34]; and
(3) normalization of point cloud height by converting the point cloud elevation values to
vegetation height. The data pre-processing was conducted using LiDAR360 V5.2 software
(http://www.lidar360.com; accessed on 1 September 2023).

2.3. Methods
2.3.1. Overview of Methodology

The methodology used in this study includes (1) data preprocessing; (2) feature
extraction of canopy height distribution (CHD) and traditional LiDAR-derived metrics;
(3) AGB modeling using four groups of CHD features (original CHD features, original
LiDAR metrics, fitted CHD features, and selected-LiDAR metrics) and six models (i.e.,
ML group: SVR, RF, Xgboost; DL group: 1D-CNN4, 1D-VGG16, and 1D-Resnet34); and
(4) two-way analysis of variance (ANOVA) to explore the main effects and interactions
between features and prediction models (Figure 3).
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2.3.2. Experiment Design

A completely randomized design (CRD) [35] was employed to analyze the main effects
and interactions of two factors (i.e., features and prediction models) for the AGB estimation.
The factorial treatments were designed as follows: The first factor was the feature with
four levels: the original CHD features, the original LiDAR metrics, the parameters of fitted
CHD curves (fitted CHD features), and selected LiDAR metrics. The second factor was
the prediction model, including six models that can be classified into two model groups:
machine learning models (i.e., SVR, RF, and Xgboost) and deep learning algorithms (i.e.,
1D-CNN4, 1D-VGG16, and 1D-Resnet34). Therefore, 24 treatment (4 × 6) combinations
were generated, and five replications were used for each treatment combination, resulting
in 120 records for the two-way ANOVA.

2.3.3. Feature Extraction

• The extraction and curve fitting of CHD

In this study, CHD was represented by slicing all point clouds inside the plot at a
height interval of 0.4 m and calculating the ratio of the number of points within each slice
to the total number of points. The formula for calculating CHD is as follows:

f (h) =
∫ Hmax

0

nh
N

dh (2)

where f (h) is a discrete CHD function and h is the height; nh is the number of LiDAR
echoes in a height interval; N is the total number of point clouds in the sample plot; and h
is the sampling height interval.

The Gaussian function was used to model the CHD extracted with Equation (3) for
each sample plot. The Gaussian function is expected to be able to describe stands with
significant canopy stratifications due to their multiple peaks. This function consists of three
parameters, denoting the maximum return ratio (a) at the canopy height of the curve peak
(b) and the standard deviation (c). These parameters contain a large amount of information
about the canopy, which can well characterize the structure of the canopy. Due to the strong
association between the canopy’s structure and AGB, these parameters could be beneficial
for estimating AGB. The Gaussian function is expressed as follows:

f (h) =
n

∑
i=1

aie
−(h−bi)

2

ci
2 (3)

where h is the canopy height; n is the number of peaks to fit, which was set to n = 2 in
this study (i.e., a bimodal Gaussian function) because the natural secondary forests in
northeastern China are either single-story stands or two-story stands; ai is the maximum
point cloud ratio at the height of the curve peak; bi is the center coordinate of the peak,
representing the canopy height where the slice with the most echoes is located; and ci is the
standard deviation representing the width of the curve. The parameters of the fitted CHD
curves were used as fitted CHD features in the AGB estimation model. Those parameters
need to be estimated from the LiDAR data for each plot.

• The extraction and selection of LiDAR metrics

To avoid ground and low shrub points, the points below 2 m were not involved in
the calculation. 101 LiDAR metrics [16] were extracted from the normalized point cloud,
including 46 height metrics, 42 intensity metrics, 10 density metrics, and three forest metrics.
The details of all LiDAR-derived metrics are listed in Table A2. To determine the optimal
feature number, the Recursive feature elimination (RFE) algorithm was used to evaluate the
rank of features. RFE is an approach to wrapper feature selection where the optimal subset
of features is obtained by iteratively removing the less important features. We embedded
different numbers of LiDAR metrics into the six models used in this study to find the best
subset of features.
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2.3.4. AGB Modeling

The forest AGB modeling in this study consisted of the following three steps:
(I) Three ML models (i.e., SVR, RF, and Xgboost) and three DL models (i.e., 1D-CNN4,

1D-VGG16, and 1D-Resnet34) were utilized to establish the AGB models. The SVR uses a
nonlinear kernel function to determine an ideal regression plane by minimizing the distance
from the data to that plane [36,37]. The RF combines several weak decision tree classifiers
to provide the model with outstanding accuracy and generalization [38,39]. Xgboost is
an improved gradient boosting algorithm. It is one of the boosting ensemble learning
algorithms that improves prediction accuracy by combining multiple weak learners (i.e.,
decision trees).

CNN, one of the representative deep learning algorithms, utilizes several convolu-
tional layers to extract useful features [40]. In the 1D-CNN4 model, the Relu activation
function enables the model to handle nonlinear tasks; a maximum pooling with three
windows was adopted for downsampling to avoid over-fitting; the flattened layer was used
to flatten the multidimensional data into one dimension, acting as a transition between
the convolutional layer and the fully connected layer; and the dense layer (i.e., the fully
connected layer) was used for data output. The 1D-VGG16 algorithm is a very excellent
model in the field of classification, consisting of 13 convolutional layers and three fully
connected layers [30]. Resnet is composed of many residual blocks, which can handle
hyper-deep (>1000) convolutional networks through the residual blocks and well solve the
gradient disappearance/gradient explosion during model fitting [32]. Resnet introduces a
batch normalization layer instead of the dropout layer used in VGG to speed up training
and improve fitting accuracy. This study applied 34 convolutional layers of Resnet (i.e.,
Resnet34) through trial and error. Since VGG and Resnet were initially designed to classify
2D images, we redesigned them to accommodate a 1D dataset by changing 2D-Convolution
to 1D-Convolution. The three DL models are shown in Figure 4.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 4. The three DL structures were designed in this study. (a) Custom 1D-CNN4 structure with 
four convolutional layers; (b) VGG16 network structure; (c) Resnet structure with 34 convolutional 
layers. Conv1D is one-dimensional convolution; K is kernel size; S is stride; and O is the output 
channel. 

Because the sample size (number of plots) in this study was modest, the prediction 
accuracy of the six models was evaluated using the leave-one-out cross-validation 
(LOOCV) method [42], which is commonly used for AGB model evaluation. It also im-
proves the generalization ability of the model and mitigates overfitting [43]. Model accu-
racy evaluation metrics were R2, RMSE (Mg/ha), and rRMSE between reference and pre-
dicted plot AGB. 

(II) Five replications of accuracy metrics (i.e., R2, RMSE, and rRMSE) were prepared 
for each treatment combination of features and prediction models (4 × 6 = 24 treatment 
combinations in total if taking one replication as an example). Bootstrapped samples were 
generated using the bootstrapping procedure to satisfy the ANOVA assumptions of ran-
domness and replication [44]. The 62 samples were randomly selected with replacement, 
and LOOCV in Step (I) above was applied to evaluate the accuracy of a specific model 
using one feature set. A 100-times permutated bootstrap was conducted, and the average 
of the accuracy metrics (i.e., R2, RMSE, and rRMSE) that 100 bootstrapped samples pro-
duced were applied as the accuracy to avoid the influence of extreme values [26]. The 
above procedure was repeated five times (a total of 500-times bootstrapping) to obtain five 
sets of R2, RMSE, and rRMSE for the subsequent ANOVA for one feature set and one pre-
diction model. The logic of the bootstrapping procedure is shown in Figure 5. 

Figure 4. The three DL structures were designed in this study. (a) Custom 1D-CNN4 structure with four
convolutional layers; (b) VGG16 network structure; (c) Resnet structure with 34 convolutional layers.
Conv1D is one-dimensional convolution; K is kernel size; S is stride; and O is the output channel.



Remote Sens. 2023, 15, 4364 8 of 26

The hyperparameter tuning of ML models, especially DL models, is complex. We
adopted a Bayesian-based approach [41] for hyperparameter optimization. The method
uses a Gaussian process as the prior of the optimization function, computes the posterior
distribution, and updates the Gaussian process, iterating the above process to maximize
the optimization function. The hyperparameter tuning was performed in the Optuna
package for Python (https://optuna.org/; accessed on 1 September 2023). It finds optimal
hyperparameters and calculates their importance. Python 3.7, Sklearn, and TensorFlow 2.2
were used for modeling in this study. The operating system is Windows 10, the CPU is an R7
3700X, the graphics card is a 1080ti, and the memory is 32GB. The detailed hyperparameters
of the six prediction models are summarized in Table 2.

Table 2. The hyperparameters range for the six biomass prediction models.

Model Group Model Parameters Range

SVR Kernels = [‘linear kernels’, ‘ploy’, ’rbf’], C = [1, 10],
Gamma = [‘auto’, ’scale’]

Machine learning RF n_estimators = [100, 1000], max_features = [1, 10],
max_depth = [1, 30]

Xgboost n_estimators = [100, 1000], gamma = [0.1, 1], max_depth
= [1, 30], seed = [1, 20]

Deep learning 1D-CNN4, 1D-VGG16, 1D-Resnet34
Epoch = [10, 1000], Batch size = [10, 50],
Learning Rate = [0.0001, 0.001], Optimizer = [’Adam’,
’SGD’, ‘RMSProp’]

Note: The Kernels, C, and Gamma are the kernel function type, the regularization factor, and the kernel function
coefficient in the SVR model, respectively. The n_estimators, max_features, and max_depth are the number of
trees, the number of tree features, and the maximum depth of the tree in the RF model, respectively. Seed is the
number of random seed points in Xgboost. Epoch, Batch size, Learning Rate, and Optimizer are the number of
iterations, number of data per batch, learning rate, and optimizer type in CNNs, respectively.

Because the sample size (number of plots) in this study was modest, the prediction
accuracy of the six models was evaluated using the leave-one-out cross-validation (LOOCV)
method [42], which is commonly used for AGB model evaluation. It also improves the gen-
eralization ability of the model and mitigates overfitting [43]. Model accuracy evaluation
metrics were R2, RMSE (Mg/ha), and rRMSE between reference and predicted plot AGB.

(II) Five replications of accuracy metrics (i.e., R2, RMSE, and rRMSE) were prepared
for each treatment combination of features and prediction models (4 × 6 = 24 treatment
combinations in total if taking one replication as an example). Bootstrapped samples
were generated using the bootstrapping procedure to satisfy the ANOVA assumptions of
randomness and replication [44]. The 62 samples were randomly selected with replacement,
and LOOCV in Step (I) above was applied to evaluate the accuracy of a specific model
using one feature set. A 100-times permutated bootstrap was conducted, and the average of
the accuracy metrics (i.e., R2, RMSE, and rRMSE) that 100 bootstrapped samples produced
were applied as the accuracy to avoid the influence of extreme values [26]. The above
procedure was repeated five times (a total of 500-times bootstrapping) to obtain five sets of
R2, RMSE, and rRMSE for the subsequent ANOVA for one feature set and one prediction
model. The logic of the bootstrapping procedure is shown in Figure 5.

https://optuna.org/
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(III) To quantify the impacts of factors and their interactions on the model accuracy
evaluation metrics (i.e., R2, RMSE, and rRMSE), a two-way ANOVA was conducted, and
the two factors (i.e., feature and prediction model) were considered fixed effects. Eta-
squared (η2) [45], which is the ratio of the sum of squares (SS) of the factors to the total
SS, was calculated to estimate the effect size of each main effect and interaction effect in
the ANOVA model. A simple effects analysis [46] was performed to further explore the
interaction between two factors. The design of the simple effects analysis is shown in
Tables A3 and A4.

3. Results
3.1. Feature Extraction and Hyperparameter Tuning
3.1.1. The Extraction and Curve Fitting of CHD

The Gaussian function (Equation (3)) was used to fit the CHD curves from the LiDAR
data. Using two sample plots as examples, Figure 6 illustrates the unimodal CHD curve
for a single-story stand (Figure 6a) and the bimodal CHD curve for a two-story stand
(Figure 6b). For the single-story stand, the CHD curve reached its inflection point at the
canopy height of 8 m, indicating a dramatic rise in the quantity of laser hits on the vegetation.
The three parameters of the CHD curve were estimated as follows: The maximum return
ratio was 0.046 (a1), which corresponded to a canopy height of 10.080 m (b1), and the curve
width was 2.910 (c1). This canopy height indicated where the greatest number of laser hits
were obtained (Figure 6a).
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For the two-story stand, the CHD curve exhibited two peaks (Figure 6b). As the curve
reflection occurred at the canopy height of about 4 m, the number of point cloud returns
increased dramatically. The first return peak corresponded to the canopy height of 7.478 m
(b1 = 7.478), while the second peak occurred at a height of 11.630 m (b2 = 11.630). The first
peak was caused by the echo hits on the canopy of lower-story trees and the branches of
taller trees, while the second peak was caused by the echo hits only on the canopy of taller
trees. This was likely the reason why the return number of the first peak (a1 = 0.058) was
higher than that of the second peak (a2 = 0.042).

3.1.2. Extraction and Selection of LiDAR Metrics

The 101 extracted LiDAR features (see Table A2) were ranked using the RFE method.
Figure 7 displays the accuracy of AGB estimation for the three ML models and the three
DL models with increasing feature numbers. It was found that when the number of LiDAR
metrics increased from 1 to about 16, the accuracy of the six models improved dramatically.
In general, all models achieved good performances with a feature number of 16. The
model accuracies began to level off with a small fluctuation after the feature number of 16.
Increasing the feature number had no significant effect on improving the model’s accuracy
but would increase the computational burden. Thus, 16 LiDAR features were selected to
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reduce feature redundancy. The details and ranking (based on RFE) of the selected features
are described in Table A5, respectively.
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3.1.3. Hyperparameter Tuning

Table 3 shows the best combination of hyperparameters for the six models under
four feature sets (i.e., original CHD, original LiDAR metrics, fitted CHD, and selected
LiDAR metrics). For the SVR model, the hyperparameters for the four feature sets were
held constant. Gamma = ‘auto’, C = 1, and kernel = ‘rbf‘ were found to be the optimal
combination. For the RF model, the hyperparameters for the four sets of features varied
within a small range. For example, the n_estimators for the four groups were 852, 981, 736,
and 1030, respectively. For the three DL models, the learning rate was set at 10−4. The Root
Mean Square Prop (RMSProp) and stochastic gradient descent (SGD) optimizers yielded
the best performance. The batch sizes were mostly 10–20, and the number of epochs was
set between 600 and 1300.

Table 3. The determined hyperparameters of the six models using different feature sets.

Model Hypermeter Original
CHD Fitted CHD Original

LiDAR
Selected-
LiDAR

SVR Gamma auto auto auto auto
C 1 1 1 1
Kernels rbf’ rbf’ rbf’ rbf’

RF Max_depth 10 10 9 12
Max_feature 8 7 8 9
n_estimators 852 981 736 1030

Xgboost Gamma 0.1 0.1 0.10 0.1
Seed 2 3 5 4
Max_depth 15 16 14 20
n_estimators 1157 1036 826 972

1D-CNN4/
1D-VGG16/
1D-Resnet34

Learning_rate
0.0001/
0.0003/
0.0001

0.0001/
0.0002/
0.0001

0.0002/
0.0002/
0.0001

0.0002/
0.0001/
0.0001

Note: SGD: stochastic gradient descent; RMSProp: root mean square prop.

3.2. The Performance of AGB Prediction Models

The performances of the three ML models (SVR, RF, and Xgboost) and three DL
models (1D-CNN4, 1D-VGG16, and 1D-Resnet34) were tested for AGB estimation using
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selected/non-selected features (Table 4). Group I showed the AGB estimation performance
of the three ML models based on the original CHD and LiDAR features. It was found
that the original CHD and LiDAR features did not exhibit significant differences in the
machine learning models. Group II showed the AGB estimation performance of the three
ML models with CHD fitted by a bimodal Gaussian function and RFE-selected LiDAR
metrics. The ML models based on the fitted CHD obviously performed better than those
based on the selected LiDAR metrics. The AGB estimation accuracy reached the highest in
the combination of the RF model and fitted CHD features (R2 = 0.50, RMSE = 19.42 Mg/ha,
rRMSE = 0.16). Compared with the original features, the fitted CHD and selected LiDAR
metrics significantly improved the prediction accuracy and efficiency of the model (i.e.,
running time).

Table 4. The performances of the six AGB prediction models using original/fitted CHD features and
original/selected LiDAR metrics.

Group Feature
(Feature Number) Model R2 RMSE

(Mg/ha) rRMSE Runtime

Group I

Original CHD
(41–69)

SVR 0.22 29.89 0.35 4 min 18 s
RF 0.23 31.18 0.28 10 min 20 s

Xgboost 0.20 30.54 0.28 10 min 33 s

Original LiDAR
metrics

(101)

SVR 0.24 38.37 0.34 6 min 12 s
RF 0.24 27.15 0.27 12 min 47 s

Xgboost 0.22 27.41 0.27 12 min 03 s

Group II

Fitted CHD
(6)

SVR 0.41 21.05 0.20 3 min 50 s
RF 0.50 19.42 0.16 6 min 47 s

Xgboost 0.48 20.33 0.18 6 min 38 s

Selected LiDAR
metrics

(16)

SVR 0.39 26.33 0.24 4 min 47 s
RF 0.42 21.45 0.21 7 min 30 s

Xgboost 0.41 22.36 0.22 7 min 41 s

Group III

Original CHD
(41–69)

1D-CNN4 0.21 33.21 0.29 26 min 35 s
1D-VGG16 0.45 24.76 0.22 42 min 56 s

1D-Resnet34 0.48 21.81 0.19 56 min 20 s

Original LiDAR
metrics

(101)

1D-CNN4 0.41 26.05 0.23 32 min 08 s
1D-VGG16 0.61 18.85 0.17 45 min 18 s

1D-Resnet34 0.68 13.14 0.12 62 min 26 s

Group IV

Fitted CHD
(6)

1D-CNN4 0.42 21.57 0.21 17 min 08 s
1D-VGG16 0.65 18.55 0.17 36 min 47 s

1D-Resnet34 0.80 9.58 0.09 48 min 11 s

Selected LiDAR
metrics

(16)

1D-CNN4 0.40 23.08 0.22 19 min 06 s
1D-VGG16 0.61 19.06 0.18 46 min 27 s

1D-Resnet34 0.71 12.72 0.11 52 min 33 s

Note: Model accuracy is the mean value of 100 bootstraps. Machine learning group: SVR, RF, and Xgboost. Deep
learning group: 1D-CNN4, 1D-VGG16, and 1D-Resnet34. The feature number of original CHD varied based on
the canopy height of the sample plots.

Group III illustrated the performance of DL models for AGB estimation using the
original CHD and LiDAR features. It showed the opposite results compared with the
ML models: the DL models with the original LiDAR feature obtained significantly higher
accuracies than those with the original CHD features. This is because the DL benefited
from a large number of LiDAR features under the same conditions. Thus, the 101 original
LiDAR features worked better than the 41–69 original CHD features for the DL models.
Group IV showed the performance of the DL models using the fitted CHD and the selected
LiDAR features. The fitted CHD features significantly outperformed the selected LiDAR
metrics in 1D-VGG16 and 1D-Resnet34, especially in the 1D-Resnet34 model, of which the
accuracy reached the highest (R2 = 0.80, RMSE = 9.58 Mg/ha, rRMSE = 0.09). In addition,
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the accuracies of the DL models with the original and feature-selected LiDAR features were
very similar. In contrast, the accuracies of the DL models with the original and fitted CHD
features were quite different. It indicated the obvious efficiency of fitting CHD features
compared to the original CHD features. In general, the DL models are less efficient than
the ML models.

3.3. Two-Way ANOVA

To investigate the main effects of the two factors (i.e., feature and prediction model)
and their interactions on the prediction accuracy (R2, RMSE, and rRMSE) of the AGB
estimation, a two-way ANOVA was performed (Table 5). The main effects of the feature
and prediction models and their two-way interactions were statistically significant (p-value
< 0.05). The highest SS (a substantial contribution to the explained variance) was reported
for the prediction model, explaining 63.8%, 51.5%, and 56.3% of the variation in R2, RMSE,
and rRMSE (η2 in Table 5), respectively. The feature also had large effects on the variation
of R2 (η2 of 30.6%), RMSE (η2 of 37.2%), and rRMSE (η2 of 35.4%). On the other hand, the
interaction between the feature and predictive model had minimal effects (η2 for R2, RMSE,
and rRMSE are 5.6%, 11.3%, and 8.3%, respectively).

Table 5. Two-way ANOVA for the main effects and interactions of the two factors.

Factor
R2 RMSE rRMSE

df SS η2 (%) p-Value SS η2 (%) p-Value SS η2 (%) p-Value

Feature 3 1.04 30.6 <0.0001 1832.09 37.2 <0.0001 0.17 35.4 <0.0001
Model 5 2.17 63.8 <0.0001 2535.64 51.5 <0.0001 0.27 56.3 <0.0001

Feature ×Model 15 0.19 5.6 <0.0001 552.87 11.3 <0.0001 0.04 8.3 <0.0001

Since R2 and RMSE presented the same trend in Table 5, we focused on RMSE and
rRMSE in subsequent analysis. Figure 8 shows the interactions between features and predic-
tion models on RMSE and rRMSE which are presented in two ways (i.e., Feature ×Model,
and Model × Feature). Figure 8 shows a clear interaction between the features and the
prediction models. The RMSE and rRMSE of the fitted CHD feature were significantly
lower than other features (e.g., original CHD, original LiDAR, and selected LiDAR), which
indicated an effective feature set for the NSFs. The 1D-Resnet34 model exhibited the best
performance, with a significantly lower RMSE and rRMSE than the other five models.
The second-best model was the 1D-VGG16, which showed lower RMSE and rRMSE than
the other four models (i.e., SVR, RF, Xgboost, and 1D-CNN4). On the other hand, RF,
Xgboost, and 1D-CNN4 performed similarly. The SVR model performed worst among the
six models.

Since the interaction between the feature and prediction model was significant, the
simple effects of the treatment combinations should be reported instead of the main effects
of the CHD feature and prediction model. Tukey’s test was performed based on the mean
of RMSE and rRMSE to test whether the models/features differed significantly under
different features/models. From Figure 9, we found that Tukey’s tests based on RMSE and
rRMSE have the same trend for most cases. For each feature set, the differences among
RF, Xgboost, and 1D-CNN4 models were not significant in most cases, while 1D-VGG16
and 1D-Resnet34 were significantly better than the four other models (Figure 9a,c). The
fitted CHD significantly outperformed both the original CHD and the original LiDAR for
different models; however, for some models (e.g., in 1D-VGG16 and 1D-Resnet34), the
fitted CHD and the selected LiDAR were not significantly different (Figure 9b,d).
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To understand the contributions of the feature and prediction models, we organized
18 contrasts (details in Table A4). Table 6 showed that most interesting contrasts were
statistically significant (p values < 0.05), except for contrasts 17 and 18. It was found (from
contrast ID:1–4) that the fitted CHD and the selected LiDAR significantly outperformed
the original CHD and LiDAR metrics for both DL and ML models. For example, if the DL
models were conducted, the RMSE and rRMSE would decrease by 9.91 Mg/ha and 7.73%,
respectively, using the fitted CHD features compared to those using the original CHD
features. The improvement of the fitted CHD for model accuracy was more significant
compared with selected LiDAR metrics in the same model group (contrast ID: 1 vs. 2; ID: 3
vs. 4). The fitted CHD significantly outperformed the selected LiDAR metrics in both ML
and DL models, and the improvement was more remarkable in the ML models than in the
DL models (contrast ID: 5–6). For example, if the fitted CHD features were applied, the
rRMSE would decrease by 4.27% for ML models and only 1% for DL models compared to
those using traditionally selected LiDAR features. It also indicated that DL models could
be a remedy for the AGB prediction accuracy if users still intend to use selected LiDAR
features. From the model contrasts (contrast ID: 7–10), the DL models obviously performed
better than the ML models regardless of the features; the improvement is larger when using
original and selected LiDAR features than when using original and selected CHD features.
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for each model. Different capital letters indicate significant differences.

Table 6. Simple effects for RMSE (Mg/ha) and rRMSE (%) values.

Contrast ID Simple Effects Estimate
(RMSE/rRMSE)

p Value
(RMSE/rRMSE)

1 Original vs. fitted CHD within DLs 9.91/7.73 <0.0001/<0.0001
2 Original vs. selected LiDAR within DLs 2.05/1.67 <0.0001/0.0049
3 Original vs. fitted CHD within MLs 10.07/12.07 <0.0001/<0.0001
4 Original vs. selected LiDAR within MLs 7.33/6.67 <0.0001/<0.0001
5 Fitted CHD vs. selected LiDAR within DLs −1.54/−1.07 0.0001/0.0684
6 Fitted CHD vs. selected LiDAR within MLs −2.96/−4.27 <0.0001/<0.0001
7 DLs vs. MLs within Original CHD −3.94/−6.73 <0.0001/<0.0001
8 DLs vs. MLs within Original LiDAR −10.48/−10.60 <0.0001/<0.0001
9 DLs vs. MLs within Fitted CHD −3.78/−2.40 <0.0001/<0.0001
10 DLs vs. MLs within Selected LiDAR −5.20/−5.60 <0.0001/<0.0001

11 1D-Resnet34 vs. 1D-CNN4 within Fitted CHD −11.64/−12.00 <0.0001/<0.0001
12 1D-Resnet34 vs. 1D-CNN4 within Selected LiDAR −10.55/−10.80 <0.0001/<0.0001
13 1D-Resnet34 vs. 1D-VGG16 within Fitted CHD −8.62/−8.00 <0.0001/<0.0001
14 1D-Resnet34 vs. 1D-VGG16 within Selected LiDAR −6.67/−7.00 <0.0001/<0.0001

15 RF vs. SVM within Fitted CHD −1.63/−3.80 0.0176/0.0003
16 RF vs. SVM within Selected LiDAR −5.06/−3.20 <0.0001/0.0019
17 RF vs. Xgboost within Fitted CHD −0.91/−1.80 0.1806/0.0757
18 RF vs. Xgboost within Selected LiDAR −0.95/−0.80 0.1606/0.4268

Since the fitted CHD and selected LiDAR metrics performed better than the other
original feature sets, comparisons within the DL or ML models were considered when these
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two feature sets were applied. When using the fitted CHD and the selected LiDAR metrics,
the 1D-Resnet34 model significantly outperformed other DL models (contrast ID: 11–14).
The improvement was more significant from 1D-CNN4 than from 1D-VGG16, no matter
which feature set was used. For the ML models, the RF model significantly outperformed
the SVM model but did not show apparent advantages over the Xgboost model (contrast
ID: 15–18).

4. Discussion
4.1. CHD vs. LiDAR Metrics

Our study confirmed the reliability of AGB estimation based on UAV-LiDAR for
natural secondary forests with high canopy closure. The LiDAR metrics and CHD features
were extracted. The LiDAR metrics were selected based on their importance for estimating
AGB, similar to the metrics identified in other studies [47–49]. Among them, the percentiles
of height and the height mean were the most selected features. For example, Wang et al.
extracted the height percentile, height mean, canopy cover, and other features from the
discrete LiDAR with an R2 of 0.702 and an RMSE of 14.711 Mg/ha [47]. In addition to those
common LiDAR metrics, we identified the height maximum as one of the most critical
metrics. Furthermore, the LiDAR metrics selected for the six models were inconsistent.
Even when utilizing the identical feature selection algorithm, it is not possible to identify
a single LiDAR feature that can be considered to be best for all forest conditions and
geographies [15,16,18,20].

Overall, the fitted CHD outperformed the feature-selected LiDAR metrics in the six
models (Group II and Group IV in Table 4). There are two possible reasons: (1) Compared
to the LiDAR metrics, the CHD features had fewer losses of canopy information and
provided a more complete representation of the vertical structure of the canopy than
other feature-selected LiDAR metrics [19]; and (2) since fitting the CHD curve with a
bimodal Gaussian function accurately described the vertical structure of the canopy, this
may have a strong correlation with AGB. The fitted parameter a in the CHD curve is the
maximum return ratio (Figure 6), which represents the maximum density of the canopy
in the vertical direction; parameter b is the canopy height corresponding to the maximum
return ratio, which can represent the two-story canopy structure; and parameter c is the
curve width, which represents the canopy width in the vertical direction. These three
parameters comprehensively depict the three-dimensional structure of the canopy, which
has a close relationship with AGB [20], and thus produces good performance in AGB
estimation. Although Gaussian functions have been applied in the decomposition of full-
waveform LiDAR data [50–52], they have rarely been applied to fit the canopy height
features for the discrete LiDAR data. The CHD fitted by the binomial Gaussian function in
this study was more reliable than those in previous studies. For example, Zhang et al. used
Weibull-fitted CHD for AGB estimation and obtained an R2 of 0.54, RMSE of 19.84 Mg/ha,
and rRMSE of 23.25% [12]. We have demonstrated the efficacy of using the DL models
(especially 1D-Resnet34) in conjunction with the fitted CHD features, resulting in excellent
predictive outcomes. Our results indicated that the CHD features remained consistent in
the AGB models and did not require a feature selection process [15,16,20], providing insight
for describing the vertical structure of forests with a complex stand structure. Thus, it is
expected to apply the CHD features fitted by a bimodal Gaussian function as a practical
feature set for the AGB estimation of NSFs using UAV-LiDAR data in the future.

The sampling height interval is an essential parameter for characterizing the CHD
features. We extracted CHD based on different sampling height intervals and tested the
effect of the extracted CHDs at these height intervals (0.1 m–1.0 m) on the performance of
the AGB model. The 0.4 m sampling interval identified was appropriate in this study (see
Figure A1), similar to previous studies’ findings [53,54].

Although the CHD was generated from the normalized LiDAR point cloud, the terrain
may still affect the CHD trend due to the uncertainty of the normalization algorithm.
Therefore, we investigated the effect of slope on the fitting of CHD curves. Figure 10a,b



Remote Sens. 2023, 15, 4364 17 of 26

demonstrate that the accuracy of CHD curve fitting decreases slightly when the slope is
greater than 15◦. Figure 10c,d illustrate the CHD curves of sample plots with the minimum
and maximum slopes (i.e., 4◦ and 21◦). It demonstrates that compared to the CHD curve
with big slopes, the one with modest slopes was smoother and simpler. Particularly when
the canopy height was less than 10 m, the CHD discrete points in plots with steep slopes
changed drastically, causing some disturbance to the curve fitting.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

close relationship with AGB [20], and thus produces good performance in AGB estima-
tion. Although Gaussian functions have been applied in the decomposition of full-wave-
form LiDAR data [50–52], they have rarely been applied to fit the canopy height features 
for the discrete LiDAR data. The CHD fitted by the binomial Gaussian function in this 
study was more reliable than those in previous studies. For example, Zhang et al. used 
Weibull-fitted CHD for AGB estimation and obtained an R2 of 0.54, RMSE of 19.84 Mg/ha, 
and rRMSE of 23.25% [12]. We have demonstrated the efficacy of using the DL models 
(especially 1D-Resnet34) in conjunction with the fitted CHD features, resulting in excellent 
predictive outcomes. Our results indicated that the CHD features remained consistent in 
the AGB models and did not require a feature selection process [15,16,20], providing in-
sight for describing the vertical structure of forests with a complex stand structure. Thus, 
it is expected to apply the CHD features fitted by a bimodal Gaussian function as a prac-
tical feature set for the AGB estimation of NSFs using UAV-LiDAR data in the future. 

The sampling height interval is an essential parameter for characterizing the CHD 
features. We extracted CHD based on different sampling height intervals and tested the 
effect of the extracted CHDs at these height intervals (0.1 m–1.0 m) on the performance of 
the AGB model. The 0.4 m sampling interval identified was appropriate in this study (see 
Figure A1), similar to previous studies’ findings [53,54]. 

Although the CHD was generated from the normalized LiDAR point cloud, the ter-
rain may still affect the CHD trend due to the uncertainty of the normalization algorithm. 
Therefore, we investigated the effect of slope on the fitting of CHD curves. Figure 10a,b 
demonstrate that the accuracy of CHD curve fitting decreases slightly when the slope is 
greater than 15°. Figure 10c,d illustrate the CHD curves of sample plots with the minimum 
and maximum slopes (i.e., 4° and 21°). It demonstrates that compared to the CHD curve 
with big slopes, the one with modest slopes was smoother and simpler. Particularly when 
the canopy height was less than 10 m, the CHD discrete points in plots with steep slopes 
changed drastically, causing some disturbance to the curve fitting. 

 
Figure 10. Effect of different slopes on CHD curve fitting. (a) R2 of CHD curve fitting; (b) RMSE
of CHD curve fitting; (c) CHD fitting curves for sample plots with the minimum slope of 4◦; and
(d) CHD fitting curves for sample plots with the maximum slope of 21◦.

4.2. Effect of Biomass Prediction Models

The prediction model was an essential and critical factor for AGB estimation (Table 5),
which is consistent with previous studies [55]. This may be due to the fact that a well-
performing model has strong robustness and can be well supported for different data inputs.
This study found that the differences between the two model groups were statistically
significant, and the DL models significantly outperformed the ML models (Figure 9). It
was found that the differences between the two model groups were statistically significant,
and the DL models significantly outperformed the ML models. The DL model has been
one of the most popular models in image recognition, image segmentation, and image clas-
sification, yet there is less research on forest attribute estimation [55]. In other studies, DL
represented by CNNs has also shown excellent performance over the ML models [56–58].
In this study, the DL models consistently outperformed the ML models, regardless of
the features used. This is mainly attributed to the powerful learning and weight-sharing
capabilities of CNNs, which enable them to compute multiple features based on input data
through convolutional layers. The shallow convolutional layers are mainly responsible
for extracting texture and edge information, while the deeper convolutional layers can
extract more abstract information that is useful for prediction [59]. This is one of the reasons
that the Resnet with 34 convolutional layers outperformed the VGG with 16 layers in this
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study. Although increasing the number of network layers is expected to improve the per-
formance of CNN models, actual results show that model accuracy decreases in ultra-deep
network layers due to the problem of gradient disappearance or explosion during the back-
propagation process [32]. The unique residual structure of Resnet can solve the problem
of gradient disappearance/explosion in ultra-deep networks, leading to greater accuracy
in prediction than VGG16. To avoid overfitting, leave-one-out cross-validation was used
for model validation, and a dropout layer was added to increase the generalization of the
model.

Hyperparameters are critical for ML and DL models and must be finely tuned to
achieve optimal performance. In this study, we utilized a Bayesian-based hyperparameter
optimization method, which is more efficient than the traditional grid search approach [60].
Figure 11 shows the importance of the hyperparameters for all the models based on a
Bayesian-based approach [41]. We found that batch size and epoch were the two most
crucial hyperparameters in the DL model, surpassing the importance of optimizer type and
learning rate. Batch size refers to the number of samples used for each training iteration,
and an appropriate batch size can ensure gradient descent moves in the correct direction
and yields desirable convergence results. However, if the batch size is too small, it can make
convergence difficult and lead to underfitting [61]. Typically, a larger batch size produces
better prediction results but increases the computational load. Therefore, finding a balance
between computational efficiency and prediction accuracy is crucial. Meanwhile, epoch
refers to the number of iterations, meaning that all training samples are passed forward and
backward once. As the epoch increases, the model weights are continuously updated, and
the model loss gradually decreases, leading to improved accuracy and stabilization. There-
fore, a large epoch value (e.g., >200) is required according to the sample size. Additionally,
the number of model trees (n_estimators) was vital for RF and Xgboost. As the number
of trees increased, the stability of the model improved, but at the expense of an increased
computational load. For SVR, the kernel function is the most important, as it determines the
best regression hyperplane and, therefore, plays a critical role in prediction tasks.

4.3. Limitations and Future Research

Besides features and models, the AGB model accuracy using an area-based approach
is significantly influenced by factors such as sample size, plot size, and plot shape [26,62].
When it comes to sampling, larger sample sizes tend to have smaller sampling errors and
are therefore better representatives of the population than small sample sizes [63]. Large
plot sizes and circular plot configurations have been found to be more effective for AGB
estimation due to their ability to reduce edge effects [62]. In this study, we focused primarily
on the impact of features and models on AGB estimation from a remote sensing perspective
and did not delve into the influence of the sample data (e.g., sample size, plot size/shape).
To test the validity of using canopy height diversity (CHD) for AGB estimation, we selected
a complex mixed forest type (i.e., NSFs). To further demonstrate the wide applicability of
CHD, we tested its performance in larch plantations (Table A6). The CHD performed better
in the larch plantation compared to the NSFs (Table A6 vs. Table 4). This demonstrates the
effectiveness of CHD in plantation forests. Diverse stand types could be examined for the
generalizability of CHD in the future. In addition, high point cloud density is important to
capture the CHD curve completely. The LiDAR sensors carried by the UAV can collect high
point cloud density since the UAV has a lower flight altitude (e.g., 80 m in this study) and a
lower flight speed (e.g., 5 m/s in this study) compared to ALS data. However, acquiring
high-density point cloud data requires high flight costs. The effect of changing point cloud
density on CHD curve fitting can be further explored in the future.
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While 1D-CNNs offer superior classification accuracy, their utilization incurs specific
considerations such as the need for large training datasets, significant time commitments,
and extensive hyperparameter tuning. Conversely, traditional machine learning algorithms
offer faster processing times. Hence, the prediction model should be carefully selected after
balancing the prediction accuracy and computation load. Moreover, since the sample size
of ground surveys in forestry is small, deep learning methods such as transfer learning [64],
generative adversarial networks (GAN) [65], and meta-learning [66] that are suitable for
small sample sizes should be fully explored in the future. To increase the interpretability
of deep learning models, the SHapley Additive exPlanations (SHAP) method can also be
considered to measure the feature contribution in the future [67].

5. Conclusions

This study examined the factors that affect area-based AGB estimation of NSFs using
UAV-LiDAR data, including features and prediction models. It revealed that the prediction
model had a greater impact on forest AGB estimation than the feature and the interaction
between the model and the feature. No matter which features were applied, the DL models
(i.e., 1D-CNN, 1D-VGG16, and 1D-Resnet34) outperformed the ML models (i.e., SVR, RF,
and Xgboost), and the 1D-Resnet34 model achieved the highest accuracy using the fitted
CHD feature (R2 = 0.80, RMSE = 9.58 Mg/ha, rRMSE = 0.09).

Additionally, the parameters fitted to the CHD curves showed superior performance
compared to traditional LiDAR metrics, which indicated that the bimodal Gaussian function
was a highly effective method for fitting the CHD curves, providing accurate represen-
tations of the vertical distribution of canopy not only for single-storied stands but also
for two-storied stands. The advantages of using the fitted CHD features over traditional
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LiDAR metrics may allow for a simplification of the feature extraction and selection process
for AGB estimation. The bimodal Gaussian function could also be applied to more complex
stand structures, such as multi-layer mixed species stands, and needs to be validated in the
future. This study would provide sound foundations for effective and accurate estimation
of AGB in NSFs using appropriate features and models.
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Appendix A

Table A1. The parameters of additive biomass equations for different tree species and components
used in this study [1,33].

Tree Species Component ai bi Tree Species Component ai bi

Korean pine
branch −3.3911 2.0066

Changbai
larch

branch −4.9082 2.5139
foliage −2.6995 1.5583 foliage −4.2379 1.8784
stem −2.2319 2.2358 stem −2.5856 2.4856

white birch
branch −5.7625 3.0656

elm
branch −3.0159 2.0328

foliage −5.9711 2.5871 foliage −3.4241 1.7038
stem −2.8496 2.5406 stem −2.2812 2.3766

Manchurian
ash

branch −5.5012 2.9299
Manchurian

walnut

branch −4.0735 2.4477
foliage −5.2438 2.345 foliage −5.0456 2.2577
stem −3.4542 2.7104 stem −2.6707 2.4413

Mongolian
oak

branch −2.5856 2.4856
Mono maple

branch −2.2812 2.3766
foliage −6.997 3.5220 foliage −3.3225 2.2742
stem −5.146 2.3185 stem −3.3137 1.7074

Note: There are other tree species (e.g., mountain poplar and willow), which are so few in number that they are
not included in the table.
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Table A2. The description of LiDAR-derived metrics.

Group LiDAR Metrics Description

Height metrics (46) elev_AAD Average absolute deviation of point cloud
height.

elev_CRR Canopy relief ratio of point cloud height.
elev_GM_3rd Generalized means for the third power.

elev_cv Coefficient of variation of point cloud height.
elev_IQ Elevation percentile interquartile distance.

elev_kurt Kurtosis of point cloud height.

elev_Mmad Median of median absolute deviation of point
cloud height.

elev_max Maximum of point cloud height.
elev_min Minimum of point cloud height.

elev_mean Mean of point cloud height.
elev_median Median of point cloud height.

elev_skew Skewness of point cloud height.
elev_std Standard deviation of point cloud height.
elev_var Variance of point cloud height.

elev_per_i The height percentiles of point cloud with 5%
height intervals.

elev_AIH_i

Within a statistical cell, all normalized lidar
point clouds are sorted according to the height

and the cumulative heights of all points are
calculated. The cumulative height of i % points

is the statistical unit’s Accumulated height
percentile (AIH).

elev_AIH_IQ AIH interquartile distance.

Intensity metrics (42) int_AAD Average absolute deviation of point cloud
intensity

int _cv Coefficient of variation of point cloud intensity

int _IQ Percentile interquartile distance of point cloud
intensity

int _kurt Kurtosis of point cloud intensity

int _Mmad Median of median absolute deviation of point
cloud intensity

int _max Maximum of point cloud intensity
int _min Minimum of point cloud intensity

int _mean Mean of point cloud intensity
int _median Median of point cloud intensity

int _skew Skewness of point cloud intensity
int _std Standard deviation of point cloud intensity
int _var Variance of point cloud intensity

int_per_i The intensity percentiles of point cloud with
5% intensity intervals

int_AIH_i

Within a statistical cell, all point clouds are
sorted according to the intensity and the

cumulative intensity of all points are
calculated. The cumulative intensity of i %
points is the statistical unit’s Accumulated

height percentile (AIH)

Density metrics (10) den_i The proportion of returns in i th height interval,
i = 1 to 10.

Forest metrics (3)
CC Canopy cover
GF Gap fraction
LAI Leaf area index
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Table A3. The mean list for 24 treatments.

Deep Learning (DL) Models Machine Learning (ML) Models

1D-CNN 1D-Resnet 1D-VGG16 RF SVM Xgboost

Original CHD µ1 µ2 µ3 µ4 µ5 µ6
Original LiDAR µ7 µ8 µ9 µ10 µ11 µ12

Fitted CHD µ13 µ14 µ15 µ16 µ17 µ18
Selected LiDAR µ19 µ20 µ21 µ22 µ23 µ24

Table A4. Design of contrasts of the simple effects.

Contrast ID Simple Effects Contrast

1 Original vs. fitted CHD within DLs (µ1+µ2+µ3)
3 − (µ13+µ14+µ15)

3
2 Original vs. selected LiDAR within DLs (µ7+µ8+µ9)

3 − (µ19+µ20+µ21)
3

3 Original vs. fitted CHD within MLs (µ4+µ5+µ6)
3 − (µ16+µ17+µ18)

3
4 Original vs. selected LiDAR within MLs (µ10+µ11+µ12)

3 − (µ22+µ23+µ24)
3

5 Fitted CHD vs. selected LiDAR within DLs (µ13+µ14+µ15)
3 − (µ19+µ20+µ21)

3
6 Fitted CHD vs. selected LiDAR within MLs (µ16+µ17+µ18)

3 − (µ22+µ23+µ24)
3

7 DLs vs. MLs within Original CHD (µ1+µ2+µ3)
3 − (µ4+µ5+µ6)

3
8 DLs vs. MLs within Original LiDAR (µ7+µ8+µ9)

3 − (µ10+µ11+µ12)
3

9 DLs vs. MLs within Fitted CHD (µ13+µ14+µ15)
3 − (µ16+µ17+µ18)

3
10 DLs vs. MLs within Selected LiDAR (µ19+µ20+µ21)

3 − (µ22+µ23+µ24)
3

11 1D-Resnet vs. 1D-CNN within Fitted CHD µ14− µ13
12 1D-Resnet vs. 1D-CNN within Selected LiDAR µ20− µ19
13 1D-Resnet vs. 1D-VGG16 within Fitted CHD µ14− µ15
14 1D-Resnet vs. 1D-VGG16 within Selected LiDAR µ20− µ21

15 RF vs. SVM within Fitted CHD µ16− µ17
16 RF vs. SVM within Selected LiDAR µ22− µ23
17 RF vs. Xgboost within Fitted CHD µ16− µ18
18 RF vs. Xgboost within Selected LiDAR µ22− µ24

Table A5. Ranking of LiDAR metrics based on RFE.

Feature Rank Feature Rank

elev_mean 1 elev_per50 9
elev_max 2 elev_AIH10 10

den_5 3 elev_std 11
elev_per99 4 elev_AIH80 12
elev_AIH50 5 den_9 13

LAI 6 int_ median 14
int_AIH90 7 elev_min 15

int_max 8 int_per_10 16
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Figure A1. The effect of different sampling height intervals on model prediction accuracy (i.e.,
average R2) of the AGB estimation for the six models (SVR, RF, Xgboost, 1D-CNN4, 1D-VGG16, and
1D-Resnet34).

Table A6. Performance of CHD in larch plantation forests.

Feature
(Feature Number) Model R2 RMSE

(Mg/ha) rRMSE

Original CHD
SVR 0.28 27.33 0.25
RF 0.27 29.15 0.27

Xgboost 0.29 28.64 0.26

Fitted CHD
SVR 0.46 19.70 0.19
RF 0.58 16.12 0.15

Xgboost 0.57 15.09 0.16

Original CHD
1D-CNN4 0.26 21.84 0.22
1D-VGG16 0.50 22.61 0.21

1D-Resnet34 0.63 18.20 0.18

Fitted CHD
1D-CNN4 0.58 16.43 0.18
1D-VGG16 0.72 14.89 0.16

1D-Resnet34 0.88 8.27 0.08

Note: larch plantation sample plots were surveyed in the summer of 2020 at the Maoershan Experimental Forest
Farm. A total of 30 sample plots (30 × 30 m) were surveyed and overlaid with ULS data.
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