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Abstract: Wind measurement using spaceborne scatterometers has been used for various scientific
and operational purposes. However, the major problem of such measurements is contamination by
rain. To improve the wind measurement using the HY-2A scatterometer under rainy conditions, a
neural network-based model was established in this study. The model is almost autonomous in that
it only needs the backscatter coefficient measurement data and the observation geometry information
from the HY-2A scatterometer itself. The model can distinguish between rain-contaminated wind
pixels and rain-free wind pixels and significantly improve the accuracy of wind speed measurements
using HY-2A scatterometer alone. TAO data and linearly calibrated ECMWF data were used in the
study to validate the neural network-inverted wind speed. Under no rain conditions, the RMS of
the neural network-inverted wind speed and TAO wind speed was 1.06 m/s, with a deviation of
−0.21 m/s, which is a small difference from the standard method inverted wind speed. Under rain
conditions, the RMS and deviation were 1.94 m/s and 0.66 m/s, respectively, which were better than
the statistical results of the conventional maximum likelihood estimation method. The validated
results using linearly calibrated data also indicate that the neural network-inverted wind speed is
closer to the validation data under rain conditions.

Keywords: microwave remote sensing; scatterometer; neural network model; wind speed

1. Introduction

Unlike other remote sensors, spaceborne scatterometers can simultaneously measure
the sea surface wind speed and the direction. Compared with the traditional platforms
such as sea surface buoys, coastal stations and ships which can obtain wind vectors alone at
some discrete points, spaceborne scatterometers can observe the entire global ocean every
one to two days and in different weather conditions to provide global sea surface wind
field data [1].

Wind measurement using spaceborne scatterometers has been used for various sci-
entific and operational purposes [2]. However, the quality of wind speed measurements
can be worsened by various factors, such as instrument noise, observation geometry un-
certainty, rain contamination and the inversion method of the geophysical model function
(GMF) used by scatterometers. Among these factors, precipitation contamination is the
most important one [3,4]. Under rain-free conditions, it is found that the wind measure-
ment accuracy of scatterometers is reliable based on the verification with global numerical
model forecast data and other multi-source sea surface wind field data. However, the
wind measurement accuracy of the scatterometers will be dramatically reduced under
rainy conditions, especially for Ku-band scatterometers [5–7]. In this study, we explore a
new technique that aims to improve the measurement of sea surface wind speed using
scatterometers. The approach is to use neural network modeling to reduce the effect of
precipitation on wind speed.
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The mechanism of rain impacts on scatterometer wind measurements is complex.
Previous studies have shown that, during the process of transmitting and receiving radar
signals by scatterometers, rain clouds can absorb radar signals, resulting in two-way
signal attenuation [8]. Meanwhile, part of the volume scattering of the radar signal by
the raindrops can be received by scatterometers [9]. In addition, when raindrops reach
the sea surface, they can break the gravity–capillary waves, leading to the multiplicity
in received signals [10]. The models of wind field retrieval using the scatterometer are
normally nonlinear; however, in the early studies, rainfall was usually considered to be
uniformly distributed. Based on this assumption, the investigations on the influence
of rainfall on the scatterometer wind measurements were conducted [11]. Quartly and
Tournadre’s [12,13] study indicated that the distribution of raindrops can further change
the received backscatter coefficient. The scattering and absorption capacity of raindrops is
strongly related to the microwave wavelength. Rayleigh scattering often occurs when the
size of raindrops is much smaller than the microwave wavelength; therefore, the higher the
radar frequency, the stronger the scattering effect from raindrops. The operating frequency
of Ku-band scatterometers is often close to 13 GHz. Therefore, the effect of absorption
and scattering of raindrops on Ku-band microwave signals is much stronger than that on
C-band scatterometers, as C-band scatterometers often operate at a frequency of about
5.255 GHz. The rain effect also includes the change in sea surface roughness, altering the
backscatter coefficient. For example, Tournadre and Quilfen [14,15] found that the Ku-band
scatterometers can be remarkably affected by rainfall, as the distribution of rainfall can have
a great impact on wind vector retrieval. Portabella et al. [16] investigated the data quality of
C-band scatterometer ASCAT products under different conditions and concluded that the
degradation of ASCAT wind vector cells’ (WVCs) quality is mainly due to wind variability
associated with wind convergence and downbursts in rainy areas, rather than the droplet
effects on the short-wave roughness spectrum. From the aforementioned study results,
it can be concluded that the influence of rainfall on wind measurements with Ku-band
scatterometers is greater than on those with C-band scatterometers [17].

Rain flagging and the removal of the impact of rainfall are important to improve the
accuracy of scatterometer wind measurements. As a quality control indicator of scatterom-
eters, the observation of spatial heterogeneity of clouds and their influence on WVC at
different scales can provide introductory assistance in accuracy improvement [7]. Com-
pared with scatterometers, radiometers are more sensitive to rainfall, and they have often
been used as a reference to remove the influence of precipitation in wind measurements
using scatterometers [18–21]. Based on the method proposed by Draper and Long [22] to
remove the impact of rainfall using only scatterometer measurement data, Stiles [23,24]
introduced a neural network into the procedure. The Royal Netherlands Meteorological
Institute (KNMI) also developed a quality control (QC) technique for the ASCAT Wind
Data Processor (AWDP) [25]. Lin et al. [26] proposed an improved method for QC by
using singularity analysis (SA) technology for rain detection using an ASCAT scatterom-
eter. Rain screening is a quality control method for Ku-band scatterometers based on a
maximum likelihood estimation (MLE) objective function [27]. Figa and Stoffelen [28]
first applied this method to the National Aeronautics and Space Administration (NASA)
scatterometer (NSCAT). This method is still used in the quality research of Ku- and C-band
scatterometers [29]. Verhoef at al. [30] adopted this method as a part of the standardization
process for wind measurements. Recently, Xu and Stoffelen [17] also integrated the data and
technology of C-band scatterometers in their study to improve the rain screening method
for Ku-band scatterometers. Most of the studies on scatterometer rain impact removal
are based on numerical analysis methods. The impact of rainfall on scatterometer wind
measurements has nonlinear characteristics, so the process of numerical analysis is usually
complicated. The application of machine learning methods with strong nonlinear mapping
capability to scatterometer rain impact removal can simplify the process.

Machine learning is increasingly being used for scatterometer data processing.
Badran et al. [31] pioneered the application of a neural network to wind vector ambiguity
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removal for the ERS-1 scatterometer, obtaining promising results. Machine learning has
been extensively used in previous studies in an attempt to improve the sea surface wind
field inversion capability. Machine learning technology is capable of extracting information
from complex physical phenomena [32]. The GMF involved in wind retrieval is a highly
nonlinear model. Researchers have attempted to improve the GMF through machine learn-
ing for scatterometers of different wave lengths and platforms [33,34]. Direct inversion
of the sea surface wind field using a neural network without using GMF is also an im-
portant application in wind retrieval. For instance, Richaume et al. [35] and Lin et al. [36]
constructed a specific neural network-based wind inversion model for the C-band and the
ERS series scatterometers, respectively. Xu and Stoffelen [37] applied a neural network to
improve the accuracy of the sea surface wind field inversion in the edge and nadir swath
regions. Xie et al. [38] proposed a neural network-based method to improve the accuracy
of backscatter coefficients using rain rates measured using microwave radiometers.

In this study, we attempted to build a set of neural network models to improve the
accuracy of wind speed inversion by reducing the effect of rainfall. The modeling data
include the observed information of the HY-2A backscatter coefficient and its observation
parameters, the European Centre for Medium-Range Weather Forecasts (ECMWF) wind
speed data, and the Special Sensor Microwave Imager (SSM/I) rain rate data. Once
the models are ready, only the HY-2A measurement data are required to retrieve the
wind speed.

The rest of this paper is organized as follows: in Section 2, we will introduce the
datasets used in this paper. In addition, the methods used to train the neural network
model are detailed in this section. In the next section, we use the validation data to verify
the experimental results. Section 4 presents a preliminary discussion on the performance
of the proposed neural network model and its related limitations. Some conclusions are
drawn in Section 5.

2. Data and Methods
2.1. Datasets
2.1.1. HY-2A Scatterometer Data

The HY-2A scatterometer data used in the study are the L2A data obtained from
1 January to 31 December 2013, a total of 4939 orbits. L2A data of the HY-2A scatterometer
data came with geometric information, geographic coordinates and backscatter coefficients
of each WVC in the swath. The normalized radar cross section (NRCS) or backscatter
coefficient is a microwave signal received by the scatterometer from a rough sea surface,
usually represented by σ0, in decibel units (dB). The HY-2A scatterometer is a pencil-beam
scanning scatterometer that has a conical scanning parabolic antenna with two antenna
feeds. One feed transmits an HH polarization beam with an incident angle of 41◦, and
the other one transmits a VV polarization beam with incident angle of 48◦. The spatial
resolution of the HY-2A scatterometer is 25 km × 25 km. Each WVC contains approximately
4–15 footprint (egg) NRCS measurements.

For the HY-2A scatterometer, the wind speed measurement accuracy is normally better
than 2 m/s under rain-free conditions, while the range of the wind speed measurement is
3–24 m/s. The backscatter coefficients are not distributed in a uniform manner along the
azimuth. They are concentrated in four narrow azimuths according to the inner and outer
beams and the forward and aft views. The neural network-based model training requires
the data of NRCSs and azimuths in each WVC, which are averaged according to four view
sets in this study. Half of the HY-2A scatterometer data is used to build the neural network
models, and the remaining half is used for the model verification.

2.1.2. ECMWF ERA5 Wind Field Data

ECMWF ERA5 wind field data are global reanalysis data provided by the ECMWF.
ERA5 combines vast amounts of historical observations into global estimates using ad-
vanced modeling and data assimilation systems. As an alternative version of the ERA
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internal reanalysis, the accuracy of ERA5 surface wind is better than that of the ERA internal
reanalysis [39]. ECMWF ERA5 are global grid data of 0.25◦ × 0.25◦ with a time resolution
of 1 h. The ECMWF ERA5 wind data used in this study are the neutral wind speeds at a
height of 10 m above the ocean surface. In this study, the ECMWF ERA5 and HY-2A data
need to be spatio-temporally matched, and the corresponding ECMWF ERA5 wind speeds
are used to train the neural network model. The matched ECMWF ERA5 wind speed is
also used to test the neural network models.

2.1.3. SSM/I Rain Rate Data

The SSM/I data used in this study are provided by the Remote Sensing Systems (RSS)
website. The data are generated using continuously improved retrieval algorithms. The
radiant brightness temperature of the atmosphere, sea surface and ground surface can be
estimated based on the obtained microwave radiation from the SSM/I sensor. The version
of the SSM/I data used in this experiment is v7. The SSM/I data are organized by a regular
global latitude and longitude grid with a spatial resolution of 0.25◦ × 0.25◦, and provide
rain rate measurements up to twice a day with a rate range from 0 to 25 mm/h. The SSM/I
rain rate data are mainly used to flag the rainfall of the collocated data points, and are also
used as the output rain rate reference for the neural network-based models.

2.1.4. TAO Buoy Data

The TAO buoy data from the National Data Buoy Center (NDBC) can provide various
types of marine data. TAO buoy data were used to verify the accuracy of the ECMWF wind
field data used for training and testing the neural network. In addition, TAO buoy data
were also used to verify the accuracy of the wind speed retrieved by the neural network
models. We used the wind vector data from a total of 27 TAO buoys. The TAO wind speed
is measured at a height of 4 m above the sea surface every 10 min. When matching with
ECMWF data, it is necessary to convert the wind speed at a height of 4 m to that at a height
of 10 m, which is the reference height of the ECMWF data. The conversion formula is
as follows [40]:

Uz =
u∗
k
· ln(z/z0), (1)

where Uz represents the wind speed at height z above the ocean surface and u* is the friction
velocity calculated using the equation

u∗ = aU10N + b, (2)

where U10N is the wind speed with a height of 10 m under neutral stratification conditions;
a and b are constants. In Equation (2), if U10N < 8 m/s, a = 0.0283 and b = 0.00513 m/s; other-
wise, a = 0.051 and b = −0.14 m/s [41]. The U10N can be calculated using following equation:

U10N =
u∗
k

ln(10/z0), (3)

where K, the von Karman constant, usually is 0.4, and z0 is the roughness length. Using the
Equations (1)–(3), we can accurately compute U10N.

2.2. Data Collocation Criteria

In this study, the spatio-temporal matching data of HY-2A, ECMWF and SSM/I,
and the spatio-temporal matching data of TAO, ECMWF and SSM/I are required. The
spatial and temporal resolutions of different datasets are inconsistent. A series of different
spatio-temporal collocation processes were performed according to the characteristics
of the data. The HY-2A scatterometer data are grid data along the track with a spatial
resolution of 25 km × 25 km, while the spatial resolution of the ECMWF and SSM/I data is
0.25◦ × 0.25◦. The ECMWF wind data are continuous global data, and the corresponding
ECMWF wind speed can be obtained by interpolating the ECMWF data using the HY-2A
or TAO geographic coordinates. The ECMWF data provides re-analysis data over a time
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period, similar to the mean value of the data, and the high wind speed usually does not last
long, so the high wind speed segment of the ECMWF data may be lower than the real wind
speed. The distribution of rainfall is not spatially continuous. When matching the SSM/I
rain data, the grid closest to the center of the HY-2A WVC is selected for the corresponding
data. The number of cells with rain cover is much lower than the number of cells without
rain cover, thus, the rain rate recorded using SSM/I compared with the rate from a radar
footprint may be higher. We set the matching time window between HY-2A and ECMWF
and SSM/I data to 10 min to ensure that the matched data are close to the “real” situation
and meet the experimental requirements. The data with a time difference of more than
10 min from HY-2A were excluded.

In the validation of the ECMWF data, to maintain the spatio-temporal consistency
between the ECMWF data and the SSMI as well as TAO buoy data, the SSM/I rain rate
data and the TAO buoy data which are spatio-temporally consistent with the ECMWF data
were selected.

2.3. Data Validation
2.3.1. Verification of ECMWF Wind Field Data

The high accuracy of the TAO buoy data has been proven in many studies [42,43]. We
tried to match HY-2A and TAO data, but the amount of data obtained was small, and the
data were actually not enough for neural network training. Therefore, in this study, we
used the matched data of HY-2A and ECMWF with a larger data volume for modeling.
It is necessary to check the accuracy of ECMWF wind measurement and its consistency
under rainy conditions. The verification was to compare ECMWF wind and SSM/I rain
rate with TAO data from January to December 2013, then used the TAO buoy data as a
reference to statistically analyze the consistency between ECMWF and TAO data regarding
wind speed and wind direction. The SSM/I rain rate was used for rain flagging. A total
of 1140 data samples were obtained. The selected data of wind speed and direction were
used for testing and statistical analysis. The comparison was to calculate the average value
and root mean square (RMS) of the difference in wind speed/direction between the TAO
buoy data and the ECMWF wind field data. The calculated bias between ECMWF wind
speed and TAO wind speed under rain-free conditions is −0.09 m/s with RMS of 1.12 m/s.
The wind speed scatter plot of the matched data is shown in Figure 1a. It can be seen that
the ECMWF wind speed and the TAO wind speed have good consistency under rain-free
conditions. Under rainy conditions, the averaged bias decreases to −0.10 m/s with RMS of
2.27 m/s. Compared with the rain-free case, the data in Figure 1c are more discrete, due to
larger random errors. However, the data are evenly distributed along the diagonal line,
indicating there is no significant systematic deviation between the two datasets.

The periodic nature of wind direction means its bias and RMS around 0◦ and 360◦

may not representative of the actual quality of the data. The formula for symmetry of
differences around 0◦ and 360◦ is:

direr =


dirTAO − dirECMWF + 360◦, dirTAO − dirECMWF ≤ −180◦

dirTAO − dirECMWF, 180◦ ≥ dirTAO − dirECMWF > −180◦

dirTAO − dirECMWF − 360◦, dirTAO − dirECMWF > 180◦
, (4)

where dirECMWF is the wind direction from ECMWF wind field data, dirTAO is the wind
direction from TAO buoy data and direr is the wind direction difference between TAO and
ECMWF data.

The wind direction bias between TAO and ECMWF under rainy and rain-free condi-
tions are approximately 1.24◦ and −0.35◦ with RMS of 20.25◦ and 11.07◦. Figure 1b,d show
the box plot of the differences between TAO and ECMWF wind directions. The box in the
two plots indicates that the difference between these two data is insignificant.
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Figure 1. Scatter plots and box plots of ECMWF and TAO paired data. (a) Scatter plot of wind speed
in rain-free conditions. (b) Box plot of wind direction in rain-free conditions. (c) Scatter plot of wind
speed in rainy conditions. (d) Box plot of wind direction in rainy conditions. The dashed line in this
figure is the 1:1 line.

2.3.2. Validating the Retrieved Wind Speed of the HY-2A Scatterometer

The Ku-band scatterometer is sensitive to rainfall, which leads to a lower accuracy of
wind measurement. The wind speed of the contaminated WVC is usually overestimated.
In this study, the wind speed was retrieved from the HY-2A scatterometer and statistically
tested with the collocated ECMWF wind speed in order to determine how large the effect
of rainfall on the decrease in accuracy in the HY-2A scatterometer data is. The GMF
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used by the HY-2A scatterometer for wind retrieval is the NSCAT-2 GMF [44]; thus, this
study used NSCAT-2 to retrieve the wind fields from the HY-2A scatterometer. At present,
GMF based on empirical fitting is usually used to retrieve sea surface wind fields from
scatterometers [45–49].

The retrieval of the sea surface wind field is highly non-linear, and the methods used
to retrieve the HY-2A sea surface wind field are usually based on the Bayesian theory. To
select a suitable solution from the ambiguous wind vectors, a spatial filter or Ambiguity
Removal (AR) method was generally used in previous studies [50]. In the data processing
of the HY-2A scatterometer, the circle median filter algorithm was used to remove multiple
solutions of wind direction. In this study, ECMWF wind data are used to aid wind field
initialization before filtering. During initialization, for each WVC, the wind vector solution
whose wind direction is closest to the ECMWF wind direction is selected as the initial wind
vector of the current WVC.

The verification dataset was divided into two subsets: the one flagged as rain and
the other flagged as rain-free. Since in the original dataset, the WVCs dataset flagged as
rain is quite small, to reduce the impact of the difference in the amount of WVCs between
these two datasets, we randomly selected 62,314 WVCs from the rainfall dataset and
112,735 WVCs from the rain-free dataset as the final wind inversion verification dataset.
The sampled HY-2A and ECMWF wind fields and SSM/I rain rates were matched using
the method described in Section 2.2.

We calculated the bias and RMS between the HY-2A wind speed and the ECMWF
wind speed. The statistical results are shown in Figure 2. Figure 2a shows the comparison of
the wind speed from the HY-2A scatterometer and the ECMWF wind speed under rain-free
conditions. The bias between them is 0.04 m/s with an RMS of 1.27 m/s. It can be seen
that the data pairs of the HY-2A-retrieved wind speed and the ECMWF wind speed are
basically distributed around the 1:1 line; only a small part of the data points has a large
deviation. The scatter plot indicates that the consistency of the HY-2A scatterometer wind
with the ECMWF wind in rain-free conditions is satisfactory.
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Figure 2. Comparisons of retrieved wind speed data from HY-2A and ECMWF under rain-free
conditions (a) and rainy conditions (b). The dashed line in these figures is the 1:1 line.

When the NRCS measured using the HY-2A scatterometer is affected by rainfall, the
bias between the retrieved wind speed and the ECMWF wind speed rises to 1.09 m/s. The
RMS also increases to 2.58 m/s. Figure 2b also shows that the data distribution is not as
good as that under rain-free conditions. In Figure 2b, the retrieved wind speed from the
rain-contaminated HY-2A measurement data is higher than the ECMWF wind speed.
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The overestimation of the HY-2A-retrieved wind speed under rainy conditions is
mainly due to the impact of rainfall on NRCS. Figure 2b shows that the effect of rainfall on
the backscatter coefficient tends to make the NRCS larger, while the two-way attenuation
of the radar signal as it passes through the raindrops in the atmosphere may have less
effect. In fact, for low and moderate wind speeds, when the rain rate is small, the NRCS
will increase with rain rate. When the rain rate increases to a certain level, the effect of
two-way attenuation of raindrops becomes dominant, leading to the NRCS decreasing
with the rain rate. As the rain rate continues to increase, the volume scattering effect
of raindrops becomes the main factor affecting the NRCS. In such rainy conditions, the
scatterometer cannot receive the signal scattered from the sea surface, so the measurements
of the scatterometer do not contain any real wind information.

2.4. Neural Network Modeling

The back propagation (BP) neural network is a multilayer feedforward neural network.
The main feature of this network is forward signal transmission and backward error
propagation. The BP neural network is suitable for solving problems with complex internal
mechanisms. The performance of the BP neural network will be affected by the distribution
of training samples, neural network structure, neural network activation function and
training termination conditions.

Before describing the neural networks used in the study, a brief analysis of the ECMWF
and SSM/I data from which the neural networks were constructed and examined is re-
quired. Figure 3 shows the data distribution of the ECMWF wind speed and the SSM/I rain
rate. The statistical distribution of the data used in constructed and examined is basically
the same. Numbers of statistics had to be processed with logarithmic transformation in
order to adapt to the big fluctuation in the data. The ECMWF wind speed data are mainly
distributed in the low and moderate wind speed section. With the increase in wind speed,
the data volume declines sharply. In the range of wind speeds exceeding 30 m/s, only a
small amount of the data is matched. It can be seen from the distribution of the SSM/I
rain rate (Figure 3d) that the amount of data with no rain or less rain is much larger than
that with rain, while the data with high rain rate are far less than that with low rain rate.
When the amount of data is not enough, the neural network-based model cannot get the
best fitting effect. Thus, the data used for training and testing were those with ECMWF
wind speeds less than 30 m/s and SSM/I rain rates less than 20 mm/h.

In neural network training, a key step is to determine the number of hidden layers
and neurons. In a neural network, hidden layers are needed when the data are nonlinearly
separated. Theoretically, the more hidden layers, the better the fitting ability; however,
too many hidden layers can cause overfitting. The number of neurons also affects the
performance of neural network training. An insufficient number of neurons will lead to
underfitting. On the contrary, too many neurons will cause overfitting. In this study, the
optimal number of hidden layers and neurons was obtained through repeated practical
training. At the beginning, we trained the neural network with one hidden layer and
10 neurons, then gradually added more layers and neurons to test the output of the
network. When the difference between output and reference was the smallest, the model
was selected.

In this study, only HY-2A scatterometer measurements and corresponding geometric
parameters were used to retrieve the wind speed. Three separate neural network models
were constructed: two for wind speed, which are represented by NNW1 and NNW3, and
another one for rain rate, which is represented by NNW2 below. The data processing flow
in Figure 4 shows the inputs and outputs of different models and the interconnections
between them.
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NNW1 is used to establish the mapping relationship between HY-2A NRCS, observa-
tion geometry and wind speed. The wind speed output from NNW1 is an input for NNW2,
which is used to fit a preliminary rain rate. The inputs of NNW3 include the HY-2A dataset
and the interim outputs (wind speed and rain rate) from NNW1 and NNW2; the output of
NNW3 is the final retrieved wind speed.

It is feasible to use one neural network to improve the wind speed contaminated by
rainfall, but better results can be obtained by using three neural networks. The data affected
by rainfall account for only about 8% of the total data. Therefore, when training NNW1 and
NNW2, we used training samples which expanded the proportion of rainfall-contaminated
data to help NNW1 and NNW2 characterize the relationship among HY-2A data, rain rate
and wind speed. NNW3 was trained by the data in their original distribution to ensure
that the final output wind speed reflects the ‘true’ situation.

Rainfall affects the NRCS, it also affects the wind direction retrieved using scatterom-
eters. The volume scattering of raindrops increases the non-wind information in the
backscatter signal, thus weakening the wind speed/direction information in the backscatter
coefficient. In addition, the splashing caused by raindrops changes the roughness of the
sea surface, which destroys the modulation effect of the relative wind direction on the
backscatter coefficient, resulting in the larger deviation of the retrieved wind direction.
As a result, it is very difficult to use a simple neural network to eliminate the impact of
rainfall on wind direction. Another reason is that the 180◦ ambiguity of wind direction
makes it difficult for the neural network to accurately fit the wind direction. Integrating
wind direction into the neural network will increase the complexity of the network. This
means that the neural network needs more hidden layers and neurons, which makes the
neural network difficult to converge and affects the effect of wind speed fitting. Based on
the above reasons, the main objective of this study is to improve the wind speed affected
by rainfall, which is easier to do.

When the ECMWF wind speed is larger than 30 m/s and the SSM/I rain rate is larger
than 20 mm/h, there are not enough collocated data to train the neural network. Therefore,
the ECMWF wind speed used for training and testing is 0.1–30 m/s, and the range of SSM/I
rain rate is 0–20 mm/h. The modeling data used in NNW1 and NNW2 network training
include the ECMWF wind speed with a sampling interval of 1m/s, the SSM/I rain rate
with an interval of 1 mm/h, and the HY-2A WVC column number. Each interval sampled
50 data points. To ensure an even distribution of the input data, a random sampling with
replacement strategy was used when the data points in an interval were less than 50. Finally,
555,700 groups of matched data were obtained. The data used for NNW3 network training
were randomly extracted from 10% of all training data.

Since the BP neural network uses a gradient descent algorithm, both the inputs and
outputs are normalized before training. We initialized the bias with 0 and initialized the
weights randomly. The learning step size was set to 0.9, 0.8, . . ., 0.1, and the maximum
number of iterations for each step was 600. The neural network structure for NNW1 is
shown in Figure 5. The input layer for the NNW1 model includes nine input terminals,
which are the column number of the HY-2A WVC, represented by the symbol rn; the
average backscatter coefficients of four different views, represented by the symbol σfN

0

(N = 1, 2, . . ., 4); and the average azimuth angles, represented by the symbol θfN (N = 1, 2,
. . ., 4); each hidden layer includes 20 neural nodes; the output is the ECMWF wind speed,
represented by w.

The neural network structure for NNW2 is shown in Figure 6. This network has one
input layer, two hidden layers and one output layer. The input layer includes 10 input
terminals, which are the column number of the HY-2A WVC, denoted as rn; the ECMWF
wind speed, denoted as w; the average backscatter coefficients of four different views,
denoted as σfN

0; and the average azimuth angles, denoted as θfN (N = 1, 2, . . ., 4); each
hidden layer includes 15 neural nodes; the output is the SSM/I rain rate, denoted as R.
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The NNW1 and NNW2 networks were trained to establish the mapping relationship
between the HY-2A measurements, geometric parameters and the reference ECMWF wind
speed and SSM/I rain rate. However, due to the processing of the sampling strategy, the
data distribution is not statistically consistent with the real situation measured using the
HY-2A scatterometer. Therefore, a third neural network trained by the data in their original
distribution was constructed to ensure that the output wind speed is less affected by the
data sampling method. The neural network structure for NNW3 is shown in Figure 7. This
neural network includes one input layer, two hidden layers and one output layer. The
input layer includes 11 input terminals, which are the column number of the HY-2A WVC,
represented by the symbol rn; the average backscatter coefficients of four different views,
represented by the symbol σfN

0 (N = 1, 2, . . ., 4); the average azimuth angles, represented
by the symbol θfN (N = 1, 2, . . ., 4); the output of NNW1, represented by w’; and the output
of NNW2, represented by R’; each hidden layer includes 15 neural nodes; the output is the
ECMWF wind speed, represented by w.
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3. Results

In Section 2, the wind field retrieval method was used to verify the wind accuracy of the
HY-2A scatterometer under rainy and rain-free conditions. The verification results showed
that the wind speed from rain-contaminated HY-2A measurement data was overestimated
compared to the ECMWF wind speed. To improve the wind measurement accuracy of the
HY-2A scatterometer under the impact of rain, the BP neural network was introduced. In
this section, we validate the performance of the neural network model using ECMWF wind
speed and TAO buoy wind speed data, as well as TAO linearly corrected ECMWF data.

3.1. Verification of Neural Network-derived Wind Speed Using ECMWF Data

The data used to test the accuracy of the neural network models for wind speed
retrieval were the collocated data of the HY-2A backscatter coefficient, ECMWF wind
speed, and SSM/I rain rate that were not involved in the training process, with a total of
175,049 data points. The wind speed predicted by the neural network under rainy and
rain-free conditions was tested with the ECMWF wind speed, and the error statistics were
assessed according to the retrieved wind speed interval of 1 m/s.

The test results are shown in Figure 8. Figure 8a,b present the statistical results of the
wind speed bias and the corresponding RMS values under rain-free and rainy conditions,
respectively. The blue circles and red asterisks, respectively, represent RMS and bias values
between the retrieved wind speed and the ECMWF wind speed (NNW wind speed minus
ECMWF wind speed). In Figure 8, it is clear that most biases between the neural network-
fitted wind speed and the ECMWF wind speed are less than 1 m/s in each wind speed
interval. The mean errors of the wind speed fluctuate close to zero under both rainy and
rain-free conditions, indicating that the retrieved HY-2A scatterometer wind speed has no
significant systematic deviation under both rainy and rain-free conditions. However, as the
wind speed increases, the RMS gradually increases. In the case of high wind speed, there
are few data for training and testing, thus, the random error of the wind speed retrieved by
the neural network increases.

Figure 9a,b are the scatter plots of the retrieved HY-2A wind speed and the ECMWF
wind speed under rain-free and rainy conditions, respectively. Compared with Figure 3,
under rainy conditions, most of the data between the retrieved wind speed and the ECMWF
wind speed are distributed along the 1:1 line, showing an obvious linear relationship. The
degree of dispersion is smaller than that in Figure 3. Comparing with Figure 3b, it can be
clearly seen that the HY-2A wind speed fitted using the neural network model is closer
to the ECMWF wind speed. At the same time, in Figure 3a, it can be considered that
under rain-free conditions, the neural network model can obtain better accuracy than the
MLE method.
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We also provide the statistical results in the upper left corner of Figure 9a,b. Bias and
RMS represent the mean value and root mean square value of the wind speed difference
between the retrieved HY-2A wind speed and the ECMWF wind speed under rainy and rain-
free conditions. Under rain-free conditions, the bias between the neural network-retrieved
wind speed and the ECMWF wind speed is −0.08 m/s with RMS of 1.16 m/s. Compared
with the bias and RMS of the wind speed retrieved using the conventional MLE method in
Figure 3a, both can reliably retrieve the wind speed under rain-free conditions. In Figure 9b,
when the NRCS measured using the HY-2A scatterometer is contaminated by rain, the
bias between the retrieved wind speed and the ECMWF wind speed is 0.19 m/s, which is
smaller than the bias (1.09 m/s) of the conventional MLE method. The RMS is also reduced
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to 1.81 m/s, indicating that the neural network model has a better effect on improving the
accuracy of the HY-2A scatterometer wind measurement under rainy conditions.

It can be seen that the neural network model provided an improvement in the wind
speed under rainy conditions. To further confirm the performance of the neural network
model, biases and RMSs between the HY-2A wind speed and the ECMWF wind speed were
calculated with a rain rate interval of 1 mm/h and range of 1–20 mm/h, and the statistical
results are shown in Figure 10. The blue circles and red asterisks represent the results of the
statistical error between MLE-retrieved wind speed and ECMWF wind speed and those
between neural network-retrieved wind speed and ECMWF wind speed, respectively. In
Figure 10a, the bias statistical results indicate that with the increase in rain rate, the bias for
the MLE method also increases, while the bias for the neural network model is relatively
stable at less than 1 m/s. Figure 10b shows that in each rain rate interval, the RMS error
of wind speed retrieved using the neural network is smaller than that retrieved using the
MLE method. The neural network significantly improves the accuracy of HY-2A wind
speed measurement under rainfall conditions.
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Figure 10. RMS and bias of wind speed as a function of SSM/I rain rate. (a) The variation curve of
wind speed bias versus the SSM/I rain rate, (b) the variation curve of wind speed RMS versus the
SSM/I rain rate. The dashed line in the figure indicates that the wind speed bias and RMS is 0.

Figure 11 shows the histogram of the difference between the retrieved HY-2A wind
speed and the ECMWF wind speed. In the figure, the bias approximately shows a normal
distribution, and the data with an error range of −1.5–1.5 m/s account for about 80%,
indicating that the difference is not significant. It can be considered that the HY-2A sea
surface wind speed retrieved using the neural network is improved with respect to the
reference HY-2A winds retrieved using the MLE method.

Figure 12a shows the bias and RMS between all the HY-2A wind speeds retrieved
using the neural network and the ECMWF wind speeds for each wind speed interval. In
this figure, at moderate wind speeds, the bias in each interval is very small. As can be
seen from Figure 12b, when the wind speed is too low or too high, there are fewer data to
train and verify the neural network. Therefore, the biases and RMSs for low wind speed
(<4.0 m/s) and high wind speed are large. Therefore, the fitted wind speed is lower than
25 m/s. However, the statistical result indicates that the neural network-retrieved wind
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speed of the HY-2A scatterometer mimics the ECMWF wind speeds to some extent, and it
is suitable for both rainy and rain-free conditions.
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3.2. Verification of Neural Network Wind Speed Using TAO Data

Previously, we used ECMWF data as a reference to verify the accuracy of the wind
speed retrieved using the neural network. Next, we use TAO buoy data as a reference
to further verify the accuracy of the wind speed retrieved using the neural network. The
temporal window and spatial window for matching TAO data and SSM/I data with HY-2A
data are set to 10 min and 12.5 km, respectively. SSM/I rain rate data were used for rain
flagging, and TAO wind speed was used to verify the wind speed retrieved using the MLE
method and the neural network model. HY-2A, TAO and SSM/I data in the entire year of
2013 were matched to construct the dataset for verification. Due to the differences in spatial
and temporal distribution among TAO data, SSM/I data and HY-2A data, only 903 data
samples were matched. Among 903 data samples, 93 data samples were flagged as rain
and 810 data samples were flagged as no rain according to the SSM/I rain rate.

Figure 13 shows scatter plots of wind speed retrieved using different methods and
the TAO buoy wind speed and the statistical results are provided in the upper left corner
of this figure. N is the number of data points, R2 is the R-square; bias and RMS are the
average value and root mean square of the wind speed difference between the retrieved
wind speed and the TAO wind speed. The black dashed line is the 1:1 line.

Figure 13a shows the scatter plot between the wind speed retrieved using the MLE
method and the TAO wind speed under rain-free conditions, while Figure 13c shows the
scatter plot between the wind speed predicted by the neural network and the TAO wind
speed under rain-free conditions. Figure 13a,c indicate that both the MLE wind speed
and the neural network wind speed are in good agreement with the TAO wind speed and
have low dispersion. Statistical results show that the difference between neural network
wind speed and TAO wind speed is less than that between MLE wind speed and TAO
wind speed.

Figure 13b,d show the scatter plot between MLE-retrieved wind speed and TAO wind
speed and the scatter plot between neural network-predicted wind speed and TAO wind
speed under rainy conditions, respectively. In Figure 13b, most of the wind speed data
pairs are located below the diagonal, indicating that the wind speed retrieved using the
MLE method is significantly higher than the TAO wind speed. In contrast, Figure 13d
shows that the matched data points of wind speed retrieved using the neural network
are basically distributed on both sides of the diagonal line, indicating that the systematic
deviation between the wind speed retrieved using the neural network and the wind speed
measured using TAO buoy is relatively small. It shows that under rainy conditions, the
accuracy of wind speed retrieved using the neural network is better than that retrieved
using the MLE method. This result is consistent with the results verified by ECMWF, which
indicates that the neural network can improve the sea surface wind speed of scatterometers
affected by rainfall.

3.3. Validation with TAO Linear Calibrated ECWMF Data

In the process of training the neural network, we used the ECMWF wind speed data as
the modeling data, so it was better to use different data as the validation data. In Section 3.2,
we tried to verify the accuracy of the inverted wind speed with the TAO buoy data, but
due to the limitation of the data volume of the matched data, the validation data under the
rainy condition are fewer. We needed a different kind of data from ECMWF for validation,
and to further confirm whether the accuracy of the neural network-inverted wind speed is
in accordance with our expectation for it. In this subsection, we use the TAO buoy data as a
reference to linearly calibrate the ECMWF data, making them closer to the TAO data. The
linear calibration compensates for the problem of wind-speed-bias-dependent manner and
insufficient data volume that may exist during the validation process using the ECMWF
and TAO data. We used the ECMWF and TAO buoy data for the whole year of 2013 for the
matching, and a total of 111,869 data pairs were obtained. Only a very small fraction of the
wind speeds measured using the TAO buoys exceeded 15 m/s, and in addition, when the
wind speeds were less than 1 m/s, there were fewer data and the measurement errors were
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random, so we computed the 1–15 m/s wind speed bias as the data for the fitted curves.
Figure 14 is a plot of the fitted curves of the bias between ECMWF and TAO. Based on the
fitted curves, it is possible to calculate the biases of the ECMWF data for wind speeds in
the range of 1–15 m/s. Removing these deviations from the ECMWF wind speeds gives
wind speeds closer to the TAO.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

the MLE method is significantly higher than the TAO wind speed. In contrast, Figure 13d 
shows that the matched data points of wind speed retrieved using the neural network are 
basically distributed on both sides of the diagonal line, indicating that the systematic de-
viation between the wind speed retrieved using the neural network and the wind speed 
measured using TAO buoy is relatively small. It shows that under rainy conditions, the 
accuracy of wind speed retrieved using the neural network is better than that retrieved 
using the MLE method. This result is consistent with the results verified by ECMWF, 
which indicates that the neural network can improve the sea surface wind speed of scat-
terometers affected by rainfall. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Scatter plots of wind speed retrieved using the MLE method and the neural network with 
TAO paired data. (a) Scatter plots of MLE wind speed in rain-free conditions. (b) Scatter plots of 
MLE wind speed in rainy conditions. (c) Scatter plots of NNW wind speed in rain-free conditions. 
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diagonal line.
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Figure 14. Fitted curves of the bias between ECMWF and TAO. The blue asterisks in the plot indicate
the bias between the ECMWF and TAO wind speeds, and the solid red line indicates the fitted curve.

In Section 3.1, we use half of the full data for validation while ensuring that there are
enough data for training, as more data may cover a wider range of rain rates and wind
speed conditions. However, if we use data similar to the distribution of the training data for
validation, the validation results will be biased toward the training data, which will affect
the ‘real’ validation results. Therefore, we extracted half of the data used in Section 3.1 as
the validation data used in this section. The ECMWF wind speeds used in this section were
corrected according to the linear calibration method mentioned above, which changes the
distribution of the data. Figure 15a,b show the distribution of the original ECMWF wind
speeds and the calibrated ECMWF wind speeds, respectively. When the ECMWF wind
speed exceeds 15 m/s, there are almost no paired data of TAO wind speed and ECMWF
wind speed, and the authenticity of the fitted curves cannot be guaranteed, which affects
the effect of deviation removal. Therefore, we set the statistical wind speed distribution
range to 1–15 m/s.
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Scatter plots of linearly calibrated ECMWF wind speed versus MLE-inverted wind
speed and NNW-inverted wind speed, categorized by the presence or absence of precipita-
tion, are shown in Figure 16. The R-squared values, bias between different wind speeds,
RMS and number of data points for linear calibration wind speed versus inversion wind
speed of the different methods are labeled at the top of each plot. Figure 16a,b show the
scatter plots of the MLE-inverted wind speeds versus the reference wind speeds under no
rain effect and rain conditions, respectively. The comparison of the scatter in the two plots
shows that the agreement between the linearly calibrated ECMWF wind speeds and the
MLE wind speeds is better under the no rain condition, while the scatter distribution of the
MLE-inverted wind speeds versus the linearly corrected wind speeds is more dispersed
under the influence of rain, with an R-squared value of 0.525 and a bias of 0.91 m/s. The
validation results show that the difference between the MLE-inverted wind speeds and the
linearly corrected wind speeds under no rain conditions is small (there is no dependence
on the ECMWF wind speeds in the wind speeds inverted using the MLE method), suggest-
ing that the linearly calibrated ECMWF wind speeds as reference data can illustrate the
effectiveness of the NNW-inverted wind speeds to some extent.
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Figure 16c,d show the scatter plots of the NNW-inverted wind speeds versus the
ECMWF wind speeds without and with rainfall effects, respectively. A comparison of
Figure 16a,c shows that the scatter plot distributions of the two are similar, and the R-
squared, bias and RMS values are very close to each other. The statistics of the NNW-
inverted wind speed is slightly better than that of the MLE method, but the difference
between the two is not significant. Comparing Figure 16b,d under the rainfall influence
condition, unlike the MLE wind speed which shows obvious deviation, the scatter plots
of the NNW inversion wind speed and the linearly calibrated ECMWF wind speed are
basically distributed along the diagonal line, which indicates that the agreement between
the two is better, and the R-squared value in the statistical results is also 0.754, and the
deviation is reduced to 0.22, which supports the smaller difference between the NNW wind
speed and the linearly calibrated wind speed under the rainfall influence. The linearly
calibrated ECMWF wind speeds are not exactly equivalent to the TAO wind speeds, and the
neural network is trained using the ECMWF data, so using the linearly corrected ECMWF
wind speed data as the validation data may lead to an increase in the bias between the
inverted NNW wind speeds and the reference wind speed.

4. Discussion

Under rainy conditions, the influence of rainfall on the NRCS is the main reason for
the overestimation of the retrieved wind speed. When the rain rate becomes very large, the
effect of volume scattering on the microwave signal is so large that the scatterometer cannot
receive the backscatter signal from the sea surface, and the backscatter coefficient has no
information of sea surface wind. Therefore, when using a neural network to improve the
scatterometer wind speed affected by rainfall, this situation should be considered and the
quality of the scatterometer data should be checked. Figure 10 presents the bias and RMS
values of the retrieved wind speed as a function of SSM/I rain rate. The statistical results
show that when the rain rate is less than 20 mm/h, the volume scattering effect of raindrops
is not large enough to submerge the backscatter signal from the sea surface. As a result, the
scatterometer can still capture the wind speed information.

In this study, we used ECMWF ERA5 wind speed and SSM/I rate data as part of
the training data for the neural network. Recent studies [13,35] have shown that in the
assimilation process of NWP, the influence of moisture flow and downdraft has not been
solved, while rainy conditions usually accompany them. ECMWF wind is based on the
assimilation data of NWP; thus, the increase in the random error of the wind speed may be
due to this reason.

Most of the SSM/I data cannot be completely spatio-temporally collocated with the
HY-2A data. Therefore, the difference between the real rainfall situation in the HY-2A
footprint and the SSM/I rain rate will cause errors, but these errors do not appear uniform
in the case of rain or no rain. We analyzed the collected SSM/I data, and found that the
data with rainfall account for only 8% of the total data, and most of the cases are no rain.

Training of neural networks requires a large amount of data. However, the proportion
of scatterometer measurement data in the high wind speed segment is relatively small;
thus, it is difficult to obtain data under heavy rain conditions. The applicability of the
neural network model constructed in this study has some limitations under the conditions
of high wind speeds and a high rain rate. Under the condition of high wind speeds or
heavy rain, the accuracy of the wind speed retrieved using the neural network decreases.
Collecting more data under the conditions of high wind speeds or heavy rain, and adding
these data to the training of the neural network is an effective method to improve the
accuracy of wind speed retrieved using the neural network. At the same time, we will also
try to use more advanced machine learning algorithms to improve the accuracy of wind
speed inversion under conditions of high wind speeds and heavy rain in future work. In
addition, understanding the coupling relationship between high rainfall and high wind
speeds and combining the physical model with the neural network is another direction of
improvement worth exploring in depth.
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In this study, a new technique to improve the accuracy of the HY-2A wind mea-
surements under rainy conditions without the need for external data was explored by
constructing neural network models. We consider this technique as a basis for creating a
reprocessed wind speed record, and it has room for further refinement due to the limitations
of the data mentioned above and the neural network itself. We expect that in future research
we will be able to overcome these limitations and provide an implementable method for
obtaining higher quality real-time data for operational scatterometer wind measurements.

5. Conclusions

The Ku-band scatterometers are sensitive to rainfall, which leads to reduced accuracy
of wind measurements. In this study, by collocating HY-2A scatterometer data, ECMWF
wind field data, and SSM/I rain rate data, BP neural networks were trained and constructed,
which can be used to retrieve the wind speed from the HY-2A scatterometer under rainy
and rain-free conditions. In this study, the ECMWF wind speed and the SSM/I rain rate
were used for modeling. During the inversion, only the scatterometer measurement data
and relevant observational parameters are required to retrieve the sea surface wind speed.
The main conclusions of our research are as follows:

• The statistical results of the HY-2A wind speed inverted using the conventional MLE
method and the ECMWF wind speed show that the HY-2A wind speed has good
agreement with the ECMWF wind speed under rain-free conditions. In comparison,
the rain-affected HY-2A wind speed is higher than the ECMWF wind speed, indicating
that the rain contaminates the scatterometer measurements and introduces errors in
the HY-2A wind speed.

• The BP neural network was used to construct wind speed retrieval models suitable
for both rainy and rain-free conditions. In the validation, the ECMWF wind speed,
TAO wind speed and ECMWF wind speed with TAO linear correction were used as
references. The verification shows that the bias between the wind speed retrieved
using the neural network model and the reference wind speed is close to zero. In the
case of rain, the bias is slightly higher than that in case of the rain-free conditions.
The results indicate that the wind speed retrieved using the neural network is less
biased, and the wind measurement accuracy of the HY-2A scatterometer affected by
rain is improved.

• In this study, due to the lack of higher wind speeds and higher rain rate data, the
appropriate range for neural network fitting is 0–20 mm/h for the rain rate and
0.1–30 m/s for the wind speed. Scatterometer wind direction retrieval is also affected
by rainfall. Correcting the influence of rainfall on wind direction will be one of our
next research works.

• HY-2B and HY-2C are the new operational HY-2 series satellites, and the measurement
accuracy of their scatterometers is higher than that of HY-2A. In the future, we will
add the data from HY-2B or HY-2C to further explore the methods to improve the
wind measurement accuracy of Ku-band scatterometers.
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