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Abstract: Low-frequency bands are an important way to realize stealth target detection for airborne
radars. However, in a complex electromagnetic environment; when low-frequency airborne radar
operates over land, it will inevitably encounter a lot of unintentional communication and intentional
interference, while effective suppression of interference can not be achieved only through the adaptive
processing of the receiver. To solve this problem, this paper proposes optimizing an algorithm
designed for sparse-frequency waveforms for use in airborne radars. The algorithm establishes
a joint objective function based on the criteria of minimizing waveform energy in the spectrum
stopband and minimizing the integrated sidelobe level of specified range cells. The waveform is
optimized by a cyclic iterative algorithm based on the Fast Fourier Transform (FFT) operation. It can
ensure the frequency domain stopband constraint to realize the effective suppression of main-lobe
interference while forming lower-range sidelobes at specified range cells to improve the ability to
detect dim targets. Theoretical analysis and simulation results have shown that the algorithm has
good anti-interference performance.

Keywords: airborne radar; anti-interference; sparse-frequency waveform; low-range sidelobe

1. Introduction

The appearance of stealth aircraft, such as the F-22 and F-35, has brought serious
challenges to airborne early warning radar systems that take conventional targets as
detection objects. Low-frequency bands are an internationally recognized effective means
of stealth detection, yet the low-frequency band spectrum is very crowded, and there are a
large number of radiation sources, which are especially dense over land [1], resulting in
the widespread existence of main lobe interference in low-frequency-band airborne early
warning radars. Thus, effective suppression of dense main lobe interference can not be
achieved only through the adaptive processing of the receiver.

Cognitive radars can obtain information by sensing the battlefield environment and
feeding it back to the transmitter, thereby changing the traditional one-way processing
mode of the radar and forming a new architecture of a dynamic closed loop between the
receiver, the transmitter, and the battlefield environment [2–5]. The processing information
in the different stages flows into the closed loop, and finally achieves the goal of enhancing
the performance of the radar system [6–8]. The cycle of information begins with the
transmitter broadcasting signals to illuminate the surrounding environment. After the
radar receives the signal and the signal enters the receiver, the scene analyzer extracts
the target information and environmental information required to judge the target and
environmental status. The intelligent decision center controls the transmitter resources
based on the information provided by the scene analyzer. The transmitter adjusts the
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transmitted waveform parameters to adapt to the environment based on the decision
results [9–11].

Cognitive waveform design is a core and key technology in cognitive radars [12–15].
The key is how to use the knowledge of the target/interference characteristics to maximize
the extraction of interesting target information in strong-interference environments [16–18].
This technology adaptively changes the transmitted waveform parameters by using prior
environmental information to generate a sparse-frequency waveform with a spectrum stop-
band and transmit a waveform with good low-autocorrelation sidelobes, which improves
the anti-interference ability and dim-target detection ability of the radar [19–21]. There has
been a lot of work in the past decade on sparse recovery applications [22–24], which has
resulted in sparse recovery technology being applied in many fields [25–27].

Spectrum constraint is the application of prior information to impose constraints
on the frequency bands that interfere or conflict with other radar and communication
equipment. These form notches at the corresponding positions to suppress interference
or avoid conflicts to finally obtain a sparse-frequency waveform. An algorithm designed
for sparse-frequency waveforms based on the steepest descent (SD) was proposed in [28],
which forms notches at the interference frequency bands to suppress interference and
reduces the range sidelobes through time–domain mismatch filters; however, this algorithm
requires a lot of computation and will cause mismatch losses. The genetic algorithm (GA)
proposed in [29] and the particle swarm optimization (PSO) proposed in [30] are both
stochastic evolutionary algorithms. When these algorithms are used to solve the objective
function, the search direction is arbitrary, and the iterative steps are long. Moreover, the
computation is large, and the convergence speed is slow. In [31], weight coefficients were
introduced to establish a joint objective function, balance the performance of Power Spectral
Density (PSD) and autocorrelation function (ACF), and extend the algorithm to the MIMO
radar. In [32], detector design and performance analysis of target detection in subspace
interference were proposed.

In addition to the sparse-frequency-waveform design, another important aspect of
cognitive waveform technology is the design of transmitted waveforms with low-range
sidelobes. The reason is that if, after matched filtering, the output signal of the radar
waveform has a high-autocorrelation sidelobe level and some range cells have sidelobe
interference, such as from strong clutters, multipath interferences, and sea clutter spikes,
the detection of dim targets will be seriously affected. The CAN algorithm proposed
in [33] uses the minimum integrated sidelobe level (ISL) as the optimization criterion. The
algorithm is based on the Fast Fourier Transform (FFT) and optimizes the waveform design
to suppress all range sidelobes, although it does not consider the sidelobe suppression
of specified range cells, and also lacks some pertinence. The WeCAN [33] algorithm,
based on the minimum weighted integrated sidelobe level (WISL), can form an extremely
low sidelobe at the specified range of cells by using prior information, which has a more
significant suppression effect and significantly improves the detection performance of the
radar. However, compared to the CAN algorithm, the computational complexity of this
algorithm is increased. The WeSCAN algorithm proposed in [34] can generate sequences
with a deeper frequency stopband notch, although at the cost of increasing the width of the
main lobe, which introduces the disadvantage of increasing the computational complexity.
Designing an algorithm for sparse-frequency waveform optimization under the range of
sidelobe level constraints proposed in [35] sets the PSD of the expected waveform as a 0–1
weighted vector. Its disadvantage is that the PSD value is uniformly set to 1 in the spectrum
passband, and the stopband depth is not adjustable.

In order to achieve effective suppression of dense main lobe interference and improve
the ability to detect dim targets, an algorithm for designing sparse-frequency waveforms for
airborne radar based on waveform energy minimization in the stopband was proposed in
this paper, namely, Stopband waveform energy Minimization Iterative Algorithm (SMIA).
In the frequency domain, the objective function is established through an optimization
criterion of minimum wave energy in the frequency stopband. Then, a new autocorrelation
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function sequence is formed by the relationship between the waveform autocorrelation
function and power spectrum density, and the problem of integrated sidelobe level min-
imization of a specified range cells is converted into a power spectrum density fitting
problem. Then, the weighting factor is employed to form a new objective function. Finally,
the waveform is optimized by the circular iterative algorithm based on an FFT operation.
Compared with traditional waveform-optimization design algorithms, the stopband depth
of the proposed algorithm can be adjusted while keeping the stopband constraint in the
frequency domain, and lower range sidelobes can be formed at specified range cells. Mean-
while, the algorithm is optimized based on an FFT operation, and has relatively lower
computational complexity.

2. Materials

It is assumed that the discrete signal form of the radar-transmitted waveform after
N-point sampling is

s = [s1 s2 · · · sN ]
T (1)

The autocorrelation function of waveform s is defined as

rk(s) =
N

∑
n=k+1

sns∗n−k = r∗−k(s), k = 0, 1, · · · , N − 1 (2)

where r0(s) =
N
∑

n=1
sns∗n is the waveform energy, {rk(s), k = −N + 1, · · · ,−1, 1, · · · , N − 1}

represents the sidelobe of the waveform autocorrelation function, and the autocorrelation
function of Equation (2) refers to the aperiodic autocorrelation function.

2.1. Construction of Spectrum Stopband Constrained Objective Function

Assume that the radar operating frequency band is [ϕmin, ϕmax], and the set of fre-
quency stopbands of the waveform sequence is φ = UL

l=1[ϕl1, ϕl2], where φ ⊆ [ϕmin, ϕmax],
ϕl1, and ϕl2 represent the lower and upper bounds of the l-th stopband, respectively. Let
f =

[
f1 f2 · · · fK

]T represent the K-point Discrete Fourier Transform (DFT) of the transmitted
waveform, where  fk =

N
∑

n=1
sne−jnωk

ωk =
2π
K k, k = 1, 2, · · · , K

(3)

For the construction of the objective function of spectrum stopband constraint, the
main purpose is to minimize the waveform energy in the frequency stopband so as to
effectively suppress the interference from the same frequency band, that is, to minimize the
waveform energy in φ = UL

l=1[ϕl1, ϕl2].
In order to be consistent with the sequence length when constructing the low-sidelobe-

constrained objective function of specified range cells in Section 2.2 below, here, let K = 2N,
that is, a 2N point PSD of the transmitted waveform s is calculated by a 2N point DFT.

fk =
2N
∑

n=1
sne−jnωk

= s1e−jωk + s2e−j2ωk + · · ·+ s2Ne−j2Nωk

=
[
e−jωk e−j2ωk · · · e−j2Nωk

]
·
[
sT 01×N

]T
= aky

(4)

where ak =
[
e−jωk e−j2ωk · · · e−j2Nωk

]
, y =

[
sT 01×N

]T is a new 2N × 1-dimension se-
quence formed by adding N zeros after the sequence s, and (·)T is the transpose operation.
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Therefore, the 2N point PSD of the waveform sequence s can be expressed as

f =
[

f1 f2 · · · f2N
]T

=
[
a1
[
sT 01×N

]T a2
[
sT 01×N

]T · · · a2N
[
sT 01×N

]T]T

=


a1
a2
...

a2N

 · [sT 01×N
]T

= F · y

(5)

where F is a 2N × 2N FFT transformation matrix.
To obtain the power spectrum density with the minimum waveform energy in the

frequency stopband, the objective function can be constructed by introducing the weighting
coefficient, where the weighted vector w can be obtained by prior information [36]. wk = 0
for the passband while wk ∈ (0, 1] for the stopband, where wk ∈ (0, 1] means taking a value
within the range of (0,1] and then adjusting the stopband depth; wk represents the value of
the k-th frequency point. The weight vector w is

w = [w1, w2, · · · , w2N ]
T (6)

Then, the objective function of the minimum waveform energy in the frequency
stopband is

min
s
‖G̃H

y‖
2

(7)

where (·)H is the conjugate transpose operation, the matrix G̃ = FHdiag(w), and diag(·) is
the diagonal matrix.

If y is in the null space of G̃
H

, then the value of Equation (7) is 0. Since the null space

of G̃
H

can be represented by the columns of matrix G, Equation (7) can be converted to

min
s
‖y−Gv‖2 (8)

where G = 1
2N FHdiag(w̃), w̃ = D−w, D is a matrix with the dimension of 2N × 1 and

elements are 1. v is a 2N × 1-dimensional auxiliary optimization variable.
Because FFH/2N = FHF/2N = I, by substituting the matrix G, Equation (8) can be

rewritten as
min

s
‖Fy− diag(w̃)v‖2 (9)

2.2. Construction of Low-Sidelobe-Constrained Objective Function of Specified-Range Cells

There is another mathematical model of the minimum waveform energy in the
spectrum stopband:

min
s
‖f� f‖2 (10)

Since the autocorrelation function sequence of waveform and waveform PSD are
Fourier transform pairs, a new autocorrelation function sequence m(s) can be constructed [37]
(See Appendix A for details).

m(s) =
[
r0(s) r1(s) · · · rN−1(s) 0 r∗N−1(s) r∗N−2(s) · · · r∗1(s)

]T
(11)
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Assuming that the ideal autocorrelation function sequence is m(s̃), where s̃ is the
ideal waveform, and the minimum mean square error criterion is used to make the final
optimized waveform s to the ideal waveform s̃, then the objective function is

min
s
‖m(s)−m(s̃)‖2 (12)

It is assumed that the relevant information of the ideal waveform s̃ can be obtained
from prior information, that is, the low sidelobe information of specified-range cells is
known. Then, the new autocorrelation function is processed in the way of 0–1 weighting,
zk = 0 for the region that needs to be suppressed, and zk = 1 for the region that does not
need to be suppressed, where zk represents the value of the k-th cell.

Therefore, the ideal autocorrelation function sequence m(s̃) can be expressed as

m(s̃) = m(s)�ws (13)

where ws is the weight vector in the same order as the new autocorrelation function sequence

ws =
[
z0, z1, · · · , zN−1 0 z∗N−1, · · · , z∗1

]T (14)

Convert Equation (10) to matrix form as follows:

f� f∗ =
[

f1 · f ∗1 f2 · f ∗2 · · · f2N · f ∗2N
]T

=
[
a1y(a1y)∗ a2y(a2y)∗ · · · a2Ny(a2Ny)∗

]T
= (Fy)� (F∗y∗)

(15)

where F is a 2N × 2N FFT transformation matrix, and y is
[
sT01×N

]T.

From Appendix A, βk =
[
1e−jωk e−j2ωk · · · e−j(N−1)ωk e−jNωk e−j(N+1)ωk · · · e−j(2N−1)ωk

]
,

fk · f ∗k = βkm(s)

f� f∗ =
[

f1 · f ∗1 f2 · f ∗2 · · · f2N · f ∗2N
]T

=
[
β1m(s) β2Nm(s) · · · β1m(s)

]T
= Bm(s)

(16)

where B is
[
βT

1 βT
2 · · · βT

2N
]T

2N×2N .
According to Equation (15), Equation (16), and BBH/2N = BHB/2N = I, it can be

concluded that
m(s) = BH(Fy)� (F∗y∗)/2N (17)

Equation (12) can be rewritten as

min
s
‖Bm(s)− B(m(s)�ws)‖2 (18)

In Equation (18), Bm(s) represents the PSD of the waveform s to be optimized, and
B(m(s)�ws) represents the PSD of the expected waveform s̃. Therefore, the objective
function is transformed from the original waveform approximation problem to a waveform
PSD fitting problem.

Expand each term of Equation (18) to

Bm(s) = (Fy)� (F∗y∗) (19)

B(m(s)�ws) = g̃� g̃∗ (20)
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where Fy is the spectrum of the actual waveform, g̃ is the spectrum of the ideal wave-
form, and the objective function of Equation (18) can be expressed as the spectrum fitting
function, namely

min
y
‖(Fy)� (F∗y∗)− g̃� g̃∗‖2 (21)

Introducing phase assist vector

u =
[
ejθ1 · · · ejθ2N

]T

2N×1
(22)

Equation (21) can be converted to

min
s,u
‖F(Ts)− h� u‖2 (23)

where h =
√
|B(m(s)�ws)| is the amplitude of the ideal spectrum,

√
|·| represents the

square root of the absolute value of each element in the vector, and T =
[
IN0N

]T
2N×N is the

zero-compensating matrix.
Combining Equation (9) and Equation (23), a weighting factor λ is introduced to form

a new objective function:

min
s,u,v

λ‖F
[
sT 01×N

]T
− diag(w̃)v‖

2
+ (1− λ)‖F(Ts)− h� u‖2 (24)

It should be noted that matrix F, matrix B, matrix T, vector w̃, and vector h are known,
and the objective function contains s, u, v, three variables, and the optimal solution of
the third variable can be obtained by fixing two variables and then iteratively solving
it continuously.

3. Optimization Algorithm
3.1. Optimization Algorithm under Constant Modulus Constraint

In order to maximize the utilization of transmitter power and avoid nonlinear dis-
tortion of the output waveform, constant modulus constraints are usually added in the
waveform design process [38], where the objective function becomes

min
s,u,v

λ‖F
[
sT 01×N

]T − diag(w̃)v‖
2
+ (1− λ)‖F(Ts)− h� u‖2

s.t. |sk| = 1, 1 ≤ k ≤ N
(25)

The main idea of solving the objective function is to assume that s and u are known
and minimize Equation (25) to obtain the optimal solution of v; then, assuming that s
and v are known, the optimal solution of u is obtained. Then, u and v are updated, the
optimal solution of s is obtained, and the iterative cycle continues until the preset stopping
condition ‖s(i) − s(i+1)‖ < ε is met, where s(i) is the sequence obtained by the i-th iteration
and ε is the preset threshold.

When s and u are known, the optimal solution of v is

v = F
[
sT01×N

]T
� w̃ (26)

When s and v are known, the optimal solution of u is

u = ejarg{F(Ts)} (27)

When u and v are given, the objective function can be written as

const− 2Re
{

sH[λc1 + (1− λ)c2]
}

(28)
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where const is the constant term independent of s, c1 is the first N elements of FHv� w̃,
and c2 is the first N elements of F∗(h� u).

Then, the optimal solution of s is

s = exp{jarg[λc1 + (1− λ)c2]} (29)

Continuously iterate until convergence.
The specific steps of the SMIA algorithm under constant modulus constraint are

provided as follows (Algorithm 1).

Algorithm 1: SMIA algorithm under constant modulus constraint

Input: randomly initialize the sequence s;
Step 1: For the current sequence s and u, calculate the optimal solution of v (see Equation (26));
Step 2: For the current sequence s and v, calculate the optimal solution of u (see Equation (27));
Step 3: For the current sequence u and v, calculate the optimal solution of s (see Equation (29));
Step 4: Iterate through Step 1, Step 2, and Step 3 until the preset stop condition ‖s(i) − s(i+1)‖ < ε

is met;
Output: the final optimized waveform s(i).

3.2. Optimization Algorithm under PAR Constraint

From the point of view of maximization of transmitter power, the ideal transmission
waveform can be obtained under constant modulus constraint, but the constraint is too
harsh. The Peak-to-Average-power Ratio (PAR) constraint is a more general constraint than
the constant modulus constraint, and its expression is

PAR =
‖s‖2

∞
1
N ‖s‖

2 ≤ τ (30)

The transmitted waveform meets the energy constraint, and ‖s‖2 = N; the objective
function under the PAR constraint is

min
s,u,v

λ‖F
[
sT 01×N

]T − diag(w̃)v‖
2
+ (1− λ)‖F(Ts)− h� u‖2

s.t. |sk| ≤
√

τ, 1 ≤ k ≤ N
(31)

Similarly, the SMIA algorithm is used to solve the problem. When s and u are known,
the optimal solution of v is

v = F
[
sT 01×N

]T
� w̃ (32)

When s and v are known, the optimal solution of u is

u = ejarg{F(Ts)} (33)

When u and v are known, according to reference [39], the Tropp alternate projection
method is used to solve the problem. For s , TT(λFHv� w̃ + (1− λ)F∗(h� u)

)
, if the

magnitude of all elements in s is less than
√

τ, then the optimal solution is s =
√

N(s/‖s‖).
Otherwise, the solution of the corresponding vector position of the element smax with
the largest amplitude in s is

√
τe(jarg(smax)), and the solution of the corresponding vector

position of the other elements can also be obtained by this algorithm and the waveform
energy changes from N to N − τ.

The specific steps of the SMIA algorithm under the PAR constraint are provided as
follows (Algorithm 2):
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Algorithm 2: SMIA algorithm under the PAR constraint

Input: randomly initialize the sequence s; the waveform energy of s is ‖s‖2 = N, and the PAR
constraint value is set to τ;
Step 1: For the current sequence s and u, calculate the optimal solution of v (see Equation (32));
Step 2: For the current sequence s and v, calculate the optimal solution of u (see Equation (33));
Step 3: For the current sequence u and v, calculate the optimal solution of s by the alternate
projection method;
Step 4: Iterate through Step 1, Step 2, and Step 3 until the preset stop condition ‖s(i) − s(i+1)‖ < ε

is met;
Output: the final optimized waveform.

4. Results

In this section, it is assumed that the waveform length N = 250; without loss of gen-
erality, the frequency is normalized, and its range is 0~1, the stop threshold of iterative
convergence is set to 10−6, and the maximum number of iterations is 104. If no special
description is made, the spectrum uses a 0–1 weighted vector. In this section, the pro-
posed SMIA algorithm is compared with the traditional WeSCAN algorithm under the
constant modulus constraint and PAR constraint so as to verify the effectiveness of the
proposed SMIA algorithm in reducing the sidelobes of specified-range cells and imposing
spectrum constraint.

4.1. Comparisons under Constant Modulus Constraint

The autocorrelation function and the power spectral density obtained by the SMIA
algorithm when λ = 0.9 are shown in Figure 1; the frequency stopband is [0.2, 0.3) and the
region of reducing the sidelobes of specified range cells is k ∈ (3, 50). The image obtained
by the WeSCAN algorithm is shown in Figure 2, and other conditions are the same as
those in Figure 1. By comparing Figures 1 and 2, the average PSD notch depth of the
SMIA algorithm is −30.12 dB, and the average PSD notch depth of the WeSCAN algorithm
is −32.23 dB. The mean sidelobe of the specified-range cells autocorrelation function of
the SMIA algorithm is −61.32 dB, and the mean sidelobe of the WeSCAN algorithm is
−43.25 dB. It can be found that, when λ = 0.9, that is, the stopband constraint weight is
large, both the SMIA algorithm and WeSCAN algorithm can form a notch at the stopband,
and the notch depth is basically the same; but, for the autocorrelation function sidelobe
level of specified range cells, the SMIA algorithm can generate a lower range sidelobe than
WeSCAN algorithm, with a difference of about 18 dB.
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results obtained by PAR constraint are consistent with those obtained by constant modu-
lus constraint. However, due to the relaxation of the peak average ratio by PAR constraint, 
the degree of freedom of waveform design increases. Therefore, compared with the con-
stant modulus constraint, the range sidelobe level obtained was relatively lower (about 20 
dB lower), while the PSD spectrum constraint was less affected. 
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Figure 1. Autocorrelation function and power spectrum density of the proposed SMIA algorithm
(λ ∈ 0.9, k ∈ (3, 50)). (a) Autocorrelation function; (b) power spectrum density.
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Figure 2. Autocorrelation function and power spectrum density of the WeSCAN algorithm (λ = 0.9,
k ∈ (3, 50)). (a) Autocorrelation function; (b) power spectrum density.

4.2. Comparisons under PAR Constraint

The autocorrelation function and power spectrum density of the SMIA algorithm and
WeSCAN algorithm under the PAR constraint are shown in Figures 3 and 4, respectively,
where PAR ≤ 2 and other conditions are the same as in Section 4.1. It can be found that the
results obtained by PAR constraint are consistent with those obtained by constant modulus
constraint. However, due to the relaxation of the peak average ratio by PAR constraint, the
degree of freedom of waveform design increases. Therefore, compared with the constant
modulus constraint, the range sidelobe level obtained was relatively lower (about 20 dB
lower), while the PSD spectrum constraint was less affected.
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Figure 3. Autocorrelation function and power spectrum density of the proposed SMIA algorithm
(PAR ≤ 2). (a) Autocorrelation function; (b) power spectrum density.
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Figure 4. Autocorrelation function and power spectrum density of the WeSCAN algorithm (PAR ≤ 2).
(a) Autocorrelation function; (b) power spectrum density.

4.3. Anti-Interference Performance

In this experiment, the region of reducing the sidelobes of specified-range cells is
k ∈ (3, 250) and the weighting factor is λ = 0.9. In Figure 5, the transmitted waveform
frequency stopband is [0.2, 0.3), the interference band is (0.35, 0.45), the interference-to-
noise ratio is 15 dB, and the PSDs of the transmitted waveform and the interference
waveform are shown in Figure 5a,b, respectively. Figure 5c is a PSD diagram of the
echo waveform, including the transmitted waveform, interference waveform, and noise.
Figure 5d shows the output of matched filtering between the echo waveform and the
transmission waveform. It can be seen that the interference frequency band does not fall
within the frequency stopband of the transmitted waveform, so the interference is not
effectively suppressed after matched filtering. The simulation conditions in Figure 6 are
essentially the same as those in Figure 5. The difference is that the frequency band of the
interference waveform is (0.22, 0.28); this frequency band is in the frequency stopband of
the transmitted waveform. Figure 6d shows the output after matched filtering. It can be
found that the interference band falls within the frequency stopband of the transmitted
waveform, and the interference is effectively suppressed after matched filtering because of
the orthogonality of the frequency domain.

4.4. The Time–Frequency Distribution Characteristics of the Optimized Waveform

In order to clarify the time–frequency distribution characteristics of the waveform
more clearly, this experiment assumes that the sequence length N = 1000. The frequency
stopband is [0.08, 0.16) U [0.25, 0.3) U [0.35, 0.4) U [0.45, 0.55) U [0.6, 0.7) U [0.78, 0.85)
U [0.9, 0.95). The time–frequency distribution of the optimized waveform obtained by the
SMIA algorithm is shown in Figure 7. It can be seen from the figure that the spectrum
power of the final optimized waveform is evenly distributed in the passband, and corre-
sponding notches are formed in the stopband, so the optimized waveform has a good
low-intercept performance.
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Figure 5. Signal waveform and matched filtering output when the frequency stopband is inconsistent
with the interference band. (a) The transmitted waveform PSD; (b) the interference waveform PSD;
(c) the echo waveform PSD; (d) matched filtering output.
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Figure 6. Cont.
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Figure 6. Signal waveform and matched filtering output when the interference frequency band falls
within the frequency stopband. (a) The transmitted waveform PSD; (b) the interference waveform
PSD; (c) the echo waveform PSD; (d) matched filtering output.
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Figure 7. The time–frequency distribution of the optimized waveform.

4.5. Comparisons between Sparse-Frequency Waveform and Non-Sparse-Frequency Waveform

The autocorrelation function of the sparse-frequency waveform and the non-sparse-
frequency waveform is shown in Figure 8, where the red line is the sparse-frequency
waveform; the frequency stopband is [0.15, 0.25) U [0.4, 0.55) U [0.7, 0.8), which means
the passband is 0.65 and the stopband is 0.35. The blue line is a non-sparse-frequency
waveform, and its bandwidth is consistent with the passband size of the sparse-frequency
waveform. Combined with Figure 8a,b, it can be found that, compared with the non-sparse-
frequency waveform, the sparse-frequency waveform has a narrower main-lobe width, but
the range sidelobes of the sparse-frequency waveform are higher. Therefore, it is necessary
to comprehensively consider the anti-interference performance, range resolution, and the
influence of range-strong isolated point clutter when optimizing the transmitted waveform
design under the background of airborne radar.



Remote Sens. 2023, 15, 4322 13 of 20

Remote Sens. 2023, 15, 4322 14 of 22 
 

 

width, but the range sidelobes of the sparse-frequency waveform are higher. Therefore, it 
is necessary to comprehensively consider the anti-interference performance, range reso-
lution, and the influence of range-strong isolated point clutter when optimizing the trans-
mitted waveform design under the background of airborne radar. 

  

(a) (b) 

Figure 8. Performance comparison between sparse-frequency waveform and non-sparse-frequency 
waveform. (a) Autocorrelation function; (b) autocorrelation function (partial). 

5. Discussions 
5.1. Weighting Factor 

In this section, we analyze the influence of the weighting factor λ  on the SMIA al-
gorithm through two performance indices: peak stopband power and peak autocorrela-
tion sidelobe level. Assuming sequence length N = 100, the region of reducing the side-
lobes of specified range cells is (2,50)k∈  and the frequency stopband is [0.2 0.3)， . The 
peak autocorrelation sidelobe level is defined as 

corr 1, , 1
20lg max k

k N

r
P

N= −

 
=  

 
 (34)

Peak stopband power is defined as 

( )2stop
110lg max

2kk

kP y
N

φ− = ∈ 
 

 (35)

{ }2

1

N
k k
y

=
 in Equation (35) is obtained from the optimal sequence { } 1

N
n n
s

=
 by 2N-point 

FFT. { }2

1

N
k k
y

=
 is normalized so that the mean of 2

ky  over the passband is 1. The value of 

k  ranges from 41 to 60. 

The graph of corrP  and stopP  is changing with λ  from 0.1 to 1, as shown in Figure 
9. As can be seen from the figure, as λ  increases, more weight is given to the stopband 
constraint penalty function, so stopP  goes down and corrP  goes up. It should be noted 

that, since the SMIA algorithm takes a random sequence as the initial sequence, stopP  is 
not monotonically decreasing with λ , and corrP  is not monotonically increasing. 

-250 -200 -150 -100 -50 0 50 100 150 200 250
k

-70

-60

-50

-40

-30

-20

-10

0
Sparse
Non-sparse

-30 -20 -10 0 10 20 30
k

-30

-25

-20

-15

-10

-5

0
Sparse
Non-sparse

Figure 8. Performance comparison between sparse-frequency waveform and non-sparse-frequency
waveform. (a) Autocorrelation function; (b) autocorrelation function (partial).

5. Discussion
5.1. Weighting Factor

In this section, we analyze the influence of the weighting factor λ on the SMIA algo-
rithm through two performance indices: peak stopband power and peak autocorrelation
sidelobe level. Assuming sequence length N = 100, the region of reducing the sidelobes
of specified range cells is k ∈ (2, 50) and the frequency stopband is [0.2, 0.3). The peak
autocorrelation sidelobe level is defined as

Pcorr = 20lg
(

max
k=1,··· ,N−1

|rk|
N

)
(34)

Peak stopband power is defined as

Pstop = 10lg
(

max
k
|yk|2

)(
k− 1
2N

∈ φ

)
(35)

{yk}2N
k=1 in Equation (35) is obtained from the optimal sequence {sn}N

n=1 by 2N-point
FFT. {yk}2N

k=1 is normalized so that the mean of |yk|2 over the passband is 1. The value of k
ranges from 41 to 60.

The graph of Pcorr and Pstop is changing with λ from 0.1 to 1, as shown in Figure 9. As
can be seen from the figure, as λ increases, more weight is given to the stopband constraint
penalty function, so Pstop goes down and Pcorr goes up. It should be noted that, since the
SMIA algorithm takes a random sequence as the initial sequence, Pstop is not monotonically
decreasing with λ, and Pcorr is not monotonically increasing.

5.2. The Number of Frequency Stopbands

The power spectrum density of the optimized waveform under the different number
of frequency stopbands is shown in Figure 10. The frequency stopband of Figure 10a
is [0.2, 0.3), the frequency stopband of Figure 10b is [0.15, 0.25) U [0.4, 0.55) U [0.7, 0.8),
the frequency stopband of Figure 10c is [0.2, 0.35) U [0.42, 0.5) U [0.65, 0.72) U [0.8, 0.87)
U [0.9, 0.95), and the frequency stopband of Figure 10d is [0.08, 0.16) U [0.25, 0.3) U [0.35, 0.4)
U [0.45, 0.55) U [0.6, 0.7) U [0.78, 0.85) U [0.9, 0.95).
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It can be seen from the figure that, when there is only one frequency stopband, the
waveform PSD notch depth is the lowest, which is −25 dB. With the increase in the number
of stopbands, the notch depth of each frequency stopband becomes shallow, which will
cause performance degradation of interference suppression. Therefore, in the process of
waveform design, it is necessary to set the number of stopbands reasonably.

5.3. Frequency Stopband Weighting Effect

In practice, the interference intensity of each interference frequency band received by
airborne radar is not the same. If the notch of the same depth is formed, the frequency
band with stronger interference intensity will not be effectively suppressed, and the weaker
frequency band will occupy more resources. Therefore, the frequency stopband resources
can be reasonably allocated by changing the weight vector of the SMIA algorithm Equation
(6). This section assumes that the sequence length is N = 100, the region of reducing the
sidelobes of specified-range cells is k ∈ (3, 100), the weighting factor λ = 0.9, the frequency
band with strong interference intensity is [0.4, 0.55], and the frequency band with weak
interference intensity is [0.15, 0.25) U [0.7, 0.8). The frequency stopbands [0.15, 0.25) U
[0.4, 0.55) U [0.7, 0.8) in Figure 11a are evenly weighted, namely, the weight vector is set to
1, the frequency stopband [0.15, 0.25) U [0.7, 0.8) weight vector in Figure 11b is set to 0.2,
and [0.4, 0.55) is set to 1. The notch depths of the three frequency stopbands are basically
the same when uniform weighting is set, and they are all about −18 dB. When the weight
vector of [0.15, 0.25) U [0.7, 0.8) is changed to 0.2, the frequency stopbands on both sides
increase significantly, and the intermediate-frequency stopband decreases. At this time,
the interference is effectively suppressed, and the spectrum stopband resources are also
effectively utilized.
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5.4. WISL and Merit Factor

The weighted integral sidelobe level is one of the criteria for measuring the quality of
the sequence, which is defined as

WISL = 2
N−1

∑
k=1

wk|rk|2(wk ≥ 0) (36)

where the smaller the WISL value, the better the final sequence obtained by the
optimization algorithm.
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Minimizing the WISL is equivalent to maximizing the merit factor (MF), which is
defined as

MF =
|r0|2

WISL
(37)

The variation of the merit factor and normalized WISL value with the number of
iterations under the constant modulus constraint and PAR constraint of different algorithms
are shown in Figures 12 and 13, respectively. Here, the CAN algorithm in [26], the WeSCAN
algorithm in [27], the SMIA-ISL algorithm in this paper under ISL criteria, and the SMIA-
WISL algorithm in this paper under WISL criteria are mainly compared.
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Figure 12. Normalized WISL and merit factor of different algorithms (constant modulus constraint).
(a) Normalized WISL; (b) merit factor.
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From Figure 12a, it can be found that the normalized WISL values of all algorithms
showed a decreasing trend as the number of iterations increased. The curves tended to be
horizontal and eventually converge as the number of iterations increased. The convergence
rate of the SMIA algorithm was the fastest either under the ISL criterion or the WISL
criterion. The curve tended to be horizontal at about 90 iterations, and its normalized WISL
value eventually converged at −24.59 dB and −25.10 dB. Because the WeSCAN algorithm
requires a large number of matrix operations and has high computational complexity, its
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convergence speed is slower than the SMIA algorithm, but it can finally obtain a smaller
WISL value, so the WeSCAN algorithm is inferior to the SMIA algorithm but better than
the CAN algorithm. Since the merit factor of Figure 12b is actually the reciprocal of the
WISL value, the conclusion is basically consistent with Figure 12a, and the merit factor of
the SMIA algorithm is the largest.

As shown in Figure 13a,b, the WISL value and merit factor of each algorithm under
the PAR constraint are basically consistent with the constant modulus constraint, but the
numerical value is much higher than the constant modulus constraint. This is because
the PAR constraint relaxes the peak average ratio and increases the degree of freedom of
waveform design, so a smaller WISL value and greater merit factor are obtained.

5.5. The Amount of Computation

The running time of the WeSCAN algorithm and SMIA algorithm was compared by a
simulation shown in Figure 14. The simulation environment was MATLAB 2022a/Windows
10, Intel Core i7-8750H CPU@2.2 GHz. In this experiment, the region of reducing the
sidelobes of specified-range cells was k ∈ (3, 100), the frequency stopband was [0.15, 0.25)
U [0.4, 0.55) U [0.7, 0.8), and the weighting factor λ = 0.9. Due to the introduction of a
large number of DFT operations and eigenvalue decomposition in each iteration of the
WeSCAN algorithm, the time complexity increased rapidly with the increase in N; the
SMIA algorithm only involves the FFT operation and has low time complexity.
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6. Conclusions

In this paper, an algorithm for designing sparse-frequency waveforms for airborne
early warning radar based on the minimum wave energy in a stopband was proposed to
solve the practical problem of dense interference encountered by the low-frequency-band
airborne early warning radar working over land. Theoretical analysis and simulation
experiments showed that the cognitive waveform optimization design algorithm pro-
posed in this paper can effectively suppress dense interference and reduce the influence
of strongly isolated point clutter and interference. It can also form low-range sidelobes at
specified-range cells, which is beneficial for dim target detection. In addition, the waveform
optimized by the algorithm in this paper has good low-intercept performance, and because
the waveform is optimized by the circular iterative algorithm based on FFT operation, it
has low computational complexity and is convenient for engineering implementation.

In practical engineering, the main lobe interference and side lobe interference exist
simultaneously in complex electromagnetic environments; in the process of the optimiza-
tion design of the transmitted waveform, the influence of main-lobe interference should
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be emphasized. At the same time, the bandwidth of the sparse waveform determines
the clutter intensity of the airborne radar receiver. The parameters such as the stopband
position and the number of stopbands can be obtained by detecting the spatial interference
distribution in passive mode. The bandwidth of the transmitted waveform to some extent
determines the clutter-to-noise ratio (CNR) of the airborne radar receiver, and its size is
determined by the clutter suppression ability of the airborne radar system.

Author Contributions: Conceptualization, M.H. and W.X.; methodology, M.H.; validation, M.H.,
Y.X., H.L. and Z.L.; writing—original draft preparation, M.H.; writing—review and editing, W.X., Y.X.
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the manuscript.
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Appendix A

Analyze Equation (10), where fk · f ∗k is the k-th item of Equation (10).

fk · f ∗k = aky(aky)∗

=
(
s1e−jωk + s2e−j2ωk + · · ·+ s2Ne−j2Nωk

)
·
(
s∗1ejωk + s∗2ej2ωk + · · ·+ s∗2Nej2Nωk

)
= s1s∗1 + s2s∗2 + · · ·+ s2Ns∗2N+

e−jωk
(
s2s∗1 + s3s∗2 + · · ·+ s2Ns∗2N−1

)
+

e−j2ωk
(
s3s∗1 + s4s∗2 + · · ·+ s2Ns∗2N−2

)
+

· · ·
ejωk
(
s1s∗2 + s2s∗3 + · · ·+ s2N−1s∗2N

)
+

ej2ωk
(
s1s∗3 + s2s∗4 + · · ·+ s2N−2s∗2N

)

(A1)

Apparently, r0(s) = s1s∗1 + s2s∗2 + · · ·+ s2Ns∗2N , r1(s) = s2s∗1 + s3s∗2 + · · ·+ s2Ns∗2N−1,
r2(s) = s3s∗1 + s4s∗2 + · · ·+ s2Ns∗2N−2, r∗1(s) = s1s∗2 + s2s∗3 + · · ·+ s2N−1s∗2N , r∗2(s) = s1s∗3 +
s2s∗4 + · · ·+ s2N−2s∗2N .

Then, Equation (A1) becomes

fk · f ∗k = r0(s) + e−jωk r1(s) + e−j2ωk r2(s) + · · ·+ e−j(N−1)ωk rN−1(s)

+ejωk r∗1(s) + ej2ωk r∗2(s) + · · ·+ ej(N−1)ωk r∗N−1(s)
(A2)

It can be seen that Equation (A2) contains all autocorrelation function sequence infor-
mation.

After careful observation, it can be found that, except for r0(s), all the autocorrelation
function sequences have exponential terms and are basically similar to the exponential
terms of Equation (3), so a vector similar to vector ak can be constructed.

fk · f ∗k =
[
1 e−jωk e−j2ωk · · · e−j(N−1)ωk ej2Nωk

(
e−j(2N−1)ωk e−j(2N−2)ωk · · · e−j(N+1)ωk

)]
·[

r0(s) r1(s) · · · rN−1(s) r∗1(s) r∗2(s) · · · r∗N−1(s)
]T (A3)
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Because of ωk =
2π
2N k, k = 1, 2, · · · , 2N

ej2Nωk = ej2πk = cos(2πk) + j ∗ sin(2πk) = 1 (A4)

Rearrange Equation (A3) as follows:

fk · f ∗k =
[
1 e−jωk e−j2ωk · · · e−j(N−1)ωk e−j(N+1)wk e−j(N+2)ωk · · · e−j(2N−1)ωk

]
·[

r0(s) r1(s) · · · rN−1(s) r∗N−1(s) r∗N−2(s) · · · r∗1(s)
]T (A5)

It can be found that Equation (A5) lacks e−jNωk , and because sn = 0, (n = N + 1,
N + 2, · · · 2N), Equation (A5) can be rewritten as

fk · f ∗k =
[
1 e−jωk e−j2ωk · · · e−j(N−1)ωk e−jNωk e−j(N+1)ωk e−j(N+2)ωk · · · e−j(2N−1)ωk

]
·[

r0(s) r1(s) · · · rN−1(s) 0 r∗N−1(s) r∗N−2(s) · · · r∗1(s)
]T

= βkm(s)

(A6)

where βk is a vector similar to ak, and m(s) is a new autocorrelation function sequence.
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