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Abstract: This survey presents an in-depth analysis of machine learning techniques applied to lidar
observations for the detection of aerosol and cloud optical, geometrical, and microphysical properties.
Lidar technology, with its ability to probe the atmosphere at very high spatial and temporal resolution
and measure backscattered signals, has become an invaluable tool for studying these atmospheric
components. However, the complexity and diversity of lidar technology requires advanced data
processing and analysis methods, where machine learning has emerged as a powerful approach.
This survey focuses on the application of various machine learning techniques, including supervised
and unsupervised learning algorithms and deep learning models, to extract meaningful information
from lidar observations. These techniques enable the detection, classification, and characterization
of aerosols and clouds by leveraging the rich features contained in lidar signals. In this article, an
overview of the different machine learning architectures and algorithms employed in the field is
provided, highlighting their strengths, limitations, and potential applications. Additionally, this
survey examines the impact of machine learning techniques on improving the accuracy, efficiency,
and robustness of aerosol and cloud real-time detection from lidar observations. By synthesizing
the existing literature and providing critical insights, this survey serves as a valuable resource for
researchers, practitioners, and students interested in the application of machine learning techniques to
lidar technology. It not only summarizes current state-of-the-art methods but also identifies emerging
trends, open challenges, and future research directions, with the aim of fostering advancements in
this rapidly evolving field.
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1. Introduction

The light detection and ranging (lidar) technique has emerged as a critical tool for
understanding the Earth’s atmosphere. It enables retrieval with high temporal and spatial
resolution of the vertically resolved optical, microphysical, and geometric properties of
aerosols [1,2] and clouds [3,4], which play a key role in modulating the Earth’s radiation
budget [5,6], influencing climate change, and affecting air quality [7–10]. Figure 1 shows
the main domains in which lidar technology plays a crucial role in atmospheric studies.
Aerosols and clouds are dynamic entities that constantly change in response to various
environmental and anthropogenic factors. Their intricate relationships with radiation,
weather patterns, and climate processes [11] require the use of vertically resolved high-
resolution atmospheric profiles. Moreover, capturing data at a high temporal resolution
allows for detailed and timely observations of atmospheric changes. Such comprehensive
insights are uniquely offered by technologies such as ground-based lidar. On the con-
trary, lidar instruments deployed on satellite, aircraft, and ground-based platforms are
capable of providing near-continuous vertical profiles (with a much longer revisit time) of
aerosols and clouds [12,13], allowing researchers to gain an unprecedented view of their
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structure, density, and distribution. However, while lidar technology continues to evolve
and improve, the complexity and sheer volume of data it generates present considerable
challenges. The heterogeneity and dynamic nature of aerosols and clouds make the re-
trieval of their properties a complex task. Here, machine learning comes into play. Machine
learning, a subset of artificial intelligence [14,15], can handle large datasets and unravel
intricate patterns within them. It offers robust methodologies for automating the extraction
of meaningful information from complex data. Machine learning algorithms can extract
valuable insights from lidar observations, to characterize and detect cloud and aerosol
layers. This aids in their parameterization for climate and weather forecasting models and
advances our understanding of their impacts on climate and air quality. In the past two
decades, the literature has witnessed numerous classic approaches, but in recent years,
analysis through machine learning algorithms has presented a promising path toward a
better and more comprehensive understanding of aerosol and cloud dynamics, as well as
their broader environmental implications. In this survey, the author analyzes the state of
the art of the principal machine learning and artificial intelligence (AI) techniques applied
to lidar observations to obtain aerosol and cloud properties.

Figure 1. Different lidar techniques and relative detection/classification of aerosols, clouds, and
precipitation problems where machine learning algorithms can play a key role.

This survey is primarily aimed at students and professionals seeking to deepen their
understanding of the topic, providing a detailed exploration of the fundamental aspects of
machine learning applied to lidar data analysis, and categorizing the approaches into three
main classes. The first class revolves around the detection and classification of aerosols,
clouds, and precipitation. The second class focuses on detecting mixing layer height (MLH)
and planetary boundary layer height (PBLH) by incorporating machine learning and deep
learning approaches borrowed from computer vision. Hybrid approaches that combine
different philosophies have also been considered within this category. This survey aims
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to change perspectives on quality assessment, by encouraging the application of newly
developed approaches in real-world environments. In doing so, the aim is to outline new
directions for future research in this domain.

In conclusion, this survey aims to provide a comprehensive overview of the machine
learning technologies applied to atmospheric physics lidar observations. It caters to stu-
dents and professionals interested in the topic, presenting the foundational aspects. This
survey aims to stimulate further research in this field and promote a fresh perspective on
these emerging methodologies.

2. Materials and Methods
2.1. Lidar Technology

Lidar techniques offer a diverse range of capabilities for studying aerosols and clouds.
Elastic lidar (EL), or elastic backscatter lidar, is one of the most widely used methods for
detecting and profiling aerosols. It measures backscattered light at the same wavelength as
the emitted laser pulse, providing valuable information on aerosol layers and their vertical
structure [6,16]. However, elastic lidar lacks the ability to derive specific aerosol properties,
such as aerosol optical depth or extinction coefficient, without additional assumptions [17]
or additional measurements. On the other hand, Raman lidar (RL) is a more sophisticated
technique, named for the Raman scattering effect, that overcomes some of the limitations
of elastic lidar. It measures the backscattered light at shifted wavelengths, which can be
used to retrieve the aerosol extinction coefficient and other properties, without additional
assumptions, such as the so-called lidar ratio [18,19]. RL can also provide information
on water–vapor mixing ratio profiles, which is an essential parameter for understand-
ing the hydrological cycle and cloud-formation processes. High-spectral-resolution laser
(HSRL, [20]) is another technology that, thanks to a high-resolution spectral filter, pro-
vides direct and independent measurements of aerosol optical properties due to extinction
and backscatter, allowing for more precise investigations of aerosol layers. The Doppler
wind lidar (DWL) technique presents a different approach from the other techniques listed
above. Instead of relying solely on the intensity or polarization of backscattered laser light,
the DWL technique specifically analyzes the frequency shift between the transmitted and
received light spectrum. This frequency shift, often known as the Doppler shift, is induced
by the motion of particles (such as aerosols or molecules) in the atmosphere with which the
light interacts. By processing this frequency difference through interference filters, DWL
can accurately retrieve the wind speed along the line of sight. This method offers precise
and direct measurement of wind profiles, making it an invaluable tool in meteorological
observations and forecasting [21].

Each of these techniques presents unique capabilities and limitations, and the choice
between them often depends on the specific requirements of the aerosol and cloud studies
that are being undertaken and, of course, the available budget. In recent years, the advance-
ment of lidar technology has increased the complexity of the field. As a result, extensive
research on retrieval and denoising methods has become crucial to retrieve the properties
of aerosol layers and clouds [22]. Lidar technology is traditionally used to evaluate and
obtain the optical, microphysical, and geometric characteristics of aerosols and clouds.
Furthermore, it is utilized to determine wind speed profiles, evaluate turbulence, and study
processes within the boundary layer, which is the section of the troposphere directly in
contact with the Earth’s surface. Lidars are adept at differentiating between various types
of aerosols and clouds, particularly through the lidar volume depolarization channel. Ir-
regularly shaped entities such as dust particles and ice crystals scatter light in a highly
depolarized fashion. On the contrary, other aerosols and clouds, such as water droplets
or biomass burning, are more spherical and result in reduced depolarization of scattered
light [16,23,24]. Notably, the aerosol classifications in CALIPSO do not consist of distinct
categories but are rather continuous mixtures, making the achieved level of agreement
commendable. Another pivotal application of lidar technology is the determination of
the thickness of the boundary layer. As Stull elucidates [25], the boundary layer is the
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atmospheric layer directly affected by the Earth’s surface and that reacts to its forcings
within roughly an hour. This layer exhibits turbulent flow, significantly influenced by
friction against the Earth’s surface. Processes such as turbulence, convection, and radiative
transfer within the boundary layer facilitate the exchange of heat, moisture, and momen-
tum between the Earth’s surface and the free troposphere. Therefore, the thickness of the
boundary layer is a sought-after parameter for various applications, such as dispersion
models. Lidars are particularly apt for gauging the thickness of the planetary boundary
layer or the mixing layer’s thickness during the day when convection is evident. Typically,
lidar uses the lowermost aerosol layer as an indicator to estimate the thickness of the
boundary layer, as the aerosol concentration shows a pronounced shift in the transition
to the free atmosphere. Traditional approaches determine the thickness of the boundary
layer by gauging the gradient at this transition point [26] or employing more recent image
processing methodologies [27].

For all the previously described applications, denoising methods are essential for
lidar data processing, as they help mitigate the effects of noise and improve the accuracy
of the retrieved information. Lidar measurements are susceptible to various sources
of noise, including solar background light, detector noise, and atmospheric variability.
Denoising techniques aim to enhance the signal-to-noise ratio (SNR), allowing for a clearer
detection of aerosol layers and clouds. These methods often involve sophisticated filtering
algorithms, statistical approaches, and signal processing techniques, to effectively remove
unwanted noise, while preserving the underlying atmospheric characteristics [28]. In this
context, machine learning algorithms, together with denoising techniques, are of paramount
importance to improve the retrieval accuracy of the less sophisticated and cheaper lidar
instruments that are often deployed in networks [29].

The raw signals acquired from the different lidar techniques, as defined in Table 1,
frequently exhibit a considerable amount of noise. This noise is predominantly a challenge
during daytime measurements, when the solar background significantly degrades the
signal-to-noise ratio (SNR). To mitigate this issue and extract meaningful information from
these signals, various denoising techniques are employed. The overarching objective of
these algorithms is to improve the SNR. However, it is imperative that while the SNR
is amplified, the intrinsic geometrical and physical properties of the aerosols and clouds
remain undistorted. This careful balance ensures that the refined data retain their precision
and relevance in atmospheric studies. Traditional denoising algorithms are summarized in
Table 2.

Table 1. Summary of different lidar techniques for atmospheric studies.

Lidar Technique Physical Process Remarks

Elastic

Based on the elastic scattering of aerosols and clouds
(Mie theory). Scattering is sensitive to particles about
the same size as the wavelength of light and is
responsible for the white appearance of clouds.

To solve the lidar equation, the lidar ratio is needed.

Raman

Based on Raman inelastic scattering, this technology
is used to retrieve the properties of aerosols and
clouds. It also provides temperature profiles and can
distinguish between liquid water and ice clouds.

Aerosol and molecule properties can be recovered
independently, without particular assumptions.
Nevertheless, the system needs periodic calibrations.

HSRL

HSRL provides unambiguous separation of aerosol
and cloud scattered signal, allowing for accurate
aerosol optical depth measurements and better
aerosol type discrimination.

The signals from molecules and aerosols are treated
independently, with higher precision. However, this
technology is quite expensive.

DWL

Based on Doppler shift, DWL analyzes the frequency
shift between the transmitted and received light
spectrum to retrieve the wind speed along the line
of sight.

In addition to wind speed, DWL can also be used as
an elastic lidar with the same limitations.
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Table 2. Traditional denoising methods for lidar techniques applied to atmospheric studies.

Method Description

Averaging A simple method that involves averaging over several consecutive bins to enhance
the signal-to-noise ratio.

Median Filtering Replaces each bin in the profile with the median of neighboring bins to remove noise.

Wavelet Transform [30] Decomposes the signal into wavelet coefficients at different scales for noise
reduction at each scale.

Savitzky–Golay Filtering [31] Uses polynomial regression to smooth out the data, while preserving the shape of
the signal.

Gaussian Filtering [32] Convolves the lidar signal with a Gaussian function for data smoothing.

High-pass and Low-pass Filtering [33] Removes noise from specific frequency ranges; high-pass filters remove
slow-varying drifts, and low-pass filters remove high-frequency noise.

Adaptive Filtering Adjusts based on the signal and noise characteristics by dynamically changing
its coefficients.

Statistical Methods Removes those bins that deviate significantly from a statistical measure, assuming
deviations from the mean are due to noise.

2.2. Main Machine Learning Algorithms

The following sections describe the main machine learning techniques applied to lidar
observations of aerosols and clouds.

2.2.1. Convolutional and Artificial Neural Networks

Convolutional neural networks (CNN) and artificial neural networks (ANN) have
carved a niche for themselves in the realm of atmospheric science, exhibiting progress
in both spatial and temporal data analysis [34]. CNNs are renowned for their ability
to understand spatial hierarchies and associations. This makes them especially suitable
for analyzing the satellite imagery obtained from remote sensing, and they have become
a powerful tool for detection and classification tasks in various domains, ranging from
computer vision to natural language processing [35]. Using convolutional layers, they are
designed to capture spatial nuances such as cloud formations, storm patterns, and aerosol
distributions [36]. For example, CNNs have shown efficacy in classifying cloud types
from satellite images and predicting the intensity of tropical cyclones based on specific
visual patterns [37]. However, ANNs, with their layered architecture, are instrumental in
deciphering intricate relationships in large datasets. In atmospheric studies, ANNs are often
used to forecast the weather, model climate, and identify specific meteorological events [38].
For example, training ANNs on historical weather data enables them to recognize patterns
and relationships between disparate atmospheric variables, facilitating the prediction
of future weather conditions. Furthermore, the adaptive nature of ANNs allows the
identification and localization of atmospheric phenomena such as aerosol layers, cyclone
centers, and storm fronts using datasets such as radar measurements or lidar scans [39]. It
is essential to note that the efficacy of CNNs, ANNs, and machine learning techniques in
general is intrinsically related to the quality and completeness of the training data and the
architectural nuances tailored for specific tasks. This nexus of neural network technology
and atmospheric science continues to foster advances that further our understanding of the
dynamic atmosphere of the Earth.

2.2.2. K-Means

The K-means algorithm, mainly known as an unsupervised clustering method, can
also be utilized for classification and detection tasks by using its clustering capabilities [40].
In the context of classification, K-means can assign class labels to unlabeled data on the
basis of its similarity to predefined centroids. This process involves two steps: training and
prediction. During the training phase, a representative set of labeled samples is used to
create a set of centroids (cluster centers) that correspond to different classes. Each centroid
represents the mean feature vector of its respective class. Features can be extracted using
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various techniques, depending on the type of data, such as image descriptors or numerical
attributes [41]. In the prediction phase, K-means uses trained centroids to classify new
unlabeled samples. The algorithm calculates the Euclidean distance between each unla-
beled sample and the centroids, assigning the sample to the class represented by the nearest
centroid. The assigned class label can then be used for classification purposes. K-means can
also be used for detection tasks by exploiting the notion of outlier detection. In this scenario,
the algorithm is trained on a set of normal samples that represent the target class or classes.
During prediction, if a new sample is significantly different from the nearest centroid (based
on a predefined threshold), it is considered an outlier or anomaly. This approach is useful
for detecting abnormal instances or objects that do not conform to the learned patterns.
However, it is important to note that K-means have certain limitations when used for classi-
fication and detection. One limitation is that it assumes a fixed number of clusters (K) and
requires prior knowledge of the number of classes or anomalies in the data. Additionally,
K-means are sensitive to the initial placement of centroids and can converge to suboptimal
solutions. It also assumes that the clusters are convex and have equal variance, which may
not always hold in complex data distributions [42]. For atmospheric studies, it is important
to note that the effectiveness of using the K-means algorithm for cloud and aerosol classifi-
cation and detection depends on the quality and representativeness of the features extracted
from the lidar data. Additionally, the choice of the number of clusters (K value) in the
algorithm should be carefully considered, as this determines the level of granularity in the
classification results. Iterative refinement and validation techniques can be used to optimize
clustering and detection performance [43]. K-means has found various applications in the
realm of atmospheric science, elucidating patterns and structures in meteorological and
climatological datasets that were not immediately apparent. Within the domain of atmo-
spheric science, this method has been used to categorize weather patterns, identify synoptic
regimes, and even discern different types of air mass. For example, researchers might use
the clustering of K-means in multiyear atmospheric profiles (comprising variables such as
temperature, humidity, pressure, and wind speed) to discern predominant atmospheric
states or patterns [44]. This categorization can provide invaluable information on typical
meteorological conditions associated with specific regions and seasons. Moreover, the K-
means algorithm has also been applied to satellite-derived datasets, such as aerosol optical
depth or cloud cover, to identify spatial patterns or classify specific clouds or aerosol types
based on their spectral properties [45]. The advantage of K-means in these applications is
its ability to handle large datasets, often spanning multiple decades, allowing scientists to
discern long-term climatological patterns. However, while the technique offers significant
utility, its efficacy is based on appropriate preprocessing of data and the judicious selection
of k, which remains a subject of ongoing research. As computational capacities grow and
datasets become more extensive and intricate, the adoption of K-means clustering in atmo-
spheric science is poised to expand, promising deeper insights into the complex dynamics
of the atmosphere. For atmospheric studies and in general, variables with different units
can introduce a significant challenge. The Euclidean distance, a fundamental metric in
cluster space, may be adversely affected by these disparate units, potentially leading to
skewed results. Normalizing the variables to align to a consistent scale diminishes the
undue influence of varying units on the Euclidean distances. It is recommended to use
feature scaling techniques that standardize variables to possess a mean of zero and unit
variance. By adopting this approach, the dominance of variables with larger units in the
distance computations is circumvented, thereby promoting an equitable consideration of
all variables. This solution not only mitigates the challenges posed by different units but
also improves the robustness and accuracy of K-means clustering outcomes.

2.2.3. Random Forest

Random forest is a versatile machine learning algorithm that can be effectively used for
classification and detection tasks. In the context of classification, random forest constructs
an ensemble of decision trees, where each tree is trained on a random subset of input
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features and data samples. The algorithm works by iteratively splitting the data based
on the selected features, with the aim of maximizing the difference between classes in the
resulting subsets. During the classification phase, the group of decision trees collectively
votes on the class label for a given input, and the majority class label is assigned as the final
prediction [46]. Random forest’s ability to combine multiple decision trees and aggregate
their predictions makes it robust against overfitting and noisy data. It can handle high-
dimensional feature spaces and provides an estimate of feature importance, aiding in
understanding the relative contributions of different features to the classification task.
Random forest has been successfully applied to various classification problems, such as
image recognition, text classification, and medical diagnosis, where it can accurately handle
complex decision boundaries and capture non-linear relationships between features and
classes. In the context of detection, random forest can be used as a robust algorithm to
identify specific objects or patterns within data. For example, in object detection tasks,
random forest can be used to detect objects by learning a set of features that describe the
appearance or shape of the target object. Different studies suggest that random forest
algorithms are used in atmospheric science. For air quality forecasting, RF algorithms are
used in conjunction with meteorological models for air quality forecasting [47] or to model
atmospheric concentrations of pollutants such as sulfur dioxide [48], and to analyze spatial
patterns in forest attributes [49] and flood risk [50].

2.2.4. Gradient Boosting Tree

Gradient boosting trees (GBT) can be effectively utilized for classification and de-
tection tasks, due to their ability to handle complex, non-linear relationships in the data
and provide accurate predictions. GBTs are an ensemble learning method that combines
multiple decision trees to create a robust predictive model. In the context of classification,
GBTs can assign labels or classes to input data according to their features. The GBT training
process involves sequentially adding decision trees, where each subsequent tree is trained
to correct the errors made by the previous trees [51]. During training, the GBT algorithm
focuses on samples that were misclassified or had high prediction errors, adjusting the
model weights to prioritize those samples [52]. By iteratively improving the model predic-
tions, GBTs can achieve high precision in classifying complex data. GBTs can automatically
select relevant features and assign appropriate weights to them during the training process,
effectively handling feature interactions that may be missed by linear models. Recent
studies suggest that gradient-boosted decision tree algorithms can be used in atmospheric
science to improve the performance of atmospheric chemistry transport models [53] and
accurately predict meteorological parameters such as air temperature and humidity [54].

3. Discussion
3.1. Aerosol Layers Detection

In their research article, McGill et al. [55] explored the application of convolutional
neural network algorithms for the detection of aerosol and cloud optical and geometric
properties features from lidar remote sensing observations. In fact, lidar technology pro-
vides vertically resolved profiles of cloud and aerosol features, making it a valuable tool for
atmospheric modeling and forecasting. The traditional approach to determining aerosol
and cloud geometrical properties involves thresholding techniques, which can be subjective
and arbitrary. To improve accuracy and reduce latency, the authors proposed the use of
AI/machine learning-based algorithms for real-time detection of atmospheric features.
The study focuses on the Cloud Physics Lidar (CPL, [56]) instrument flown on the NASA
ER-2 high-altitude aircraft during the IMPACTS field campaign [57]. The CPL data, col-
lected at a high resolution of 10 Hz, were processed in real-time using the CNN algorithm
implemented on a Nvidia Jetson TX2 board. The CNN algorithm detected aerosol layers
and clouds of the composite image of lidar profiles and output a binary image representing
the presence or absence of features. The algorithm’s performance was compared to the
traditional processing method, and a confusion matrix analysis demonstrated a high level
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of agreement between the CNN-derived results and the traditional method. The results
indicated that the real-time AI/ML-based approach provided a comparable performance to
post-flight processing, even when operating on noisier and lower signal-to-noise ratio (SNR)
data. The CNN algorithm enabled true real-time layer detection at native data resolution,
significantly improving the availability of data products and increasing horizontal resolu-
tion. A confusion matrix was used to evaluate the performance of the AI/ML algorithm
in a supervised learning context. This matrix contrasted the AI/ML-generated outcomes
with a reference, which in this context was derived from the results produced using the
conventional processing method (noting that even this method was not entirely accurate).
On 22 February 2022, there was a strong alignment between the two methods, with more
than 98% agreement for the “no-layer” classifications and 89% for the classifications con-
taining layers. This confusion matrix is illustrated in Figure 3 of MCGill publication. It is
crucial to highlight that the conventional technique processed 50 averaged profiles, which
improved the signal-to-noise ratio (SNR), while the AI/ML approach analyzed individual
profiles. This represents a limitation of the AI/ML method; processing a single profile can
lead to misdetections of layers, due to a lower SNR.

The authors highlighted the potential application of these techniques to spaceborne
lidar data, where real-time data and products are crucial for forecasting models. They
also discussed future research directions, including classification of detected layers into
specific aerosol and cloud types. Overall, this study demonstrated the effectiveness of
AI/ML techniques, specifically CNN algorithms, for real-time feature detection and height
determination in lidar data. Further advances in real-time layer classification hold promise
for enhancing the accuracy and utility of lidar-based atmospheric observations, especially
from satellite platforms.

Yorks et al. [58], in 2021, also explored the application of machine learning techniques,
specifically CNN, to enhance cloud and aerosol detection in lidar observations obtained
from the spaceborne Cloud-Aerosol Transport System (CATS [57]) instrument on the In-
ternational Space Station (ISS). By employing a wavelet denoising technique during the
day, the signal-to-noise ratio (SNR) of CATS lidar data was significantly improved, allow-
ing for the detection of finer horizontal resolution layers. The CNN technique further
improved layer detection and cloud-aerosol discrimination, always during daytime opera-
tions when the solar background was stronger, enabling better identification of cloud edges
and tenuous cloud features. However, the CNN technique exhibited limitations during
night, particularly in detecting subvisible features, such as thin optically shaped aerosol
layers. Comparisons between the CNN technique and the operational CATS Cloud-Aerosol
Detection (CAD) algorithm revealed a good agreement for clear-air bins but showed dis-
crepancies between the cloud and aerosol classifications, especially during the day. Overall,
the integration of CNN techniques and wavelet denoising enhanced the CATS lidar data
by increasing the SNR, improving layer detection, and enabling the detection of more
atmospheric features at finer horizontal resolutions. An example of how the CNN algo-
rithm improved detection during the day compared to the operational CATS algorithm
is represented in Figure 2. The study suggested combining traditional techniques with
machine learning methods for future lidar data processing, to improve the accuracy of de-
tection of aerosol layer and cloud properties, particularly during the day at finer horizontal
resolutions, which is relevant to the air quality community. The findings emphasized the
importance of machine learning tools for future lidar missions, enabling the generation of
near-real-time (NRT) data products with shorter latencies and improved accuracy.
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Figure 2. Comparison (A) CATS Attenuated Backscatter composite image (B) CATS cloud–aerosol
discrimination (CAD) algorithm Implemented algorithm (C) Predicted cloud–aerosol discrimination
(CAD) algorithm using CNN (D) Differences between (B) and (C) considering (B) as reference
between CNN algorithm and operational CATS algorithm in detecting clouds and aerosols. CNN
algorithm improved daytime detection.

3.2. Aerosol Classification

Zeng et al. [59] presented a study exploring the use of CNN to classify aerosol subtypes
in lidar observations collected by the CALIOP instrument (Cloud-Aerosol Lidar with Or-
thogonal Polarization, [60]) on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations, [60,61]) satellite. The goal was to improve the accuracy of aerosol
classification by leveraging the texture information inherent in the lidar measurements.
The authors compared the performance of their CNN-based classification method with
the existing CALIOP operational scene classification algorithms (COSCA). They evaluated
the agreement between the CNN classifier and the COSCA in identifying aerosol sub-
types, both in the troposphere and in the stratosphere. Using a three-month training set of
measurements, the CNN classifier achieved a reasonable level of agreement with COSCA.
In the troposphere, the CNN classifier identified the same aerosol subtypes as COSCA in
approximately 62% of the cases, while in the stratosphere, the agreement was around 87%.
An advantage of the CNN classifier was its ability to identify multiple subtypes of aerosols
occurring within the same layer, while COSCA were limited to identifying homogeneous
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layers. In the cases where there was a mixture of different types of aerosols, the CNN
method provided more accurate results. The study also highlighted some challenges and
limitations of the classification process. The broad definitions of aerosol species used
by COSCA and the reliance on specific discriminator parameters can introduce biases in
classification. Furthermore, the paper discussed the difficulty in distinguishing between
certain aerosol subtypes, such as polluted dust and smoke, due to their proximity to geo-
graphical locations and the lack of specificity in the class definitions. The performances
of the implemented algorithm can be evaluated in [59], Figures 3–6 of Zheng article. The
authors suggested future improvements, such as increasing CNN training sets with more
accurate field campaign measurements and developing a CNN model of three-dimensional
semantic segmentation that includes geographic information. These enhancements aim to
further improve the accuracy of aerosol subtype classification, particularly in transition
zones between major aerosol source regions, where mixing poses significant challenges.
In summary, the paper demonstrated the potential of CNN and deep learning techniques
to improve the classification of aerosol subtypes from lidar observations. Using texture in-
formation and overcoming the limitations of existing methods, the CNN classifier provides
a more realistic representation of aerosol types within individual layers. The findings con-
tributed to the advancement of aerosol characterization and have implications for various
applications, including atmospheric modeling and climate studies.

Nicolae et al. [62] described a methodology for classifying aerosols based on lidar data
using artificial neural networks (ANN). An aerosol model was developed to compute the
optical properties of different types of aerosols. The model consists of six types of pure
aerosol: continental, polluted continental, dust, marine, smoke, and volcanic. The model
also included different mixtures of these types of aerosol. The aerosol model generated
synthetic datasets of lidar measurements by varying the microphysical properties of the
aerosols and their composition. Synthetic datasets were used as input for the ANN, which
were trained to classify aerosol types based on the lidar data. Various learning rules were
tested, including momentum, conjugate gradient descent, step, and Levenberg–Marquardt.
The study considered different spectral parameters, such as the extinction Ångström expo-
nent and the backscatter coefficient, to characterize the aerosols. These parameters were
calculated on the basis of synthetic datasets. The results showed that the trained ANN
achieved a classification accuracy of 75% for more than 80% of the measured data and
75% for more than 90% of the synthetic data. Different ANN architectures were tested,
including the multilayer perceptron (MLP), Jordan/Elman networks, generalized feed
forward network, self-organizing feature maps, and recurrent neural networks. The study
also discussed the uncertainties associated with lidar measurements and synthetic data,
emphasizing the importance of considering relative errors in optical parameters. It high-
lighted the need for a trade-off between the finesse of the output aerosol types and the
computing time. In summary, the presented methodology demonstrated the use of artificial
neural networks for classifying aerosol types based on lidar data, utilizing a developed
aerosol model and synthetic datasets. The results showed promising classification accuracy,
offering a potential tool for studying aerosol properties and their impact on the atmosphere.

According to Yang et al. [63], Doppler wind lidars have gained global recognition for
their role in wind monitoring and, more recently, aerosol detection. Automatic classification
of lidar signals obtained from lidar observations is a challenging task. In this study,
the authors explored the capabilities of machine learning in classifying backscattered signals
from Doppler wind lidars deployed at the international airport of Reykjavik and Keflavik
in Iceland. Their approach involved integrating supervised and unsupervised machine
learning algorithms with traditional lidar data processing methods. Through the training of
two models, their objective was to effectively filter out noise signals and categorize Doppler
lidar observations into distinct classes, including clouds, aerosols, and rain. To initiate the
process, they employed machine learning techniques to classify lidar signals. The initial
challenge consisted of constituting a dataset that labeled the lidar data to be used as training
datasets by the supervised machine learning algorithm. To address this, they combined
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the unsupervised data clustering method DBSCAN with a conventional threshold-based
approach and manual correction. This combined method was applied to classify four days
of data obtained during two dust events in 2019. Subsequently, the labeled dataset was
utilized to train two models: a noise discrimination model and a classification model using
the RF algorithm. In their study, conducted in Iceland, traditional noise identification in
lidar data, based on carrier-to-noise ratio (CNR) thresholds, was found to be suboptimal.
In particular, there was not always a linear correlation between the data quality and CNR
values, leading to inconsistencies in noise determination. In certain scenarios, CNR values
can uncharacteristically spike, rendering typical CNR filtering ineffective. This can result in
challenges distinguishing between high clouds and noise, as the cloud measurements’ CNR
values, especially for higher-altitude clouds, are usually lower than boundary layer signals.
To address these issues, the authors introduced a new method of noise identification.
After an initial CNR filtering, the DBSCAN clustering method was applied. This approach
categorizes data points by their density, effectively distinguishing noise from non-noise,
due to their significant density differences. This refined method successfully isolated
clouds significantly distant from the boundary layer, labeling them as “high clouds’.’
Furthermore, for the purpose of training a supervised machine learning model, particularly
a random forest (RF) model, lidar data were compartmentalized into eight groups: low
clouds, high clouds, rain, three aerosol types distinguished by their origins and interaction
with atmospheric water vapor, other non-noise elements, and noise. This categorization
was based on distinct physical parameters, such as CNR values and DBSCAN clustering.
For example, high clouds were demarcated by their distance from the boundary layer and
isolated using the DBSCAN method, while different types of aerosols were classified based
on backscatter and depolarization ratio variances influenced by atmospheric moisture levels.
Rain was among the most challenging to label, due to the Doppler lidar’s insensitivity to
it. Rain classification was based on its low depolarization ratio and descending motion,
complicated by instances of high background depolarization ratios. There were cases
where it became difficult to distinguish between low clouds and precipitation. Any errors
in labels, such as those marked as rain without the associated descending movement, were
manually corrected.

The dataset, comprising more than 7.8 million data points, was labeled according to
these categories. To train the RF model, four features were selected: height, CNR, backscat-
ter coefficient, and depolarization ratio. After a system breakdown and re-calibration in
July 2019, there was a slight variance in the absolute measured values between the datasets
from June and July. Therefore, lidar data were normalized daily to maintain consistency.
Due to the massive size of the dataset, a 10% random selection was used for model training.

In conclusion, with the trained noise discrimination and classification models in
place, the lidar data were processed in two steps. First, CNR was used as input for
the noise discrimination model, to segregate noise from non-noise data. Second, height,
normalized CNR, backscatter coefficient, and depolarization ratio were used as inputs
for the classification model, categorizing the non-noise data points from the first step.
Enhancing the accuracy of lidar data labeling would contribute to further improvements in
the classification model. Additionally, the performance of the model could be improved
by employing a larger and more diverse dataset that encompassed different weather
conditions. Additionally, the calibration and correction of the lidar data played a role
in the result accuracy; that is, in certain cases, an artifact layer at approximately 600 m
was discovered due to the absence of focal correction. On the basis of their findings, they
concluded that the continuous incorporation of new training data would further enhance
the results. Consequently, the algorithms presented in this study hold promise for real-time
interpretation of lidar observations, providing valuable information to end-users such as
aviation service providers and air quality observers.
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3.3. Mixing Height Retrieval

The work of Rieutord et al. [64] focused on developing two machine learning algo-
rithms, K-means for the atmospheric boundary layer (KABL) and AdaBoost for the atmo-
spheric boundary layer (ADABL), to estimate the height of the mixing layer (MLH, [27,65])
from aerosol lidar measurements. The algorithms were applied to a two-year dataset from
the Météo-France operational elastic lidar network, and their performance was compared
to radiosonde measurements, considered as a reference. The KABL algorithm is a non-
supervised algorithm based on the K-means clustering algorithm. It looks for a natural
separation in the backscatter signals between the boundary layer and the free atmosphere.
The main findings related to KABL were as follows:

• KABL generally outperformed the manufacturer’s algorithm, but its performance
varied between sites. At the Trappes site, KABL performed well, while at the Brest
site, the manufacturer’s algorithm performed better;

• The diurnal cycle of the KABL estimates showed a behavior similar to the manufac-
turer’s algorithm but consistently yielded estimates higher by approximately 200 m;

• KABL frequently misidentified the top of the boundary layer, often confusing it with
other surface layers or clouds;

• KABL showed versatility by being less dependent on instrumental settings and cali-
brations, which makes it compatible with backscatter profiles from other instruments.

ADABL is a supervised algorithm based on the AdaBoost algorithm. It fits a large
number of decision trees into a labeled dataset and aggregates them intelligently to provide
accurate predictions. The main findings related to ADABL were as follows:

• ADABL generally outperformed both KABL and the manufacturer’s algorithm at both
sites, exhibiting higher correlation and lower error;

• ADABL generated the most pronounced diurnal cycle of the MLH estimates, with a
pattern that closely resembled the expected diurnal cycle;

• ADABL’s performance was highly dependent on the day it was trained on, with the
sunset and sunrise times of those days having an over-influential effect on
the estimation;

• ADABL showed promise but had training issues that needed to be addressed, such as
the need for an enhanced training set with various meteorological conditions.

The authors concluded that the ADABL algorithm showed a higher potential, with a
root mean square error (RMSE) of 550 m with respect to the radiosonde at Trappes vs. 800 m
for the manufacturer. On the other hand, the KABL algorithm exhibited a lower perfor-
mance, with an RMSE of 800 m at Trappes, but it offered greater versatility compared
to ADABL. The manufacturer’s algorithm, which used a wavelet covariance transform,
performed well with minimal tuning, but was not open source. Future developments
for ADABL and KABL could include enhancing the training set for ADABL, enforcing
time and altitude continuity in KABL estimation, and comparing both algorithms with
high-temporal-resolution radiosonde measurements.

Another study by Sleeman et al. [66] addressed the importance of the planetary bound-
ary layer height (PBLH, [25]) for air pollution research and also the limitations of current
weather forecast models in accurately predicting PBLH, particularly during night condi-
tions. By applying the CNN algorithm for edge detection and denoising autoencoders
for preprocessing, the proposed approach was effective in retrieving PBLH from lidar
observations with higher accuracy with respect to classic methodologies. The findings
demonstrated that the deep learning method aligned well with radiosonde measurements
and outperformed traditional techniques such as wavelet methods. Furthermore, the inte-
gration of machine learning-derived PBLH into weather models, specifically the Weather
Research and Forecasting with Chemistry (WRF-Chem model), improved the overall model
accuracy and provided a breakthrough in air quality forecasting. These findings highlight
the potential of the CNN algorithm to improve boundary layer height detection and its
application to improve air quality assessments and regional weather forecasting systems.
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In 2021, Palm et al. [67] investigated the retrieval of PBLH using satellite lidar data and
compared the results with weather model reanalysis data and radiosonde measurements.
The study primarily focused on observations obtained from the Ice, Cloud and Land
Elevation Satellite (ICESat-2) and CATS instruments, using two retrieval techniques: a
classic threshold method and a CNN method. The main findings of the study showed
an ability to retrieve the PBLH at a global scale from spaceborne lidars. The threshold
method, which sets a backscatter threshold value and analyzes lidar profiles, demonstrated
good agreement with radiosonde data, confirming the conventional definition of the PBL
top based on temperature inversion and moisture decrease. Furthermore, a comparison
with the MERRA-2 reanalysis showed spatial correlations but also highlighted differences,
particularly over oceans and specific land areas. The CNN method, based on machine
learning algorithms, provided a higher horizontal resolution and showed promising results
in retrieving the PBL height. Although some discrepancies were observed compared to
the threshold method, it was suggested that the CNN technique may be more accurate in
certain cases, as it can work with raw, uncalibrated data. The limitations of satellite lidar
data were also stated, including challenges associated with cloud attenuation, daytime
noise, and sparse spatial coverage. Despite these limitations, the study emphasized the
potential of lidar instruments, especially with improvements to algorithms, in future PBL
observing systems. In summary, the threshold method and CNN technique demonstrated
their effectiveness, with the former exhibiting good agreement with the radiosonde data and
the latter offering a higher horizontal resolution. Although discrepancies were observed
compared to the MERRA-2 reanalysis, the general spatial patterns were found to be similar.
The limitations of lidar data were recognized, but the study emphasized the potential of
lidar instruments to contribute significantly to future PBL observation systems.

3.4. Wind Speed and Aerosol Optical Depth

Murphy and Hu [68] introduced an ANN retrieval algorithm to estimate the wind
speed of the ocean surface and the optical depth of aerosols using CALIPSO lidar mea-
surements. A neural network algorithm was trained with CALIPSO ocean surface and
atmospheric backscatter data, combined with collocated AMSR-E (Advanced Microwave
Scanning Radiometer-EOS) ocean surface wind speed data. The study demonstrated the
effectiveness of the ANN algorithm by comparing the retrieved wind speeds with AMSR-E
and AMSR-2 (Advanced Microwave Scanning Radiometer 2), a passive microwave ra-
diometer onboard the GCOM-W1 (Global Change Observation Mission 1st—Water) satel-
lite, which is operated by JAXA, the Japan Aerospace Exploration Agency. The neural
network algorithm was tested by applying it to CALIPSO measurements for the entirety of
2008, to retrieve ocean surface wind speed. The results showed that the retrieval was unbi-
ased, with an average wind speed difference between CALIPSO and AMSR-E of around
0.001 m/s. The standard deviation of the wind speed difference between CALIPSO and
AMSR-E, which was considered an instantaneous error, was around 1.05 m/s. The re-
trieved CALIPSO wind speeds agreed with AMSR-E for both low and high wind speeds.
The neural network also automatically adjusted aerosol lidar ratios, minimizing wind speed
retrieval errors using ocean surface and atmospheric signals. This eliminated the need to
assume predetermined lidar ratios, making the algorithm more versatile with respect to
the traditional inversion methods. The authors used the MATLAB embedded functional
fitting neural network function, fitnet. The input variables for the neural network included
various CALIPSO measurements related to the ocean surface and atmospheric backscatter,
as well as latitude. The output variable was the wind speed of the ocean surface. The study
highlighted the importance of turbulence in the exchange of momentum, energy, and green-
house gases between the atmosphere and the ocean. The retrieval of high spatial resolution
ocean surface wind speed from CALIPSO lidar measurements contributed to understand-
ing the vertical turbulence exchange and air–sea interaction. Additionally, the algorithm
allows for the derivation of aerosol optical depths (AOD) using CALIPSO’s ocean surface
backscatter signal and theoretical ocean surface reflectance calculated from wind speed
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and wind–surface slope variance relation. The study emphasized the applicability of the
algorithm to most clear skies with optical depths up to 1.5, without assuming aerosol
lidar ratios. The findings contributed to advances in aerosol distribution research, climate
dynamics, and the accuracy of wind speed and aerosol optical depth retrievals.

4. General Considerations, Open Issues, and Future Perspectives

The machine learning techniques applied for detecting aerosols and clouds from lidar
observations are still in their early stages but hold great potential for future advancement.
In Table 3, all the different machine learning algorithms implemented to detect, classify,
and study atmospheric aerosol layers, clouds, and boundary layers are summarized, to-
gether with the observation platform and lidar type. This table highlights that the detection
and classification of aerosols has received much more attention with respect to clouds.
ML algorithms were developed mostly for satellites and aircraft observations. Algorithm
applications to networks of lidars have mostly been dedicated to mixing and planetary
boundary layer detection.

Table 3. D = Detection; C = Classification; CNN = Convolution Neural Network; RF = Ran-
dom Forest; GBT = Gradient Booster Trees; ANN = Artificial Neural Network; KM = K-Means;
HSRL = High Spectral Resolution Lidar [20]; DWL = Doppler Wind Lidar [21]; EL = Elastic Lidar [5];
RL = Raman Lidar [12]; MLH = Mixing Layer Heigth; PBLH = Planetary Boundary Layer Heigth;
AOD = Aerosol Optical Depth.

Type and Refs Platform Lidar Network

D, C - CNN; McGill [55] Aircraft HSRL No
D - CNN; Yorks et al. [58] Satellite EL No

Aerosols C - CNN; Zeng et al. [59] Satellite EL No
D - RF, GBT; Yang et al. [63] Ground DWL No
C - ANN; Nicolae et al. [62] Ground ML Yes

C - RF, GBT Yang et al. [63] Ground DWL No
Clouds, Rain

D - CNN; Yorks et al. [58] Satellite HSRL No

AOD - ANN Murphy, Hu [68] Satellite EL No

PBLH, MLH, AOD MLH - KM, GBT Rieutord et al. [64] Ground EL Yes
PBLH - CNN, Sleeman et al. [66] Ground EL Yes

PBLH - CNN, Palm et al. [67] Satellite EL No

As a general remark for future algorithm implementation, it is important to exercise
caution when applying existing machine learning algorithms without proper consideration.
It is crucial to always consider the underlying physics processes that govern the interaction
of light with atmospheric constituents. Machine learning models must always be designed
and trained not as a black box, but based on correct reasoning, taking into account real-
world relationships, to ensure accurate and meaningful results.. This ensures that trained
models are capable of distinguishing between various aerosol species, such as dust, smoke,
and pollution, as well as different types of clouds, including liquid and ice clouds. Addi-
tionally, understanding the physics behind lidar measurements enables the development of
machine learning algorithms that can exploit different lidar techniques, which will extract
relevant information from lidar profiles, such as backscatter, extinction, depolarization
ratio, and spectral characteristics, to enhance the accuracy of classification. Although ma-
chine learning techniques offer the potential to automate aerosol and cloud detection, it is
important to recognize the limitations and uncertainties associated with these approaches.
Indeed, machine learning algorithms should be trained on diverse and representative
datasets that cover a wide range of atmospheric conditions and aerosol/cloud types, to
enhance their robustness and applicability. Furthermore, regular validation and evaluation
against independent measurements and ground-based observations are necessary, to assess
the accuracy and reliability of the classification results.
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5. Conclusions

Machine learning applied to lidar observation shows promising results in the detection
and classification of aerosols and clouds. Advanced algorithms such as convolutional neu-
ral networks (CNN), artificial neural networks (ANN), random forests (RF), and gradient
boosting trees (GBT) have shown significant improvements in accuracy and efficiency.
These techniques enable real-time and automated analysis of lidar data, providing valuable
insights into atmospheric phenomena. However, there is still a need for future research in
this field, particularly to test the performance of machine learning algorithms over multiple
instruments, i.e., a lidar network and/or a research infrastructure, for an extended period
of time. Continuous monitoring of aerosols and clouds is crucial for understanding their
dynamics, impact on climate, and air quality. Therefore, evaluating the performance and
reliability of machine learning algorithms across multiple lidar systems over long durations
is essential to ensure their robustness and generalizability. Moreover, future research should
focus on expanding the capabilities of machine learning algorithms in lidar data analysis.
This includes exploring new techniques, such as deep learning architectures, to further
improve the accuracy and efficiency of detection and classification tasks. Furthermore,
incorporation of additional data sources, such as meteorological data and satellite obser-
vations, could improve the contextual understanding of aerosols and clouds, leading to
more comprehensive and accurate analyses. By addressing these research needs, we can
advance the field of machine learning applied to lidar observation for the detection and
classification of aerosols and clouds. This would contribute to a better understanding of
atmospheric processes, climate change, and air quality, which would ultimately lead to
better environmental monitoring and decision making.
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