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Abstract: The fusion of hyperspectral and LiDAR images plays a crucial role in remote sensing
by capturing spatial relationships and modeling semantic information for accurate classification
and recognition. However, existing methods, such as Graph Convolutional Networks (GCNs), face
challenges in constructing effective graph structures due to variations in local semantic information
and limited receptiveness to large-scale contextual structures. To overcome these limitations, we
propose an Invariant Attribute-driven Binary Bi-branch Classification (IABC) method, which is a
unified network that combines a binary Convolutional Neural Network (CNN) and a GCN with
invariant attributes. Our approach utilizes a joint detection framework that can simultaneously
learn features from small-scale regular regions and large-scale irregular regions, resulting in an
enhanced structural representation of HSI and LiDAR images in the spectral–spatial domain. This
approach not only improves the accuracy of classification and recognition but also reduces storage
requirements and enables real-time decision making, which is crucial for effectively processing
large-scale remote sensing data. Extensive experiments demonstrate the superior performance of our
proposed method in hyperspectral image analysis tasks. The combination of CNNs and GCNs allows
for the accurate modeling of spatial relationships and effective construction of graph structures.
Furthermore, the integration of binary quantization enhances computational efficiency, enabling the
real-time processing of large-scale data. Therefore, our approach presents a promising opportunity
for advancing remote sensing applications using deep learning techniques.

Keywords: invariant graph convolutional network (GCN); convolutional neural network (CNN);
binary quantization; hyperspectral image (HSI) classification

1. Introduction

Geospatial classification plays a pivotal role in diverse applications such as Earth mon-
itoring, ecological studies, and woodland administration. Sensor technology advancements
have offered various data resources to aid in categorization assignments. Among these op-
tions, HyperSpectral Imaging (HSI) distinguishes itself due to its extensive range of spectral
bands, providing comprehensive insights into land surface characteristics. Nevertheless,
its passive imaging methodology renders it susceptible to the impact of overcast weather
conditions and challenges the differentiation of objects with similar spectral reflectance. On
the other hand, the active collection of LIght Detection And Ranging (LiDAR) data is rela-
tively immune to the influence of weather conditions. LiDAR data facilitate the collection
of altitude data, assisting in the assessment of the dimensions and contours of particular
entities. Presently, there is an increasing inclination towards employing a fusion of HSI
and LiDAR data to achieve the precise classification of land cover. Numerous collaborative
models have been examined to offer a thorough understanding of this research area.

In the past few decades, numerous machine-learning-based classifiers have been de-
signed for the integration of HSI and LiDAR in classification tasks. Among these classifiers,
Convolutional Neural Networks (CNNs) have become the prevailing tool for extracting
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spectral–spatial characteristics from HSI and LiDAR imagery. Different variants of CNNs,
including 1D-CNNs [1], 2D-CNNs [2], and 3D-CNNs [3,4], have been suggested to aug-
ment the capacity for learning spectral–spatial characteristics. Additionally, combining the
advantages of different structural networks to enhance feature information extraction and
improve classification accuracy has also been validated [5–7]. However, these experiments
indicated a limited improvement from the inclusion of extra branches, potentially due
to suboptimal compatibility among distinct network branches. To tackle this problem,
Hao et al. [8] suggested the adaptive learning of fusion weights for diverse categories to
equalize the features extracted by distinct branches. Compared to traditional feature-level
fusion methods that are artificially designed, deep feature fusion methodologies based on
CNNs possess the ability to autonomously and flexibly acquire representative features. This
offers significant potential for improving the task of multimodal image classification. Nev-
ertheless, although the current CNN-based approaches for the joint classification of HSI and
LiDAR excel in extracting spatial–spectral features at a local level, they overlook the com-
plete utilization of the overarching sequential characteristics inherent in spatial–spectral
features. Graph Convolutional Networks (GCNs) are popular and emerging network archi-
tectures that effectively manage graph-structured data by capturing connections between
instances (vertices). As a result, GCNs can inherently simulate the global spatial–spectral
relationships within images, which are not accounted for in CNNs. Shahraki and Prasad [9]
integrated 1D CNNs and GCNs for HSI classification. Wan et al. [10,11] used super-pixel
segmentation technology on the HSI, enabling the adjacency matrix to be dynamically
updated throughout the iterations of the network. Qin et al. [12] devised an innovative
approach to constructing graphs by concurrently combining spatial and spectral neigh-
borhoods in second-order versions, which enhanced the efficacy of remote sensing image
classification. Hong et al. [13] introduced miniGCN, which utilizes mini-batch learning to
train a GCN with a fixed scale for the purpose of reducing computational expenses and
enhancing classification accuracy. However, GCNs have some potential drawbacks in the
subsequent areas and are not extensively employed in the remote sensing community for
multimodal data classification.

As shown in Figure 1, variations in the local semantic information around target pixels,
such as scene composition and relative positions between objects, lead to significant feature
variations when modeling spatial information. This results in inaccurate graph structure
construction in GCN networks, where effective connections cannot be established among
pixels belonging to identical categories in spatial contexts. Therefore, we put forward an
approach to solve this problem by extracting invariant features from images at a local
level in both the spatial and frequency domains by employing the method of invariant
attribute configuration. While CNNs have the ability to learn local spatial–spectral features
at the pixel level, their receptive fields are generally constrained to small square windows,
making it difficult to capture large-scale contextual structures in images. We propose
the integration of CNNs and GCNs in a unified network architecture, where the CNN
branch learns fine-grained features at the pixel level within small regular regions, while the
GCN branch models capture high-level semantic features within irregular regions of the
image. By doing so, we combine the advantages of both CNNs and GCNs. Additionally,
because of the imaging mechanism and high-dimensional characteristics of hyperspectral
bands, the resource costs are high. Henceforth, our CNN network is designed as a binary-
quantized network to address the computational challenges and enhance the inference
speed of the CNN model. Binary quantization offers several advantages, including a
significant reduction in storage requirements, as binary values consume less memory
compared to floating-point values. Moreover, by adopting binary quantization, we are able
to alleviate resource constraints and facilitate real-time decision-making capabilities, which
are essential for effectively handling extensive data in remote sensing applications.
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• We systematically analyze the sensitivity of CNNs and GCNs to variations such as
rotation, translation, and semantic information. To the best of our understanding,
this is the first investigation in the community to explore the importance of spatial
invariance in CNN and GCN networks. By extracting invariant features, we address
the problem of feature variations caused by local semantic changes in spatial informa-
tion modeling, thereby improving the accuracy of graph structure construction in the
GCN network.

• By leveraging the advantages of both CNN and GCN, our proposed method has the
ability to concurrently acquire features from fine-grained regular regions as well as
coarse-grained irregular regions, leading to an enhanced structure representation of
HSI and LiDAR images in the spectral–spatial domain. This improvement contributes
to an overall enhancement in the classification accuracy of the network.

• To address the challenges posed by the high-dimensional nature of hyperspectral
data and computational resource limitations, we introduce a lightweight binary CNN
architecture that significantly reduces the number of parameters and computational
requirements while still maintaining a high level of classification performance.

HSI

LiDAR

Variant Features

Same Class

Miss Connection

Graph

Figure 1. The graph structure construction is influenced by feature variations in the same class field.

The structure of the paper is outlined as follows. Section 2 reviews the existing
literature on multimodal classification and network compression. Section 3 elaborates on
the proposed IABC approach. The experimental outcomes and thorough analysis of the
approach are presented in Section 3. Section 4 then discusses the implications and draws
conclusions based on the findings of our method.

2. Related Work

In this section, we provide a concise overview of two crucial aspects that are pertinent
to our work: multimodal classification and network compression.

2.1. Multimodal Classification

Multimodal image fusion can be further classified based on existing image classifica-
tion algorithms into (1) classical deep learning algorithms and (2) transformer algorithms.
CNNs as a traditional deep learning structure have become the most commonly used tool
for extracting spectral–spatial features from HSI and LiDAR data. In terms of spectral
learning, previous studies such as Hu et al. [1] utilized 1D CNNs to extract spectral features
and classify HSIs by inputting the pixel vector, derived from available samples, into the
models. For spatial learning, Chen et al. [2] introduced a 2D CNN-based framework for
HSI classification. While satisfactory results were achieved through using 1D and 2D
CNN, there was a need to effectively combine the spectral and spatial information in HSIs



Remote Sens. 2023, 15, 4255 4 of 17

to achieve more robust abstraction. This led to the incorporation of 3D CNNs in HSI
processing frameworks. Chen et al. [2] introduced a basic 3D CNN for HSI classification.
Zhong et al. [3] introduced a 3D framework that systematically extracted spectral and
spatial features in a sequential manner. Another example is the work of Ying et al. [4],
who proposed a 3D CNN that utilizes three-dimensional convolution to learn spectral–
spatial features. Xu et al. [5] employed 1D and 2D CNNs in parallel for spectral and
spatial learning. Yang et al. [6] presented a dual-channel CNN (TCCNN) that integrates
one-dimensional and two-dimensional convolution branches to capture spectral and spatial
features. Furthermore, Chen et al. [7] designed a multichannel CNN (MCCNN) with an
additional 3D convolution branch based on TCCNN. Hao et al. [8] proposed the adaptive
learning of fusion weights for different categories to equalize the features extracted by
distinct branches. Fusion based on convolutional neural networks can yield compact modal
representations. For instance, Hong et al. [14] proposed a deep encoder–decoder network
architecture for HSI and LiDAR data classification. Liu et al. [15] introduced a novel
heterogeneous deep network using both CNN and GCN branches to learn features from
small-scale regular regions and large-scale irregular regions. Although traditional methods
are easy to implement, they may suffer from classification errors and low-level features,
which can potentially degrade overall accuracy. Recently, transformer networks [16,17]
have been introduced into classification tasks, leveraging the distinct and robust global
modeling capabilities to produce desirable results. Roy et al. [18] developed a novel mul-
timodal fusion transformer network that integrates external classification markers from
other multimodal data into the transformer encoders, leading to improved generalization
performance. Yao et al. [19] extended conventional ViT with minimal modifications.

In this study, we present a novel algorithm for multimodal remote sensing image
classification using a miniature convolutional network. Our approach incorporates a joint
feature extraction framework that combines a miniature convolutional network and a
two-dimensional convolutional neural network. By leveraging this framework, we aim to
enhance the extraction of high-level information representations to overcome the limita-
tions posed by the weak robustness of feature information and single-feature information,
ultimately improving the classification performance.

2.2. Network Compression

Multiple approaches have been proposed to tackle the memory footprint and inference
latency issues of neural networks. These methods include knowledge distillation [20,21],
model pruning [22], and model quantization [23–25]. Our particular focus is on model
quantization, which aims to reduce memory and computation requirements by repre-
senting weights and activations in low-bit data types. Quantization has been extensively
researched for compressing and accelerating deep neural networks in computer vision.
Han et al. [26] reduced model sizes by quantizing network weights using rule-based strate-
gies. Jacob et al. [27] quantized weight values and activation values using 8-bit integers.
Courbariaux et al. [28] devised a binary quantization method where network weights
were binarized into {−1,+1}, achieving high compression ratios by using only one bit
for weights or activations. While quantization research in computer vision is extensive,
there is limited research specifically focusing on quantizing neural networks for remote
sensing tasks.

In this study, we applied binary quantization operations to the input and output
layers of the multilayer perceptron in the spectral attention mechanism, as well as to the
convolutional layers and each downsampling layer in the spatial attention mechanism
within the network structure. Furthermore, performing quantization operations at different
levels on the weights and activations proves beneficial for improving the model’s accuracy.
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3. Proposed Method
3.1. Invariant Attribute Consistency Fusion

As shown in Figure 2, the Invariant Attribute Consistency Fusion includes two parts:
Invariant Attribute Extraction (IAE) and Spatial Consistency Fusion (SCF). Extracting
invariant attribute features can counteract local semantic changes caused by pixel rotation
and movement or local regional composition changes. We utilize the Invariant Attribute
Profiles (IAPs) [29] for feature extraction to enhance the diversity of features and model the
invariant behaviors in multimodal data. This approach generates robust feature extraction
for various semantic changes in multimodal remote sensing data. Isotropic filtering [30] is
a well-known and powerful tool in image processing that can robustly tackle rotational
or shift variations in image patches and effectively eliminates other variabilities such as
salt-and-pepper noise and the absence of local information. Hence, the multimodal remote
sensing images are filtered using isotropic filters to obtain spatial invariant features, which
can be expressed as follows:

FH = IH ⊗KH, FL = IL ⊗KL, (1)

where H represents the HSI and L represents the LiDAR image. I is the input remote
sensing image, and K represents isotropic filtering, achieved by convolving I with K,
thereby extracting spatially invariant features from local space. Moreover, the robustness
of the features is further enhanced through the utilization of super-pixel segmentation
methods [31]. These methods prioritize the spatial invariance of the features by taking into
account object semantics, including edges, shapes, and their inherent invariance, which
can be expressed by

FH
s = S(FH), FL

s = S(FL), (2)

where S represents the segmentation of super pixels. The final attribute features for the
HSI and LiDAR images can be obtained by

FH
SIFs = [IH, FH

s ], FL
SIFs = [IL, FL

s ], (3)

where [·] is the channel concatenation operation. To achieve invariance to translation and
rotation in the frequency domain, we construct a continuous histogram of oriented gradi-
ents in Fourier polar coordinates. By utilizing the Fourier-based continuous Histogram of
Oriented Gradients (HOG) [32], we ensure invariant feature extraction in polar coordinates.
This approach accurately captures rotation behaviors at any angle. Therefore, by mapping
the translation or rotation of image blocks in Fourier polar coordinates, discrete attribute
features are transformed into continuous contours. Consequently, we obtain Frequency
Invariant Features (FIF) in the frequency domain.

By utilizing the extracted spatially invariant features, FH
SIFs and FL

SIFs, along with the
frequency invariant features, FH

FIFs and FL
FIFs, we obtain the joint invariant attribute features,

denoted as FIAE:
FH

IAE = [FH
SIFs, FH

FIFs], FL
IAE = [FL

SIFs, FL
FIFs]. (4)

Spatial Consistency Fusion is designed to enhance the consistency of similar features in
the observed area’s terrain feature information. We employ the Generalized Graph-Based
Fusion (GGF) method [33] to jointly extract consistent feature information of different
modalities’ invariant attributes.

Z = W>X, (5)

where X = [IH, FH
IAE, FL

IAE] and IH, FH
IAE, and FL

IAE represent HSI, invariant features of HSI,
and invariant features of LiDAR, respectively. The HSI is specifically used to capture
the consistency information in the spectral dimension. Z is the fusion result. W denotes
the transformation matrix used to reduce the dimensionality of the feature maps, fuse
the feature information, preserve local neighborhood information, and detect manifolds
embedded in a high-dimensional feature space.
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Figure 2. The architecture of the proposed IABC. The invariant attributes are captured by Invariant
Attribute Extraction (IAE) and then transformed to construct an effective graph structure for the GCN.
The Spatial Consistency Fusion (SCF) is designed to enhance the consistency of similar features in the
observed area’s terrain feature information for the CNN. The collaboration between the CNN and
GCN improves the classification performance while the CNN with binary weights reduces storage
requirements and enables accelerating speed.

Initially, a graph structure is constructed to describe the correlation between spatial
sample points and obtain the edge consistency information of the graph structure for
different features:

AFus = AH �AH
IAE �AL

IAE, (6)

where AH, AH
IAE, and AL

IAE are defined as the edges of the graph structures (IH, AH),
(FH

IAE, AH
IAE), and (FL

IAE, AL
IAE), respectively, which describe the connections between any

two points in the spatial domain. They are obtained through the k-nearest neighbors (k-NN)
method. When the distance between two sample points is large (weak correlation), Aij = 0.
When two sample points i and j are close in distance (strong correlation), Aij = 1. � is
an XNOR operation to obtain the edge consistency information from these three features
IH, FH

IAE, and FL
IAE. The likelihood of a data point having similar features to its nearest

neighbor is greater than with those points that are far away. Therefore, it is necessary to
add a distance constraint when calculating graph edges. This can be defined as

QSCF = LX+¬AFus max(LX), (7)

where LX refers to the matrix of pairwise distances between the individual data points
of X. The operator “¬” denotes logical negation. When the element in AFus is 0, this
indicates that the edges in AH, AH

IAE, and AL
IAE are not consistent. We impose a constraint

on the maximum distance in LX, which helps to reduce the correlation between pairs of
vertices in the graph structure. Then, DSCF, the diagonal matrix, is computed based on
QSCF. Subsequently, the Laplacian matrix LSCF is obtained through this process:

LSCF = DSCF −QSCF. (8)



Remote Sens. 2023, 15, 4255 7 of 17

By combining the known feature information X, the Laplacian matrix LSCF, and the
diagonal matrix DSCF, we can use the following generalized eigenvalue calculation formula
to obtain different eigenvalues λ and their corresponding eigenvectors q:

XLSCFX>q = λXDSCFX>q, (9)

where X> denotes the transpose matrix of X, λ represents the eigenvalue, and
λ ∈ [λ1, λ2, · · · λi, · · · λr] with λ1 ≤ λ2 ≤ · · · λi · · · ≤ λr indicate the number of eigenvalues.
Since each eigenvector has its own unique eigenvalue, we can obtain q ∈ [q1, q2, · · · , qi, · · · qr].
Finally, based on all the eigenvectors, we can obtain the desired transformation matrix W:

W = (q1, q2, · · · , qi, · · · , qr), (10)

where qi represents an eigenvector corresponding to the i-th eigenvalue. The fusion result
is finally obtained using Equation (5) with W.

3.2. Bi-Branch Joint Classification

The GCN and CNN are architectural designs used to extract distinct representations
of salient information from multimodal remote sensing images. The CNN specializes in
capturing intricate local spatial features, while the GCN excels at extracting abundant global
spectral feature information from multimodal remote sensing images by utilizing spectral
vectors as input. Additionally, the GCN can simulate the topological relationships between
samples in graph-structured data. We design a bi-branch joint classification combining the
advantages of the GCN and CCN to offer feature diversity.

Traditional GCNs effectively model the relationships between samples to simulate
long-range spatial relationships in remote sensing images. However, inputting all samples
into the network at once leads to significant memory overhead. To address these issues,
the Mini Graph Convolutional Network (MiniGCN) [13] is introduced to find robust
locally optimal feature information by utilizing a sampler for small-sample sampling,
dividing the original input graph-structured data into multiple subgraphs. The graph-
structured multimodal fused image data are input into the MiniGCN in a matrix form
for training. During the training process, the input data are processed and features are
extracted and outputted in mini batches. The classification output can be represented by
the following equation:

Gl+1 = σ
(

D̂−
1
2 ÂD̂−

1
2 GlWl

)
, (11)

where Â is the modified adjacency matrix after adding a unit matrix I and an adjacency
matrix A of spatial-frequency-invariant attribute features X. Wl represents the weight of
the l-th layer in the graph convolutional network. D̂ denotes the diagonal matrix of Â. σ
represents the ReLU non-linear activation function. Gl represents the feature output of the
l-th layer in the graph convolutional network during the feature extraction process. When
l = 0, Gl corresponds to the original input features X. Gl+1 represents the feature output
of the (l + 1)-th layer in the graph convolutional network, which serves as the final output
spectral features.

In addition, we utilize a simple CNN structure [34], which can be defined as

Hl+1 = X (Hl), (12)

where the base structure X includes the convolutional layer, batch normalization layer,
max-pooling layer, and ReLU layer. When l = 0, Hl corresponds to the original input
features [FH

IAE, FL
IAE]. We use adaptive coefficients to combine the detection results of the

two networks, which can be represented as

yCNN = C(H), (13)
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yGCN = C(G), (14)

y = w1yCNN + w2yGCN, (15)

where C represents the classification head function, while G and H refer to the features
extracted by the GCN and the CNN, respectively. The w1 and w2 are learnable parameters
of the network to balance the weight of the bi-branch results.

3.3. Binary Quantization

We introduce the Libra Parameter Binarization (Libra-PB) technique [35], which in-
corporates both quantization error and information loss. During forward propagation,
the full-precision weights are initially adjusted by computing the difference between the
weight and the weights’ mean. This adjustment aims to distribute the quantized values
uniformly and normalize the weight, thereby enhancing training stability and mitigating
any negative effects caused by weight magnitude. The resultant standardized balanced
weight, denoted as x̃s, can be obtained through the following operations:

x̃s =
x̃

σ(x̃)
, x̃ = x− x. (16)

In the above equation, σ(·) represents the standard deviation, while x is the mean of
the weights. Generally, the quantization of weights and activations can be defined as

Q(x̃s) = sign(x̃s)�� s, Q(a) = sign(a), (17)

where x̃s and a represent the floating-point parameters of weights and activations. The
sign(·) function is commonly employed to obtain binary values. s is an integer parameter
employed to enhance the representation capability of binary weights.

Here, n represents the dimension of the vector and ‖ws‖1 denotes its L1 norm. The
main operations during the forward propagation of the binary network, involving quan-
tized weights Q(w̃s) and activations Q(a), can be expressed as

z = sign(x̃s) sign(a)�� s. (18)

During backward propagation, due to the discontinuity introduced by binarization,
gradient approximation becomes necessary, which can be expressed as

∂L
∂x

=
∂L

∂Qx(x̂std)

∂Qx(x̂std)

∂x
≈ ∂L

∂Qx(x̂std)
g′(x), (19)

where L is the loss function, g(x) corresponds to the approximation of the sign(·), and
g′(x) represents its derivative. In our paper, we use the following approximation function:

g(x) = tanh(x) (20)

3.4. Loss Function

The output of yCNN, yGCN, and y passing a softmax classification layer is used to
predict the probability distribution. The overall network is trained using the following
loss function:

LJoint = −
n

∑
i=1

yGT log s(y)−
n

∑
i=1

yGT log s(yCNN)−
n

∑
i=1

yGT log s(yGCN), (21)

L = LJoint + ‖x‖2. (22)



Remote Sens. 2023, 15, 4255 9 of 17

Here, yGT refers to the label of the dataset, s is the softmax operation, and ‖x‖2 is the
cumulative L2 norm, utilized to determine the weights across all network layers. This
approach is employed to address the issue of overfitting, which arises when there is an
excessive number of model parameters.

3.5. Experimental Setup

Data Description: (1) Houston2013 Data: Experiments were carried out using Hyper-
Spectral Imaging (HSI) and Digital Surface Model (DSM) data that were obtained in June
2012 over the University of Houston campus and the adjacent urban area. The HSI data
consisted of 144 spectral bands and covered a wavelength range from 380 to 1050 nm, with
a spatial resolution of 2.5 m that was consistent with the DSM data. The entire dataset
covered an area of 349× 1905 pixels and included 15 classes of natural and artificial objects,
which were determined through photo interpretation by the DFTC. The LiDAR data were
collected at an average sensor height of 2000 feet, while the HSI was collected at an average
height of 5500 feet. The scene contained various natural objects such as water, soil, trees,
and grass, as well as artificial objects such as parking lots, railways, highways, and roads.
The land-cover classes and their respective counts in the training and testing samples are
provided in Table 1.

Table 1. A list of the number of training and testing samples for each class in the Houston2013 and
Trento datasets.

Houston2013 Trento
No. Class Name Training Testing No. Class Name Training Testing

1 Healthy Grass 198 1053 1 Apples 129 3905
2 Stressed Grass 190 1064 2 Buildings 125 2778
3 Synthetic Grass 192 505 3 Ground 105 374
4 Tree 188 1056 4 Woods 188 1056
5 Soil 186 1056 5 Vineyard 184 10,317
6 Water 182 143 6 Roads 122 3052
7 Residential 196 1072 Total 853 21,482
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

(2) Trento Data: This dataset comprises 1 HSI with 63 spectral bands and 1 set of
LiDAR data, captured in a rural area located in southern Trento, Italy. The HSI was obtained
through the AISA Eagle sensor, while the corresponding LiDAR data were collected using
the Optech Airborne Laser Terrain Mapper (ALTM) 3100EA sensor. Both datasets were of
size 166× 600 pixels with a spatial resolution of 1 m, while the wavelength range of HSI
was from 0.42 to 0.99 µm. This particular dataset consisted of a total of 30,214 ground-truth
samples, with research conducted on 6 distinguishable category labels. The land-cover
classes and their respective counts in the training and testing samples are provided in
Table 1.

Evaluation Metrics: To comprehensively evaluate the performance of multimodal
remote sensing image classification algorithms, this article analyzes and compares various
algorithms based on their classification prediction maps and accuracy. While the classifica-
tion prediction map is subject to a certain degree of subjectivity and may not accurately
measure the impact of an algorithm on classification performance, this study employs
quantitative evaluation metrics such as overall accuracy (OA), average accuracy (AA), and
Kappa coefficient to better measure and compare the performance of different algorithms.
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A higher value of any of these three indicators represents higher classification accuracy
and an overall better performance of the algorithm. Among these three evaluation metrics,
Overall Accuracy (OA) refers to the ratio of correctly classified test samples to the total
number of test samples. Average Accuracy (AA) refers to the ratio of correctly classified
test samples to the total number of test samples in a specific category.

Furthermore, we employ the Bit-Operations (BOPs) count [36] and parameters [37] as
metrics to evaluate the compression performance.

Implementation Details: Our proposed approach is executed in Python and trained
on a single RTX 3090 card. All the networks analyzed in this paper are implemented using
the Pytorch framework. Throughout this procedure, we configure the batch size to 32,
employ the Adam optimizer with an initial learning rate of 0.001, and conduct the procedure
over a total of 200 epochs. The current learning rate is adapted using an exponential learning
rate scheme, where the learning rate is multiplied by (1− iter/maxIter)0.5 every 50 epochs.
Furthermore, we apply weight regularization employing the L2 norm to stabilize network
training and mitigate overfitting.

3.6. Ablation Study

An ablation study is conducted to demonstrate the validity of the proposed compo-
nents by evaluating several variants of the IABC on HSI and LiDAR datasets.

Invariant Attribute Consistency Fusion: In Table 2, we discuss the impact of using
IACF (IAE structure and SCF module) on CNN and GNN networks in remote sensing image
classification tasks and provide a comparison between multimodal and single-modal HSI
and LiDAR data. The Houston2013 dataset is used for evaluation. Firstly, the experimental
results for HSI data show that both GCN and CNN networks achieve a certain level of
accuracy in classification but differ in precision. The introduction of the IAE structure
improves classification performance, increasing OA and AA from 79.04% and 81.15% to
91.15% and 91.78%, respectively. This indicates the effectiveness of the IAE structure in
improving the accuracy of remote sensing image classification. Secondly, the experimental
results for LiDAR data demonstrate a lower classification accuracy when using GCN
or CNN networks alone. However, the introduction of the IAE structure significantly
improves classification performance. For example, OA increases from 22.74% to 35.46% for
the GCN network on the LiDAR dataset. This confirms the effectiveness of the IAE structure
in processing LiDAR data. Lastly, fusion experiments are conducted with HSI and LiDAR
data. The results show that fusing HSI and LiDAR data further improves classification
performance. In particular, when combining the IAE structure and SCF structure on the
CNN network, the Overall Accuracy (OA) performance increases from 89.46% (with only
the IAE structure) to 91.88%, resulting in a significant improvement of 2.43%.

Table 2. Ablation study of our proposed IACF on the Houston2013 dataset.

GCN CNN IAE SCF OA (%) AA (%) κ (×100)

HSI

X 79.04 81.15 77.42
X X 91.15 91.78 90.38

X 80.84 83.58 79.28
X X 88.19 89.31 87.18

LiDAR

X 22.74 26.56 17.35
X X 35.46 36.33 30.68

X 28.33 35.89 24.10
X X 41.81 39.50 36.90

HSI + LiDAR
X X 92.60 93.20 91.97

X X 89.46 90.72 88.55
X X X 91.88 92.60 91.19

Similarly, on the Trento dataset, similar conclusions were obtained, as shown in Table 3.
In the case of HSI data, when only GCN or CNN was used, the Overall Accuracy (OA)
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was 83.96% and 96.06%, respectively. However, when the IAE structure was introduced for
invariant feature extraction, the OA accuracy improved to 95.34% (an increase of 11.38%)
and 96.93% (an increase of 0.87%) for GCN and CNN, respectively. This indicates that the
extraction of spatially invariant attributes can reduce the heterogeneity in extracting pixel
features of the same class by CNN and GNN networks, enhancing the discriminative ability
for the same class. Moreover, the extraction of invariant attributes has a more significant
effect on improving the classification accuracy of the GCN network. When classifying
LiDAR data, due to the characteristics of LiDAR data, the performance is relatively low,
with only the GCN network achieving an OA of 48.31%. Introducing IAE can improve
the GCN network OA by 11.94%. However, introducing IAE to the CNN network instead
results in a decrease in classification performance from 90.81% to 68.81%. This might
be due to the large size of areas with the same class in the Trento dataset, resulting in
minimal elevation changes in the LiDAR images over a considerable area, leading to similar
invariant attributes for different classes and interfering with the CNN network’s ability
to extract and discriminate local information. This situation can be alleviated by using
multimodal data (HSI + LiDAR) for classification. Considering the information from both
the HSI and LiDAR, better performance can be observed. The highest classification accuracy
(OA 98.05%) was attained when CNN introduced the IAE structure and SCF module. This
further demonstrates that SCF can enhance the classification accuracy of the CNN network.

Table 3. Ablation study of our proposed IACF on the Trento dataset.

GCN CNN IAPs SCF OA (%) AA (%) κ (×100)

HSI

X 83.96 83.14 78.57
X X 95.33 93.95 93.87

X 96.06 92.63 94.72
X X 96.93 93.16 95.88

LiDAR

X 48.31 44.50 38.48
X X 60.26 63.64 50.67

X 90.81 83.56 88.20
X X 68.81 61.33 61.31

HSI + LiDAR
X X 97.66 96.38 96.87

X X 97.87 94.04 97.29
X X X 98.05 95.18 97.73

In summary, these experiments prove that the introduction of the IAE structure sig-
nificantly improves the classification performance of CNN and GNN networks in remote
sensing image classification tasks. Additionally, SCF enhances the classification perfor-
mance of the CNN network. Furthermore, the fusion of multimodal data can further
improve classification accuracy.

Bi-Branch Joint Classification: To analyze the performance of the bi-branch joint
network for classification, we compare the different networks in the two datasets in Table 4.
The GCNs and CNNs demonstrate different advantages on different datasets. The GCN
obtained a better classification performance at an OA of 92.60% compared with the CNN
at an OA of 91.88% on the Houston dataset. However, the results show that the CNN
achieved a high OA (98.05%), while the GCN obtained a lower OA (97.66%). This indicates
that when dealing with sparsely categorized images, such as Trento, extracting local spatial
information is useful. However, when dealing with densely distributed categories, such
as Houston, extracting global spectral features has greater potential. In contrast, the joint
approach yielded the top-performing classification outcomes on the Houston dataset, with
an OA of 92.78%, and on the Trento dataset, with an OA of 98.14%. The experimental results
demonstrate that using the bi-branch joint network can combine the advantages of CNN
and GCN networks, resulting in excellent classification performance in land classification
tasks using remote sensing images.
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Table 4. Validation of bi-branch joint network on Houston2013 and Trento datasets.

Houston2013 Trento
OA (%) AA (%) κ (×100) OA (%) AA (%) κ (×100)

CNN 91.88 92.60 91.19 98.05 95.18 97.73
GCN 92.60 93.20 91.97 97.66 96.38 96.87
Joint 92.78 93.29 92.15 98.14 97.03 97.50

Binary Quantization: With the application of binary quantization, we can effectively
address resource limitations and enable real-time decision-making capabilities in the context
of processing large-scale data in remote sensing applications. To analyze the performance
differences, we conducted a comparative study on classification accuracy and computa-
tional resources using different quantization strategies on the IABC network. In Table 5,
32w and 32a denote the full precision of the weight and activation, while 1w and 1a repre-
sent the binary quantization of the weight and activation. The binary quantization module
achieved OA accuracies of 98.14%, 98.16%, 85.33%, and 83.44% at different computational
levels. Notably, the difference in OA accuracy between the 1w32a quantization level and
the full-precision network is relatively small. Additionally, for the CNN network at the
1w32a quantization level, the parameter count is 32.675 KB, which accounts for only 3% of
the parameter count of the full-precision network. Likewise, the BOPs are approximately
3% of the BOPs in the full-precision network. As the quantity of quantization bits decreases,
there is a corresponding decrease in the accuracy of the classification model, as observed.
The decrease in accuracy can be attributed to the reduction in model parameters, which
leads to the loss of crucial layer information and subsequently causes a decline in accuracy.
It is observed that the binary quantization of the activations has a significantly negative
influence on the accuracy of classification, and the OA decreases by 12.81% compared with
the full-precision network and 12.53% compared with the quantization weight only (1w32a).
In particular, when using the 1w1a network exclusively, the impact is notably significant,
with a resulting accuracy reduction of 14.7% compared to a full-precision network. Hence,
we only consider the binary quantization of the weights 1w32a in our experiment.

Table 5. Validation of binary quantization for CNN on the Trento dataset.

CNN OA (%) AA (%) κ (×100) Params(B) BOPs

32w32a 98.14 97.03 97.50 1045.6 K 13,946.88 G
1w32a 97.86 95.17 97.13 32.675 K 435.87 G
32w1a 85.33 83.40 80.81 1045.6 K 435.87 G
1w1a 83.44 77.31 78.01 32.675 K 13.62 G

3.7. Quantitative Comparison with the State-of-the-Art Classification Network

To validate the effectiveness of the proposed IABC, we compare the experimental
results of the IABC on both HSI and LiDAR datasets with those of other competitive classi-
fiers: MDL_RS_FC [34], EndNet [14], RNN [38], CALC [39], ViT [17], MFT [18], HCT [40],
and Exvit [19]. The parameters of the whole compared algorithms are optimized on the
same server. Additionally, the training and testing samples we utilize are identical and
our proposed IABC network abstains from utilizing any data augmentation operations
to ensure a fair comparison. Tables 6 and 7 show the classification outcomes of various
networks on two datasets. The most favorable results are emphasized using bold highlight-
ing. The superiority of the proposed IABC over other methods is evident. For instance,
when considering the Houston2013 dataset, IABC exhibits substantial improvements in
Overall Accuracy (OA) for various approaches: MDL_RS_FC sees an improvement of ap-
proximately 7.67%, Endnet by 7.6%, RNN by 20.32%, CALC by 2.84%, ViT by 7.58%, MFT
by 3.03%, HCT by 2.21%, and Exvit by 1.36%. RNN performs the worst, with only 72.31%
OA. The MDL_RS_FC method achieves better performance, with an Overall Accuracy (OA)
of 84.96%, thanks to its meticulously designed cross-fusion approach, which facilitates the
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more effective interaction of information during the fusion, resulting in improved perfor-
mance. The conventional classifier EndNet works by leveraging deep neural networks to
enhance the ability of feature extraction for spectral and spatial features. The CALC method
achieves a ranking of three with an OA of 89.79%, fully harnessing and extracting semantic
information as well as complementary information. The transformer-based methods ViT
and MFT, with their strong feature expression ability in high-level sequential abstract
representation, achieve higher accuracy than the traditional deep learning networks (such
as Endnet and MDL_RS_FC). In contrast, our IABC method obtains the optimal perfor-
mance by using spatial–spectral CNN and relation-enhanced GCN features with invariant
attribute enhancement. For the Trento dataset, IABC provides approximately 10.36%,
7.54%, 2.20%, 0.52%, 2.16%, 0.31%, 10.41%, and 0.05% OA improvements for MDL_RS_FC,
Endnet, RNN, CALC, ViT, MFT, HCT, and Exvit, respectively. The performance of the
RNN network on the Trento dataset is noticeably better compared with the result on the
Houston2013 dataset, while the MDL_RS_FC method performance is worse on the Trento
dataset. It is proven that the generalization performance of these two methods is compara-
tively poor. The performance of other algorithms is consistent with the performance on the
Houston2013 dataset.

Table 6. Comparison of the classification accuracy (%) using the Houston2013 dataset.

No. MDL_RS_FC EndNet RNN CALC ViT MFT HCT Exvit IABC

1 82.15 82.34 81.80 80.72 82.59 82.34 82.91 81.20 83.10
2 84.40 83.18 71.40 81.20 82.33 88.78 91.35 85.15 85.15
3 100.00 100.00 76.04 93.86 97.43 98.15 100.00 99.80 100.00
4 91.48 91.19 88.51 96.78 92.93 94.35 91.10 91.38 93.18
5 99.15 99.24 85.76 100.00 99.84 99.12 100.00 99.62 100.00
6 95.10 95.10 85.78 95.80 84.15 99.30 95.80 93.01 95.80
7 87.50 83.02 82.77 93.10 87.84 88.56 81.06 91.51 82.46
8 52.99 76.45 61.44 92.78 79.93 86.89 94.97 97.44 90.41
9 77.34 71.48 67.42 82.34 82.94 87.91 88.29 88.48 90.84
10 77.32 64.77 38.45 67.37 52.93 64.70 76.45 81.56 98.94
11 84.06 88.52 64.39 98.67 80.99 98.64 97.25 94.31 97.82
12 97.21 94.24 77.07 97.02 91.07 94.24 91.55 93.76 98.46
13 76.49 76.49 47.13 82.81 87.84 90.29 88.42 90.53 82.81
14 100.00 100.00 97.98 99.19 100.00 99.73 100.00 97.57 100.00
15 98.52 98.31 73.50 100.00 99.65 99.58 95.56 97.04 100.00

OA (%) 84.96 85.03 72.31 89.79 85.05 89.80 90.42 91.27 92.63
AA (%) 86.91 86.96 73.30 90.78 86.83 91.51 91.65 92.16 93.26
κ (×100) 83.69 83.81 70.14 88.95 83.84 88.93 89.62 90.53 91.99
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Table 7. Comparison of the classification accuracy (%) using the Trento dataset.

No. MDL_RS_FC EndNet RNN CALC ViT MFT HCT Exvit IABC

1 88.22 91.32 91.75 98.62 90.87 98.23 98.82 99.13 96.24
2 93.34 96.44 99.47 99.96 99.32 99.34 99.64 98.56 98.27
3 95.19 95.72 79.23 72.99 92.69 89.84 100.00 77.81 95.72
4 94.54 99.22 99.58 100.00 100.00 99.82 99.70 100 99.89
5 83.46 82.91 98.39 99.44 97.77 99.93 70.98 99.92 99.70
6 80.67 89.15 85.86 88.76 86.72 88.72 87.35 91.78 95.15

OA (%) 88.27 91.09 96.43 98.11 96.47 98.32 88.22 98.58 98.63
AA (%) 89.24 92.46 92.38 93.30 94.56 95.98 92.75 94.53 97.49
κ (×100) 84.51 88.23 95.21 97.46 95.28 97.75 84.72 98.10 98.17

Figures 3 and 4 illustrate a range of visual results, including hyperspectral false-
color data, LiDAR images, ground truths, and classification maps acquired using various
methods. Each category is accompanied by its respective color scheme. Upon thorough
evaluation and comparison, it is clear that the proposed methods yield superior results with
significantly reduced noise compared to alternative approaches. Deep learning models excel
in capturing the nonlinear relationship between input and output features, thanks to their
remarkable ability to extract learnable features. Hence, all the methods generate relatively
smooth classification maps, effectively distinguishing between different land-use and land-
cover classes. Notably, Vit, MFT, HCT, and Exvit demonstrate their efficacy in classification
by extracting high-level sequential abstract representations from images. Consequently, the
classification maps exhibit better visual quality compared to fully connecting, CNN, and
RNN networks. By enhancing neighboring spatial–spectral information and facilitating the
effective transmission of relation-augmented information across layers, the proposed IABC
method achieves highly desirable classification maps, particularly in terms of texture and
edge details, surpassing CALC, ViT, MFT, HCT, and Exvit.
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Figure 3. Classification maps of different methods for the Houston2013 dataset.
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Figure 4. Classification maps of different methods for the Trento dataset.

4. Conclusions

In conclusion, our proposed unified network, combining CNNs and GCNs, presents a
promising solution for hyperspectral image and LiDAR image fusion in remote sensing.
By employing a joint detection framework, our approach effectively captures spatial rela-
tionships and models semantic information. Hence, an improved representation can be
obtained in the spectral–spatial domain. Our method successfully addresses the limitations
in constructing graph structures and showcases superior performance in hyperspectral
image analysis. The utilization of CNNs and GCNs ensures the accurate modeling of
local spatial–spectral relationships and the construction of effective global graph structures.
Moreover, the cooperation of binary quantization improves computational effectiveness,
facilitating the real-time handling of extensive datasets. Furthermore, systematic analysis
sheds light on the significance of spatial invariance and examines the sensitivity of CNN
and GCN neural networks to variations, contributing to the overall understanding of the
research community. Additionally, our introduction of a lightweight binary CNN architec-
ture effectively tackles the challenges posed by high-dimensional hyperspectral data and
computational limitations while maintaining a high level of classification performance.

Overall, our method offers a potential opportunity to improve remote sensing ap-
plications through the implementation of deep learning techniques. It significantly im-
proves accuracy, diminishes storage demands, and enables instantaneous decision making,
which facilitates the real-time processing of extensive remote sensing data.
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