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Abstract: Image-based geo-localization focuses on predicting the geographic information of query
images by matching them with annotated images in a database. To facilitate relevant studies, re-
searchers collect numerous images to build the datasets, which explore many challenges faced in
real-world geo-localization applications, significantly improving their practicability. However, a
crucial challenge that often arises is overlooked, named the cross-time challenge in this paper, i.e.,
if query and database images are taken from the same landmark but at different time periods, the
significant difference in their image content caused by the time gap will notably increase the difficulty
of image matching, consequently reducing geo-localization accuracy. The cross-time challenge has a
greater negative influence on non-real-time geo-localization applications, particularly those involving
a long time span between query and database images, such as satellite-view geo-localization. Further-
more, the rough geographic information (e.g., names) instead of precise coordinates provided by most
existing datasets limits the geo-localization accuracy. Therefore, to solve these problems, we propose a
dataset, MTGL40-5, which contains remote sensing (RS) satellite images captured from 40 large-scale
geographic locations spanning five different years. These large-scale images are split to create query
images and a database with landmark labels for geo-localization. By observing images from the
same landmark but at different time periods, the cross-time challenge becomes more evident. Thus,
MTGL40-5 supports researchers in tackling this challenge and further improving the practicability of
geo-localization. Moreover, it provides additional geographic coordinate information, enabling the
study of high-accuracy geo-localization. Based on the proposed MTGL40-5 dataset, many existing
geo-localization methods, including state-of-the-art approaches, struggle to produce satisfactory
results when facing the cross-time challenge. This highlights the importance of proposing MTGL40-5
to address the limitations of current methods in effectively solving the cross-time challenge.

Keywords: geo-localization; remote sensing satellite images; geographic coordinate information

1. Introduction

Image-based geo-localization is an important topic in the field of remote sensing
(RS) image processing, which focuses on using image matching technology to predict the
landmark information of a given query image. In recent years, it has been applied in various
real-world fields, such as agriculture [1], aircraft navigation [2], event detection [3], drone
delivery [4], and so on. Generally, image-based geo-localization is regarded as a subtask of
image retrieval [5–7], where similar images are retrieved from a database annotated with
landmark information (e.g., name or coordinates), providing the corresponding information
for the query image [8–14]. Therefore, the difficulty lies in the significant difference between
query images and the annotated images within a database, caused by various perspectives,
objects, environments, etc. Global positioning system (GPS), as an alternative localization
technology, also finds extensive applications across various domains. In general, image-
based geo-localization and GPS-based localization are complementary for providing more
robust localization performance, as GPS-based localization is sometimes unstable or even
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unfeasible. For example, the GPS signal may be weakened or even lost due to many
factors, including signal obstruction, the multipath effect, adverse weather conditions, etc.
Furthermore, since GPS-based localization technologies require an active online connection,
they cannot work in offline scenarios without access to real-time GPS data. Therefore, the
study of image-based geo-localization tasks is crucial in addressing these limitations and
advancing the related fields.

As a fundamental component of studying image-based geo-localization, datasets play
a critical role in exploring the challenges faced in real-world applications. To construct
datasets, researchers collect abundant images to create query images and a database, which
is mainly captured by three views from distinct altitudes: ground [15–17], unmanned aerial
vehicle (UAV) [18,19], and satellite [20]. Each view corresponds to specific applications of
geo-localization, such as ground for mobile robots, UAV for drone navigation, and satellite
for Earth observation. At first, ground-view geo-localization is popular due to its simplicity
and efficiency in capturing relevant images. Since both query and database images are
captured from the same view, it can also be named ground-single-view geo-localization. To
construct a dataset, numerous ground-view images annotated with landmark information
are collected from many platforms [21–23], such as Google Street View photos [24]. Sub-
sequently, the given query images can be geo-located by finding the most similar image
from the database and extracting its landmark information. Therefore, the main challenge
that ground-single-view datasets need to be concerned with, is that the captured images
are often filled with many dynamic and changeable elements, increasing the difficulty of
image matching, such as people walking and cars moving [25]. However, due to the limited
variety of images involved, ground-single-view geo-localization alone is insufficient in
many application scenarios. For instance, in autonomous driving that involves complex
urban environments, relying solely on ground-single-view geo-localization to localize a
ground-view query image may result in unsatisfactory accuracy.

With the advancements in aircraft technology, acquiring high-quality UAV and satel-
lite RS images has become increasingly easier. Therefore, cross-view geo-localization
has attracted significant attention from researchers [26,27], which focuses on the query
and database images captured from different views, such as UAV ∼ satellite [19,28],
ground ∼ satellite [29,30], and UAV ∼ ground [9]. In addition to the challenges posed
by dynamic elements in ground images, the use of UAVs for image capture provides
more freedom, resulting in diverse angles of images. Consequently, even images captured
from the same landmark can exhibit significant content variation, providing a primary
challenge for UAV-related cross-view datasets, such as University-1652 [19]. On the other
hand, in satellite-related cross-view datasets, the challenges faced in the image matching
process mainly arise from the complex characteristics of RS images, including variations
in illumination, cloud cover, resolution, and angle, among others [31,32]. In addition, in
all cross-view datasets, image differences arising from the view’s difference are a shared
challenge, which is the primary focus of existing cross-view datasets [33,34].

As mentioned before, several public datasets have been developed to support the
study of initially ground-single-view and subsequently cross-view geo-localization, and
successfully explore their respective challenges. However, a common and crucial challenge
faced in real-world applications is ignored, i.e., the variation in images of the same land-
mark due to a significant time gap, named the cross-time challenge in this paper. This
notably impacts the accuracy of image matching between query images and the database,
consequently decreasing the performance of geo-localization. This challenge becomes
even more significant in scenarios marked by long time spans and an absence of real-time
data, such as satellite-related datasets. In addition, it is worth noting that most existing
geo-localization datasets only offer rough landmark information (e.g., names) instead of
precise landmark coordinates, limiting the development of high-accuracy geo-localization
techniques.

To address these issues, we propose a multi-temporal geo-localization dataset in
satellite view, named MTGL40-5. It consists of query and database images captured by
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satellite, from 40 broad geographic locations spanning five different years. By analyzing the
difference between query and database images captured from the same landmark but in
different years, the cross-time challenge can be explored clearly. Furthermore, MTGL40-5
also provides the latitude and longitude coordinates necessary for conducting accurate
geo-localization studies. More details will be introduced in Section 3.

In summary, the four main contributions of this paper are as follows:

1. We propose a MTGL40-5 dataset for conducting a satellite-view geo-localization task,
which consists of query images and a database featuring RS images acquired from
satellites.

2. MTGL40-5 not only explores the cross-time challenge by providing images from
40 geographic locations spanning five different years, but also provides precise latitude
and longitude coordinates for studying high-accuracy geo-localization tasks.

3. A simple yet effective method is proposed to measure the bias of the image center be-
tween the query image and its corresponding database image, enhancing the accuracy
of the geographic coordinates.

4. Extensive experiments demonstrate that current geo-localization methods, including
state-of-the-art techniques, find it difficult to generate satisfactory localization results
when encountering the cross-time challenge, proving the necessity of studying it.

2. Related Work

In this section, we will provide a brief review about existing geo-localization studies
focusing on two aspects: datasets and methods.

2.1. Existing Datasets for Geo-Localization

At first, ground-view-based studies gained popularity, resulting in the creation of
numerous datasets that included both query images and a corresponding database. For
example, Jan et al. [25] presented a dataset consisting of 17K images from Google Street
View, capturing the central area of Paris, to facilitate landmark location recognition. In
general, the larger the dataset volume, the higher the geo-localization performance. There-
fore, a larger dataset [21] was introduced, which comprises 1.7M images annotated with
landmark names, thereby providing a robust benchmark for geo-localization. In addition
to the dataset’s volume, diversity also plays a crucial role in ensuring its robustness. In
the literature [35], a dataset was proposed that specifically aims to enhance diversity by
expanding the number of landmarks. It contained more than 2.3M images of 30K land-
marks. This dataset also was expanded to a larger version [36] that includes 5M images of
200K landmarks. However, the pursuit of data volume and diversity inadvertently leads
to numerous noisy labels, negatively impacting the geo-localization performance. Thus,
to improve the label quality, Filip et al. [37] re-labeled two datasets, Oxford5K [23] and
Paris6k [22], increased the number of queries, and proposed a challenging interference
set R1M. These images taken from the ground view consider the characteristics of land-
marks from different angles, seasons, and weather conditions, thereby further enriching
the ground-view geo-localization datasets.

Recently, the practicality of cross-view geo-localization has attracted more and more
attention, so many relevant datasets have been proposed. For those involving UAVs, due to
the high freedom of UAVs, it is important to capture diverse UAV images when constructing
a dataset. For instance, a comprehensive dataset, called Eichenau [38], comprised satellite
images and UAV images for cross-view geo-localization, where UAV images were collected
from an open terrain at a high flight altitude of 100 m, with a resolution of 573× 794 pixels.
Furthermore, Li et al. collected a total of 2K images using DJI Phantom 4, a UAV device,
covering an extensive area of 1.8M m2 [18]. During the collection process, the flight altitude
also was intentionally increased to ensure broader coverage and superior image quality.
However, while the higher collection altitude ensures greater stability of the image content,
it limits the angle diversity of the images. This is because the increased camera altitude leads
to a longer flight distance for the UAV to capture multi-angle images of the same landmark,
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consequently reducing the flexibility of adjusting the camera angle. Therefore, in the Earth
Observation Center (EOC) dataset [38], multi-angle UAV images were collected from a low
altitude of 340 m above sea level, which includes not only the typical top-down angles
but also various side angles of buildings. To further enhance angle diversity, Zheng et al.
presented an extensive collection of UAV images known as the University-1652 dataset [19],
which encompasses 1652 buildings across 72 universities. A spiral UAV flight pattern
was employed for each building to collect 54 multi-angle images, with flight altitudes
ranging from 256 m to 121.5 m. In addition, two large datasets involving ground images,
CVACT [29] and CVUSA [30], were proposed for cross-view geo-localization. The training
sets of both CVACT [29] and CVUSA [30] contained 35.5K image pairs from ground and
satellite views. To further enlarge data volume, Vo and Hays [39] performed a similar data
collection procedure on 11 different cities in the United States and produced more than 1M
image pairs, which have been widely used in cross-view geo-localization.

2.2. Existing Methods for Geo-Localization

For geo-localization methods, the representative features extracted from images play a
crucial role in matching query and database images. Initially, traditional hand-crafted fea-
tures, such as scale-invariant feature transform (SIFT) [40], local binary pattern (LBP) [41],
and histogram of oriented gradients (HOGs) [42], were popular due to their easy implemen-
tation and high efficiency. For instance, in ground-view geo-localization, Torii et al. [10]
first extracted SIFT features from images and further computed the vector of locally ag-
gregated descriptors (VLADs) feature. Subsequently, the similarities between query and
database images were calculated using the normalized dot product. However, due to
the limited capacity of these features to accurately represent images, they were hardly
satisfactory when handling poor-quality (e.g., heavily occluded or obscured) images. To
alleviate this problem, an efficient bag of visual words (BOVWs), which has a large vocab-
ulary and fast spatial matching capacity [25], was employed to detect and remove these
bad images from databases. By removing poor-quality images, the accuracy of image
matching was improved significantly, thereby enhancing the performance of ground-view
geo-localization. Similarly, in UAV-view geo-localization, Zhuo et al. [38] found that using
SIFT features alone for image matching cannot achieve a satisfactory result, especially when
facing the rotational invariance challenges posed by UAV images. Therefore, building upon
the generated SIFT features, the simple linear iterative clustering (SLIC) algorithm was
employed to further generate dense and compact superpixels. In this way, more keypoints
were provided to improve the accuracy of image matching.

While the traditional hand-crafted features have achieved some success, their limited
capacity to represent images hinders their effectiveness in conducting geo-localization of
complex application scenarios, since they mainly rely on low-level information such as
texture and edge information. In recent years, with the advancements in deep learning, par-
ticularly convolutional neural networks (CNNs), deep features have emerged as powerful
representations for images [43–45] by capturing both low-level and high-level information
simultaneously. As a result, deep features have gained significant attention in the field of
geo-localization. For instance, in ground-view geo-localization, Gordo et al. [46] proposed
a three-stream Siamese network that explicitly optimized the weights of regional maximum
activations of convolution (R-MAC) representations using a triplet ranking loss. However,
this method overlooks the geometric relationship between ground images, thereby limiting
its performance. To solve this problem, CVNET [47] established this geometric relationship
and learned different geometric matching patterns from many image pairs. In addition,
deep features also were used in cross-view geo-localization, yielding promising results. In
this task, the main challenge arises from the variations in views, which leads to significant
content diversity within the same landmark. To alleviate this issue, researchers employed
CNNs to establish spatial hierarchical relationships between different views [48,49], such
as ground ∼ satellite [50] and UAV ∼ satellite [27]. In this way, a comprehensive under-
standing of the relationship between different views is constructed, which alleviates the
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challenges posed by view diversity. Additionally, as a frequently used technology for
improving feature discrimination, the attention mechanism is often employed to selec-
tively extract crucial features from images [4,51], thereby enhancing the performance of
cross-view geo-localization models.

3. MTGL40-5 Dataset
3.1. Dataset Description

Based on Google Earth (Google Inc., Mountain View, CA, USA), we create a compre-
hensive dataset for studying the cross-time satellite-view geo-localization, where images
are collected from 40 broad geographic locations spanning five different years. The se-
lected locations primarily include large ports and airports due to their broad coverage
areas, distinctive structures, and terrain features making them ideal for geo-localization
applications. For each location, we collect large-scale original and key images, both labeled
with coordinates, which have a spatial resolution of 0.5 m and span over five different
years. Note that, the selected five years are not consistently continuous, but are within the
time span ranging from 2014 to 2022. The original image captures the complete content of
the location, while the key image focuses on the key region (as depicted in the enlarged
part of Figure 1). Each original large-scale image contains approximately 20K× 20K pixels
and covers an area of roughly 80 km2, while the key image occupies approximately 1/4
of the original image. Subsequently, the original/key images are used to construct the
database/query images annotated with geographic coordinates.

The detailed process for constructing this dataset involves the following three steps:

1. Collecting large-scale images: Large-scale images are collected by first searching
Wikipedia for numerous ports and airports located in different countries, and their
corresponding latitude and longitude coordinates are recorded. Secondly, the histori-
cal image data of the selected locations on Google Maps are reviewed to ensure that
images spanning at least five years can be obtained. Thirdly, 40 target locations are
selected which satisfy this criterion. Finally, based on Google Maps, the images of
these locations and their coordinates are collected.

2. Splitting large-scale images: Due to the limited memory space of the computation
device, each of the collected large-scale original and key images needs to be split into
numerous N × N patch images (N being a hyper-parameter specified in Section 4),
which also significantly improves the efficiency and availability of geo-localization.
Subsequently, all patch images are further resized to the image size of 256× 256 pixels
to meet the input size of the model.

3. Dividing query images and database: The split patch images from key image are used
as query images, while images from original image are used to create the database.

We randomly select a location as the sample and show its five images captured from
different years in Figure 1, and display some split patch images in Figure 2.

To further show the characteristics of our dataset, we compare it with the existing six
datasets University-1652 [19], CVUSA [30], CVACT [29], Lin et al. [14], Tian et al. [9], and
Vo et al. [39] from seven aspects: “training set size”, “target”, “multi-temporal”, “large-
scale”, “GPS coordinates”, “multi-angle”, and “evaluation” in Table 1. Here, “training set
size” is the total number of training images, “target” denotes the main target of interest,
“multi-temporal” means whether multiple temporal images of the same region are collected,
“large-scale” represents whether large-scale images and their labels are included, “GPS
coordinates” notes whether GPS coordinates are offered, “multi-angle” indicates whether
multiple angle images of the same region are provided, and “evaluation” is the assessment
metric employed within the dataset. Compared to University-1652 [19] and Tian et al. [9],
our dataset does not include multi-angle images. This is because capturing multi-angle
images in satellite view poses significant challenges, primarily due to the very long distance
between the satellite and the targets within the landmarks. Despite this limitation, the
proposed MTGL40-5 dataset offers three distinct advantages as follows:
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(a) 2015 (b) 2018 (c) 2019 (d) 2020 (e) 2022

Figure 1. Satellite-view RS image display of airports, where original images and key images are
shown in the first and second rows, respectively. The original images were collected by Google Maps,
and are available from five distinct years. These images contain the complete content of the location,
with an image size of 18,735 × 16,523. The key images contain the key region of the original images,
with an image size of 9500× 7500. The GPS coordinates of the center point of the original images are
(37.0806352,−76.3578087).

Figure 2. Split patch image display. Each group consists of five RS image patches, displaying a small
area’s images from five different years. We can find that the position of the aircraft in the patch, the
color features of the landform, and the position of the ships in the same port also change with time,
which means that in a multi-temporal dataset, capturing the features of different phases of the same
location has a significant impact on the geographic localization research.

• Multi-temporal: MTGL40-5 is a dataset consisting of multiple geographic locations,
where each location includes images captured in different years, enabling the observa-
tion of dynamic changes in various landmarks over time. When training models use
this dataset, many image pairs taken from the same landmark but in different years
allow models to learn about the time-invariant features.

• Large-scale: MTGL40-5 comprises RS images acquired at a spatial resolution of 0.5 m,
with each original image covering an area of around 80 km2 and containing approxi-
mately 20K× 20K pixels. Large-scale RS images can provide a wider field of view and
can cover larger geographic areas. This is valuable for geo-localization research.
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• Accurate labels: MTGL40-5 records the latitude and longitude coordinates for the four
vertices and center point of each RS image in the database, which is important for
performing accurate geo-localization.

Table 1. Comparison between MTGL40-5 and other geo-localization datasets.

Datasets MTGL40-5 University-1652 [19] CVUSA [30] CVACT [29] Lin et al. [14] Tian et al. [9] Vo et al. [39]

Training set size 66k/17k/4.7k 50k 71k 71k 75k 31.4k 1800k
Target Ports and airports Building User User Building Building User

Multi-temporal
√

× × × × × ×
Large-scale

√
× × × × × ×

GPS coordinates
√

× × × ×
√

×
Multi-angle ×

√
× × ×

√
×

Evaluation Recall@K Recall@K and AP Recall@K Recall@K PR curves and AP PR curves and AP Recall@K

Finally, an important usage notice of MTGL40-5 needs to be explained: training the
model with cross-time data (the query and database images are from different years) rather
than same-time data. To train a model for satellite-view geo-localization, it is important
to ensure that the feature distance between the query and database images from the same
landmark is reduced, but not to the extent of reaching zero (i.e., overfitting). However, when
the query and database images come from the same time, they may have identical pixels,
meaning that all pixel values are exactly equal. This can potentially lead to overfitting of
the model. Therefore, in this paper, we select the cross-time data of query and database
images to optimize the feature distance during model training. Once the model is trained,
the database image with the minimum feature distance from the given query image is used
to produce the predicted location result.

3.2. Additional Tasks

In this section, we introduce three additional tasks for MTGL40-5: (1) correcting the
predicted coordinates of query images; (2) predicting the geographic coordinates of key
images; and (3) determining which original image the key image belongs to.

(1) Existing geo-localization models can utilize image matching technology to predict
the geographic coordinates of query images. However, while the corresponding database
image can be successfully matched, it may not perfectly align with the query image and
could exhibit some slight position offset (see Figure 3), providing imprecise location infor-
mation. Therefore, it is essential to correct this result by computing the positional offset,
which is a crucial step in accurately determining the center coordinates of the query image.
In addition, since the query images are split from the key image, the geographic coordinates
of the corresponding key image also can be predicted by analyzing the coordinates of all
query images. The total of six steps, including correcting the predicted coordinates of query
images and predicting key image’s coordinates, are shown in Figure 4. After obtaining the
matched image pairs (¬ and ­ in Figure 3) through the geo-localization models, the SIFT
features are extracted to generate numerous keypoint pairs, each of which can produce an
offset. Then, the final offset between the query and database images can be determined
by voting for the keypoint pair offsets and selecting the most voted one, as shown in ® of
Figure 4. In this way, the geographic coordinates of the query images can be corrected by
adding the final offset.

(2) For each query image’s coordinate, the coordinate of the key image can be generated
by matching it to the corresponding original position on the key image. Therefore, if a
key image is split into N query images, N coordinates of the key image can be generated,
as shown in ¯ of Figure 4. We map these coordinates to a two-dimensional coordinate
system, and analyze the corresponding density (° and ± of Figure 4). Averaging N
coordinate points could be susceptible to the influence of incorrect data points among them.
Consequently, utilizing the set of N coordinate points, we select the point with the highest
density as the final coordinate point for the key image.



Remote Sens. 2023, 15, 4229 8 of 16

(3) Since the database images are extracted from the original image, each database
image can be assigned an index corresponding to its original image. Therefore, when we
obtain image pairs of query and database images, N query images extracted from a key
image will correspond to N original image indexes. Finally, the key image can be assigned
an original image index through a voting mechanism, determining which original image it
belongs to.

Offset
Query Database

Figure 3. “Offset” represents the center point offset between query and database images.
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Figure 4. Calculating the coordinates of the key image’s center point. ¬: Splitting key image to
query images. ­: Matching query images with database images. ®: Computing image center offset
to correct the predicted coordinates of query images. ¯: Collecting the key image’s coordinate
predictions based on query images. °: Mapping the collected coordinates to the two−dimensional
coordinate system. ±: Analyzing the density information, and selecting the point of highest density
(red dot) as the key image’s coordinates.

4. Experiment
4.1. Experimental Setting

To construct the MTGL40-5 benchmark, we select eight methods, including four
widely used feature-extraction methods, VGG16 [52], GoogLeNet [53], ResNet50 [54], and
DenseNet121 [55], as well as four geo-localization methods, LCM [56], LPN [49], RK-Net [4],
and FSRA [1]. For a fair comparison, the data processing and experimental settings of all
geo-localization methods are consistent with those in the original papers. Additionally,
all feature-extraction methods adopt the following common settings: (1) model weights
pre-trained on the ImageNet dataset [57] are adopted; (2) the Adam [58] optimizer with a
learning rate of 0.0001 is employed; (3) the image size for inputting to the models is adjusted
to 256× 256 pixels; (4) the training process consists of 200 epochs, with a batch size of
16; (5) simple data augmentation techniques are applied during training, such as random
horizontal flipping and random rotation; and (6) during the testing stage, we utilize the
trained models to extract image features, compute their similarity scores using the cosine
distance, and generate the final results by sorting the similarity scores. Furthermore, the
patch size N is set to a high value of 2048 for preserving more stable terrain information,
which is crucial for accurate geo-localization.

As mentioned in Section 3, to avoid overfitting the query and database images must be
selected from different years. For instance, we provide some query images captured in 2014,
and then match them with database images collected in 2015. Therefore, we construct the
dataset split of training, validation, and testing sets by matching different years. To better
explain this, the five years of each location are uniformly re-labeled as 0–4 in ascending
order. The corresponding data split is listed in Table 2. This allows us to accurately evaluate
the performance change of existing methods when facing the cross-time challenge.
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Table 2. Split of dataset.

Data Partitioning Temporal Partitioning

Training set
query:0→database:1
query:1→database:2
query:2→database:0

Validation set query:4→database:3

Testing set query:3→database:4

4.2. Evaluation Protocol

(1) Image matching accuracy: In this paper, we rank the image matching process
of geo-localization models using the recall at the top-k accuracy of query images as a
metric, named Recall@k-Query (R@k-Q). Similarly, the accuracy of matching the key and
original images is also evaluated through recall (see the third task of Section 3.2), named
Recall@k-Key (R@k-K) to ensure the accuracy of geo-localization, where k is set to 1.

(2) GPS coordinates average error: For results involving coordinates, we use the
average error between the calculated GPS coordinates and label information as the standard
to measure whether the results are accurate or not.

4.3. Comparison Algorithms

Below we will briefly introduce the relevant comparison algorithms:
VGG16 [52]: A deep convolutional neural network with 16 convolutional layers

extracts image features with a smaller convolution kernel size and deeper network structure.
GoogLeNet [53]: A convolutional neural network using the inception module, which

performs multi-scale convolution operations at the same time, and introduces an auxiliary
classifier to strengthen gradient propagation and prevent gradient disappearance.

ResNet50 [54]: A deep residual network by introducing residual connections and skip
connections, which solves the problem of gradient disappearance and gradient explosion
in deep networks.

DenseNet121 [55]: A densely connected network that enables global sharing of features
and information flow by cascade-connecting the output of the previous layer with the input
of the current layer at each level.

LCM [56]: A deep network that takes into account the imbalance in the number of
input samples, and considers the effect of feature vector size on matching accuracy.

LPN [49]: A deep network with a square-ring feature partition strategy, which pro-
vides attention based on the distance from the center of the image, enabling part-wise
representation learning.

RK-Net [4]: A deep network that introduces a unit subtractive attention module to
automatically learn representative keypoints from images.

FSRA [1]: A feature segmentation and region alignment are introduced in the trans-
former to enhance the model to understand the context information of the image.

4.4. Experimental Results and Comparisons
4.4.1. Results on MTGL40-5

Table 3 presents the overall experimental results of eight baseline models on the testing
set (query:3→database:4). To our surprise, DenseNet121 outperforms other methods,
including those specifically designed for geo-localization, achieving query/key accuracies
of 55.76%/87.50%. Furthermore, the widely used methods demonstrate the more promising
accuracies in R@1-K, more than 85%. In contrast, the specifically designed methods Rk-Net
and FSRA exhibit the lowest accuracy for query and key image matching, respectively.
This means that existing geo-localization methods may not be suitable when facing the
cross-time challenge and may even perform worse.
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Table 3. Comparison studies on MTGL40-5.

Method
Testing Set

R@1-Q (%) R@1-K (%)

VGG16 46.92 85.00
GoogLeNet 51.41 85.00
ResNet50 54.94 85.00

DenseNet121 55.76 87.50

LCM 53.96 80.00
LPN 55.50 85.00

Rk-Net 46.91 80.00
FSRA 49.92 77.50

Although the widely used methods have certain advantages over the specifically
designed methods, their low accuracy (less than 60%) in the R@1-Q metric indicates that
there is still significant room for improvement in accurately extracting multi-temporal
features of the same landmark. This highlights the necessity of proposing MTGL40-5 to
explore the cross-time challenge.

4.4.2. Results on Facing Cross-Time Challenge

To further analyze the model performance when facing the cross-time challenge, we
select the top-performing model, DenseNet121, as a sample and list the image matching
accuracy of different phases in Table 4, including training, validation, and testing sets.

For the training set, all three phases exhibit excellent accuracy in both R@1-Q and
R@1-K, with particular results in R@1-K reaching close to 100%. It is worth noting that
the R@1-Q and R@1-K scores of phase “query:2→database:0” (referred to as 2→0) are
the lowest. This is because the 2→0 phase has a larger time gap between the query and
database images compared to the 0→1 and 1→2 phases, which introduces more serious
cross-time challenges. Although the accuracy on the training set is promising, the actual
performance on the validation set shows a significant decline. Compared to the three phases
of the training set, the R@1-Q/R@1-K of the validation set decrease 23.34%/7.5% (over
0→1), 23.46%/5% (over 1→2), and 20.70%/2.5% (over 2→0). This proves that it is hard
for DenseNet121 to accurately capture time-invariant features to alleviate the cross-time
challenge, resulting in overfitting on the training set. In the testing set, the lowest results are
achieved among all phases, with only 55.76% accuracy in R@1-Q and 87.50% accuracy in
R@1-K, which indicates that DenseNet121 faces difficulties in obtaining satisfactory results
in practical geo-localization applications when encountering cross-time challenges.

Table 4. Cross-time results on DenseNet121.

DenseNet121 R@1-Q (%) R@1-K (%)

Training set
query:0→database:1 82.33 100
query:1→database:2 82.45 97.50
query:2→database:0 79.69 95.00

Validation set query:4→database:3 58.99 92.50

Testing set query:3→database:4 55.76 87.50

4.4.3. Accuracy by Location

In addition to the overall accuracy of the testing set, we also provide the accuracy of
each location for all eight methods in Table 5. The accuracy of each location is calculated
by averaging the matching accuracy of query images from the corresponding location.
According to the results, for clarity, we use the symbols N and F to represent simple and
hard locations, respectively. It is observed that the majority of methods achieve promising
accuracies in the simple locations, denoted by F, with some even reaching a maximum
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value of over 95%. In contrast, for hard locations (N), most methods cannot accurately
conduct image matching between database and corresponding query images. The changes
in accuracy between hard and simple locations may potentially be influenced by the severity
of the cross-time challenge, which refers to the degree of land cover changes over long
periods of time. Although the rest of the general locations have a moderate accuracy, they
have significant room for accuracy improvement.

Table 5. Accuracy by location on the MTGL40-5 dataset. N and F denote the hard and simple
locations, respectively.

Location
Indexes

Testing Set

VGG16 GoogLeNet ResNet50 DenseNet121 LCM LPN Rk-Net FSRA

0 28.00 28.00 48.00 44.00 56.00 56.00 32.00 36.00

1 N 32.65 2.04 2.04 55.10 36.73 2.04 2.04 22.45

2 N 23.33 3.33 3.33 3.33 56.67 40.00 3.33 3.33

3 F 95.83 100.00 95.83 87.50 83.33 95.83 91.67 95.83
4 F 91.84 97.96 89.80 97.96 87.76 89.80 87.76 95.92

5 51.79 53.57 58.93 66.07 71.43 66.07 64.29 58.93
6 75.00 83.33 87.50 85.42 87.50 87.50 70.83 85.42
7 66.67 83.33 78.57 78.57 61.90 69.05 83.33 88.10
8 47.22 52.78 63.89 58.33 36.11 52.78 58.33 63.89
9 27.78 36.11 38.89 36.11 27.78 41.67 30.56 50.00

10 62.50 81.25 83.33 77.08 66.67 79.17 64.58 64.58
11 36.00 36.00 56.00 48.00 52.00 48.00 32.00 72.00

12 N 4.00 24.00 4.00 4.00 52.00 28.00 4.00 24.00

13 23.33 36.67 53.33 40.00 66.67 46.67 40.00 43.33
14 2.78 63.89 61.11 72.22 63.89 66.67 50.00 66.67

15 F 69.44 77.78 91.67 83.33 83.33 91.67 69.44 88.89
16 50.00 75.00 87.50 50.00 75.00 75.00 68.75 68.75
17 50.00 50.00 50.00 40.00 5.00 55.00 45.00 35.00

18 N 25.40 1.59 1.59 1.59 1.59 1.59 22.22 1.59

19 N 28.57 2.38 40.48 38.10 2.38 42.86 30.95 2.38

20 N 2.08 2.08 2.08 2.08 2.08 27.08 2.08 2.08

21 43.75 50.00 52.08 75.00 52.08 81.25 60.42 70.83
22 90.00 70.00 70.00 75.00 50.00 80.00 45.00 10.00
23 4.00 60.00 4.00 40.00 60.00 24.00 28.00 4.00

24 F 80.56 91.67 91.67 94.44 83.33 88.89 83.33 94.44

25 N 30.61 2.04 18.37 26.53 34.69 2.04 2.04 2.04

26 F 80.00 97.14 85.71 80.00 88.57 88.57 85.71 85.71
27 F 83.33 93.33 93.33 86.67 90.00 96.67 73.33 63.33

28 4.00 36.00 44.00 48.00 76.00 60.00 28.00 4.00
29 F 100.00 100.00 100.00 97.96 97.96 97.96 97.96 100.00
30 F 60.71 87.50 64.29 76.79 96.43 85.71 26.79 85.71

31 48.00 88.00 48.00 48.00 4.00 76.00 72.00 52.00
32 40.00 23.33 33.33 43.33 30.00 16.67 36.67 46.67
33 68.75 68.75 70.83 66.67 66.67 64.58 41.67 56.25

34 F 83.33 75.00 77.78 75.00 97.22 94.44 69.44 66.67
35 50.00 62.50 50.00 62.50 37.50 50.00 50.00 68.75

36 N 28.00 4.00 36.00 28.00 4.00 4.00 4.00 36.00

37 N 5.00 5.00 5.00 5.00 45.00 5.00 5.00 5.00

38 F 62.86 91.43 94.29 94.29 77.14 97.14 91.43 82.86

39 N 20.00 3.33 3.33 3.33 30.00 3.33 3.33 3.33

Mean 46.92 51.41 54.94 55.76 53.96 55.50 46.91 49.92

4.5. Parametric Analysis of N and GPS Coordinates Calculation

As mentioned above, patch size N is a hyper-parameter that determines the balance
between global and local information in the query and database images. A larger N
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captures more global information, such as the overall terrain features such as rivers and
roads. On the other hand, a smaller N focuses on capturing local information, including
more details of land cover. Therefore, to study the impact of patch size N on geo-localization
performance, we change N from 1024 to 4096 (specifically, 1024, 2048, and 4096). Based
on different N, the image numbers of training, validation, and testing sets are listed in
Table 6. Furthermore, three metrics of eight comparison methods in Table 7, including
R@1-Q, R@1-K, and average error in predicting coordinates. Based on the results, as the
value of N increases, there is a significant improvement in R@1-Q/K for most methods, but
at the same time, the average error also increases. This means that increasing the utilization
of global information may lead to higher accuracy in image matching, while incorporating
more local information enhances the accuracy of coordinate prediction. Therefore, the value
of N can be adjusted to meet different actual demands in various application scenarios.
In this paper, we have chosen to set N to 2048 for balancing both image matching and
coordinate prediction accuracies.

Table 6. The number of images generated by different patch sizes N.

Dataset
Number of Patch-Wise Images

N = 1024 N = 2048 N = 4096

For training 65,991 17,283 4713
For validation 27,257 7177 1987

For testing 27,257 7177 1987

Table 7. Parameter analysis of patch size N. For each average error, the first and second lines denote
the longitude and latitude errors, respectively.

N 1024 2048 4096

Two Samples

Methods
Evaluation R@1-Q R@1-K Average Error (10−3) ↓ R@1-Q R@1-K Average Error (10−3) ↓ R@1-Q R@1-K Average Error (10−3) ↓

VGG16 34.94 60.00 3.2991 46.92 85.00 1.9368 43.58 67.50 7.0392
3.6624 4.5134 6.8489

GoogLeNet 44.58 77.50 2.8284 51.41 85.00 0.4801 59.86 87.50 6.4907
4.0246 4.5509 5.7409

ResNet50 38.38 65.00 2.5326 54.94 85.00 5.3444 65.4 97.50 6.2648
3.2292 4.2823 7.4274

DenseNet121 45.05 77.50 1.5646 55.76 87.50 2.1003 63.27 90.00 9.6459
4.3762 4.4092 5.6408

LCM 37.84 65.00 1.9011 53.96 80.00 1.9416 64.99 92.50 9.7468
4.2125 4.9594 5.8561

LPN 41.11 67.50 4.3029 55.50 85.00 4.0913 66.82 92.50 6.9637
4.5358 4.5134 6.8025

Rk-Net 30.05 62.50 0.1688 46.91 80.00 2.1611 52.07 82.50 11.1828
3.4346 4.9053 5.6381

FSRA 26.80 55.00 6.2576 49.92 77.50 3.4635 63.72 90.00 6.1434
5.3527 4.7893 5.3352

4.6. Visual Analysis

To visually illustrate the results of the eight compared methods on the MTGL40-
5 dataset, we select two distinct query images as samples. For each query image, we
sort the matching scores of the corresponding database images, and choose the top five
images to save space. The results are shown in Figure 5. Based on the results, all methods
demonstrate a certain capacity for image matching through model training. This is evident
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as the left/right query images contain buildings/water, and most of the matched database
images also contain buildings/water. Furthermore, most of the methods successfully match
the correct top database image. However, certain methods find it difficult to match the
correct database image when some database images exhibit high similarity with the query
image, such as VGG16 with the left query image and FSRA with the right query image.
This demonstrates the limited capacity of these methods in accurately conducting the
geo-localization task. In summary, when faced with the cross-time challenge, existing
methods struggle to obtain satisfactory results, even if the standards are relaxed to the
top five images. Therefore, the introduction of the MTGL40-5 dataset is necessary, since it
enables the exploration of the cross-time challenge and can aid in developing improved
methods.

LPN

VGG16

GoogLeNet

DenseNet121

ResNet50

Rk-Net

LCM

FSRA

Query Retrival Result Query Retrival Result 

Figure 5. The top five images in ranking the query image matching results on testing set. Here, the
database image with a red box represents the correct matched result.

5. Conclusions

In this paper, a novel dataset for cross-time geo-localization is proposed, named
MTGL40-5. This dataset comprises 40 diverse geographic locations spanning five different
years. For each location, the large-scale original and key images are captured, which contain
the complete and key content of the corresponding location. Subsequently, the key/original
images are split into query/database images for conducting geo-localization. By analyzing
the content difference of the same landmark in different years, we aim to address the cross-
time challenge and enhance the practicality of geo-localization. In addition to the traditional
image matching task, we also perform three supplementary tasks, including correcting
the coordinates of the query image, predicting the coordinates of the key image, and
matching the key image with the original image. Finally, we conduct extensive experiments
and construct a strong benchmark with the MTGL40-5 dataset. These findings serve as
evidence for the importance and value of this dataset in advancing the field of cross-time
geo-localization.
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