
Citation: Lian, H.; Yang, M.; Xu, S.;

Zhou, D.; Liu, M. Time Reversal

Detection for Moving Targets in

Clutter Environments. Remote Sens.

2023, 15, 4225. https://doi.org/

10.3390/rs15174225

Academic Editor: Andrzej Stateczny

Received: 26 June 2023

Revised: 17 August 2023

Accepted: 25 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Time Reversal Detection for Moving Targets in
Clutter Environments
Hao Lian , Minglei Yang *, Saiqin Xu , Dingsen Zhou and Meng Liu

National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
hlian@stu.xidian.edu.cn (H.L.)
* Correspondence: mlyang@xidian.edu.cn

Abstract: Moving target detection plays a pivotal role in many applications, especially in radar
systems. In addition, time-reversal (TR) technology can improve radar detection probability by
effectively solving the problem of multipath signals. However, detection performance can be affected
when clutter exists and target Doppler shifts are unknown. For this reason, we propose a novel
moving target detection algorithm that leverages TR technology and a novel waveform optimization
method in clutter and multipath signal environments. In this paper, we establish a TR signal model
for a moving target in such environments and derive the TR average likelihood ratio test (TR-
ALRT) detector. Additionally, we introduce a waveform optimization method that adapts to clutter
and unknown Doppler information further to enhance the performance of the TR-ALRT detector.
Consequently, a TR-ALRT waveform optimization (TR-ALRT-WO) detector is derived to adapt to
the unknown Doppler and environment information, thereby improving the detection probability.
Comparative analysis with other detectors under the same conditions validates the effectiveness of
our proposed TR-ALRT-WO detector. Furthermore, numerical experiments demonstrate the superior
performance of the proposed detection algorithm.

Keywords: moving target detection; time reversal; clutter; waveform optimization

1. Introduction

Moving target detection has been studied in radar signal processing for many years.
Accordingly, many state-of-the-art works for moving target detection have been pro-
posed [1–4]. However, detecting a moving target is a challenging task due to the presence of
multipath signals. These multipath signals arise from interactions between electromagnetic
waves and rough or glistening surfaces, resulting in reflections and scattering [5]. Therefore,
studying radar target detection in multipath signal environments has become a research
hotspot in the past few decades [6–9]. While multipath signals are commonly perceived
as unfavorable influences, many processing methods have focused on distinguishing or
eliminating them [10,11]. However, it is essential to acknowledge that multipath sig-
nals also carry valuable target information, thereby augmenting the spatial diversity of
radar systems.

For target detection in dense multipath environments, various methods have been
proposed [12–16]. In addition to the above methods, time-reversal (TR) technology [17],
which matches the propagation channel and utilizes space–time focusing to transform
the influence of multipath signals into favorable factors, is also an effective method for
mining multipath signals without prior environmental knowledge. TR technology can
be understood as a radar waveform adaptive transmission scheme. By the TR technique,
the transmission waveform can be obtained, which is adaptive to the propagation medium
and the scattering characteristics of the target. The TR technique can combine various
advantages, such as using multipath signals to build virtual sensors to expand the vir-
tual radar aperture and adapting easily to other waveform design methods to improve
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target detection performance. Subsequently, TR technology is applied to target detection,
leading to the development of various TR detectors that effectively enhance the detection
performance for different radar systems [18–22].

Most of the previous studies [18–21] on TR detection have primarily focused on
ideal environments where no clutter is present or the target is assumed to be static. This
continuous presence of clutter [23] and the dynamic nature of targets [24] significantly
degrade the performance of radar detection systems. Precisely for this reason, radar
waveform design methods that fully exploit transmission freedom have been considered to
improve target detection performance [9,25,26]. Moving targets are detected through the
orthogonal frequency division multiplexing (OFDM) waveform in multipath environments
where the clutter is nonexistent [9]. It is worth noting that the Doppler shift of moving
targets plays a crucial role in distinguishing them from the clutter background due to the
difference between the target velocity and the motion of the clutter scatters. To this end,
Naghsh considers the radar coding design problem of moving target detection in a cluttered
environment in reference [27] and proposes a novel waveform optimization method, which
improves the probability of moving target detection in a cluttered environment under the
reparameterization framework. In addition, under the constraint of a low peak-to-average
power ratio, De Maio studies the worst-case coding design problem [28]. As highlighted
earlier, in the context of moving target detection, most waveform design methods do not
take into account the challenges that arise in environments where multipath signals and
clutter coexist. Then, the existing detection algorithms are unable to achieve satisfactory
target detection performance for a moving target in this environment. Therefore, based
on this observation, it is valuable to investigate and explore moving target detection in
practical cluttered environments.

This paper proposes a detection method for moving targets with an unknown Doppler
with the simultaneous presence of clutter and multipath signals. To achieve this, we utilize
time-reversal (TR) technology and the waveform optimization (WO) method to address
the moving target detection problem. By leveraging these techniques, we propose the
TR-WO algorithm to solve the unknown Doppler target detection problem in environments
where clutter and multipath signals exist. We first outline the detection problem using a
binary hypothesis test framework. Secondly, we derive a TR average likelihood ratio test
(TR-ALRT) as a comparison benchmark. Finally, we incorporate waveform optimization
(WO) to design the TR-ALRT-WO detector. A conventional likelihood ratio test (C-LRT)
detector is also derived as a comparison benchmark. We evaluate the performance of several
other detectors that utilize multipath signals to provide a comprehensive comparison and
demonstrate the superiority of the proposed TR-ALRT-WO detector.

The significant contributions of our article can be summarized as follows. 1. We
investigate the problem of moving target detection under the environment where clutter
and multipath signals are. 2. We specifically focus on leveraging TR technology as the
basis for our study and develop a comprehensive TR signal model that accurately captures
the characteristics of the complex environment. 3. We propose the TR-ALRT-WO detector,
which exploits multipath signals, mitigates clutter interference and adapts to moving
targets with unknown Doppler information.

The rest of this paper is organized as follows. Section 2 provides a detailed description
of the detection problem and introduces the channel response. Section 3 describes the
detection algorithm, proposes the TR-ALRT-WO detector, and introduces the parameter
estimation method. In Section 4, the C-LRT detector is derived, and the flowchart of the
proposed detection algorithm is summarized. A series of numerical examples are analyzed
in Section 5. Finally, Section 6 concludes the article.

Notations: In this paper, conjugate, transpose and Hermite transpose are represented
by the symbols (·)∗, (·)T and (·)H , respectively. The symbol diag(·) denotes the vector
formed by collecting the diagonal entries of the matrix argument, whereas Diag(·) denotes
the diagonal matrix formed by the entries of the vector argument. IN is the N-dimensional
identity matrix. We use the symbol � to denote the Hadamard product of two matrices of
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the same dimension. We denote matrices and vectors with uppercase and lowercase bold
letters, respectively. E{·} denotes the expectation operator. The uniform distribution from
a to b is denoted by U (a, b). The trace of a square matrix argument is denoted by tr(·). |A|
and A−1 are the determinant and inverse, respectively, of the matrix A. The symbol ln(·)
represents the logarithm. The ∼ denotes a statistical distribution.

2. Problem Formulation

The detection problem of a moving target with an unknown Doppler is considered in
an environment where clutter and multipath coexist, as shown in Figure 1. The target may
experience occlusion in specific environments due to excessive reflection surfaces; so, it is
assumed that there is no direct path for the target [24]. Therefore, we define the multipath
signals as the scattered target signal that propagates to other objects or reflective surfaces
and are finally eventually received by radar.

Transceiver 

Clutter

Multipath

Target





sv

Figure 1. Schematic representation of a moving target scenario.

Moreover, the clutter refers to the signal echoes generated by numerous individual
points scattered and distributed across the delay domains. We consider a narrowband radar
system that utilizes an omnidirectional antenna. The initial transmitted signal is denoted
as s(t) at time instant t with a total of T; then, the energy Es can be modeled as

Es =
∫ T

0
|s(t)|2dt. (1)

The number of propagation paths between the radar and the target is estimated
precisely as the prior knowledge [9]. Thus, the scattering environment contains L paths
associated with the target. And the radar received the L path signals coming from different
distinct directions θ = [θ1, · · · , θL]. Note that the radar antenna receives abundant diffuse
multipath signals at random angles in the environment. Thus, θl is considered to follow
the uniform distribution from 0 to 2π. Relative to the radar, the target moves at a constant
speed vs, and its motion is characterized by an angle φ. Based on θl and φ, we define the
Doppler factor in frequency domain as [29]

βl =
2vs(sin φ sin θl + cos φ cos θl)

c
, l = 1, . . . , L (2)
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Next, the Doppler shift of the target can be obtained as follows

vl = 2π fcβl , l = 1, . . . , L (3)

where fc is used to represent the radar carrier frequency.
The clutter response consists of M independent response scatterers in the time-delay

domain, which can be represented as

hc(t) =
M

∑
m=1

ρm(t)δ(t− τm), (4)

where M represents the number of clutter scatterers under time delay, and δ(t) represents
Dirac delta function; ρm is the specific amplitude of clutter scattering at time delay, satisfying
a complex Gaussian random distribution with zero mean and σ2

ρ variance, described as

ρm ∼ CN (0, σ2
ρ ). (5)

Similarly, the target multipath response ht(t) can be expressed as

ht(t) =
L

∑
l=1

ht,l(t), (6)

where ht,l(t) is the lth propagation path’s target response, expressed by

ht,l(t) = αl(t)δ(t− τl), l = 1, . . . , L (7)

where τl denotes the lth path’s time delay. Only overlapping echoes are considered,
ignoring the multipath signals whose delay time is greater than the signal duration T. As
a result, we know that the multipath signal’s Delay gratification is τl < T. αl(t) is the lth
path’s attenuation coefficient. Since the coherence time of the target channel is much longer
than the pulse duration, we use αl to represent αl(t) [30,31].

Since the propagation paths are independent, similarly to the ρm, αl also satisfies a
complex Gaussian distribution, which is expressed by

αl ∼ CN (0, σ2
α). (8)

The clutter and target responses are superimposed to form the channel response h(t),
as follows

h(t) = ht(t) + hc(t). (9)

A two-hypothesis test is considered. In the null hypothesis, H0, there are only clutter
responses in the channel. In contrast, in the alternative hypothesis, H1, there is a moving
target in the environment. Here, the binary hypothesis testing problem regarding the
channel is

H0 : h(t) = hc(t)
H1 : h(t) = hc(t) + ht(t).

(10)

3. TR-WO Detection Algorithm

This section discusses the TR-WO detection algorithm, divided into four steps, as shown
in Figure 2. In Section 3.1, we stack the time-reversed echoes into the vector form and
describe a new binary hypothesis test. In Section 3.2, we simplify the binary hypothesis
test problem and derive the TR-ALRT detector. Section 3.3 introduces the waveform opti-
mization method, and we derive the TR-ALRT-WO detector. In Section 3.4, we introduce
the parameter estimation method for the required prior knowledge.
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Figure 2. Process of the TR-WO detection algorithm.

3.1. TR Received Echoes and TR Binary Hypothesis Test

In this subsection, we first summarize the entire signal processing procedure, com-
posed of the learning period, forward transmission period and backward transmission period,
as expressed in Figure 3.

Clutter

(a)

Target

Clutter

( )y t

( )s t

(b)

Target

Clutter

( )x t

( )s t

( ) ( )s t ky t  

k :Energy normalization factor

(c)

Figure 3. The signal processing procedure: (a) learning period, (b) forward transmission period and
(c) backward transmission period.

Learning Period: In this period, we assume the moving target does not yet exist; through
repeated transmissions, the noise and the clutter can be estimated accurately.
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Forward Transmission Period: The target is moving at Doppler frequency vl in the mixed
background. By convolving the transmitted signal s(t) with the clutter and target response,
a received signal y(t) is formed

y(t) =
L

∑
l=1

ht,l(t) ∗ s(t)ejvl t + hc(t) ∗ s(t) + n(t), (11)

where n(t) ∼ CN (0, σ2
n).

Backward Transmission Stage: We perform the TR procedure in this period using the
received signal y(t) obtained from the last period. Firstly, we perform a reversal operation
on y(t) in the time domain. Secondly, to ensure that the energy between s(t) of the forward
period and s′(t) of the backward period is equal, the energy normalization term is calcu-
lated. Finally, through the processing procedure of time-reversal processing and energy
normalization processing, the retransmitted signal is emitted into the mixed environment
and can be described as

s′(t) = ky∗(−t)

= k
L

∑
l=1

αl(−t)s∗(−t− τl)ejvl(−t−τl) +
M

∑
m=1

ρm(−t)s∗(−t− τm) + n(−t), (12)

where k is the energy normalization term and is expressed as follows

k =

√
Es∫ T

0 |y(t)|
2dt

. (13)

Then, the TR received signal x(t) can be calculated and written as

x(t) = hc(t) ∗ s′(t) +
L

∑
l′=1

ht(t) ∗ s′(t)ejv̄l′ t + n̄(t)

=
M

∑
m′=1

ρm′(t)δ(t− τm′) ∗ s′(t) +
L

∑
l′=1

αl′(t)δ(t− τl′) ∗ s′(t)ejv̄l′ t + n̄(t)

=
L

∑
l′=1

αl′(t)s
′(t− τl′)e

jv̄l′ (t−τl′ ) +
M

∑
m′=1

ρm′(t)s
′(t− τm′) + n̄(t), (14)

where n̄(t) satisfies
n̄(t) ∼ CN (0, σ2

n). (15)

We substitute (12) into (14) and obtain the x(t) as follows:

x(t) = k
L

∑
l′=1

L

∑
l=1

αl′(t)αl(−t + τl′)s(−t + τl′ − τl)ejvl(−t+τl′−τl)ejv̄l′ (t−τl′ )

+ k
L

∑
l′=1

αl′(t)
M

∑
m=1

ρm(−t + τm′)s(−t + τm′ − τm)ejv̄l′ (t−τl′ ) + k
L

∑
l′=1

αl′(t)n(−t + τl′)e
jv̄l′ (t−τl′ )

+
M

∑
m′=1

ρm′(t)k
L

∑
l=1

αl(−t + τl′)s(−t + τl′ − τl)ejvl(−t+τl′−τl)

+
M

∑
m′=1

ρm′(t)
M

∑
m=1

ρm(−t + τm′)s(−t + τm′ − τm) +
M

∑
m′=1

ρm′(t)n(−t + τl′) + n̄(t). (16)
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The clutter and the target are independent according to the assumption of [18]. There-
fore, the second and fourth terms at the right-hand side (RHS) of (16) have a much smaller
amplitude and can be ignored. Hence, the TR received signal can be further described as

x(t) = x1(t) + x2(t) + w(t), (17)

where

x1(t) = k
L

∑
l′=1

L

∑
l=1

αlα
∗
l′ s
∗(−t + τl′ − τl)ejvl(−t+τl′−τl)ejv̄l′ (t−τl′ )

= k
L

∑
l=1
|αl |2s∗(−t + τl − τl)ejvl(−t+τl−τl)ejv̄l(t−τl)

+ k
L

∑
l 6=l′

αlα
∗
l′ s
∗(−t + τl′ − τl)ejvl(−t+τl′−τl)ejv̄l′ (t−τl′ ). (18)

In a dense multipath signal environment, the amplitude of the second term at the RHS
of (18) is very small compared with that of the first term [29]. Therefore, we can ignore the
second term’s influence on the x1(t) while only retaining the first term. Hence, the x1(t)
can be reduced to

x1(t) = k
L

∑
l=1
|αl |2s∗(−t + τl − τl)ejvl(−t+τl−τ̄l)ejv̄l(t−τ̄l)

= k
L

∑
l=1
|αl |2e−jv̄l τl s∗(−t + τl − τl)ej(v̄l−vl)tejvl(τl−τl)

= Ds∗(−t + τl − τl)ej(v̄l−vl)tejvl(τl−τl), (19)

where D highlights the multipath signals focusing effect

D = k
L

∑
l=1
|αl |2e−jv̄l τl , (20)

when v̄lτl varies by 1/ fc radian, the phase term changes 2π, and 1/ fc is a minimum value
so that the phase term will change rapidly in the range [0, 2π], even for small target motions.
In a practical scattering environment, many propagation paths of the radar antenna received
from different directions always exist so that D can be regarded as a random process. Based
on the central limit theorem [32], when the number of multipath signals is large, D satisfies
the complex Gaussian distribution as follows

D ∼ CN (0, kLσ4
α). (21)

x2(t) is obtained by convolving the transmitted signal with the clutter response and is
described as

x2(t) = k
M

∑
m=1

M

∑
m′=1

ρm(t)ρ∗m′(t)s
∗(−t + τm − τm′). (22)

The third and sixth terms at the RHS of (16) are classified as noise term w(t)

w(t) = k
L

∑
l′=1

αl′(t)n(−t + τl′)e
jv̄l′ (t−τl′ ) +

M

∑
m′=1

ρm′(t)n(−t + τl′) + n̄(t). (23)

After the above analysis, therefore, the simplified expression for x(t) is
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x(t) = k
L

∑
l=1
|αl |2s∗(−t + τl − τl)ejvl(−t+τl−τl)ejv̄l(t−τl) + k

M

∑
m=1

M

∑
m′=1

ρm(t)ρ∗m′(t)s
∗(−t + τm − τm′) + w(t)

= k
L

∑
l=1
|αl |2e−jv̄l τl s∗(−t + τl − τl)ej(v̄l−vl)tejvl(τl−τl) + k

M

∑
m=1

M

∑
m′=1

ρm(t)ρ∗m′(t)s
∗(−t + τm − τm′) + w(t)

= Ds∗(−t + τl − τl)ej(v̄l−vl)tejvl(τl−τl) + k
M

∑
m=1

M

∑
m′=1

ρm(t)ρ∗m′(t)s
∗(−t + τm − τm′) + w(t)

= Ds∗(−t)ej(v̄l−vl)t + k
M

∑
m=1

M

∑
m′=1

ρm(t)ρ∗m′(t)s
∗(−t + τm − τm′) + w(t), (24)

where fc is a big value, and vl = 2π fcβl cannot be ignored. We define the normalized
Doppler shift as p̄l = v̄l − vl ; for convenience, we assume that the normalized Doppler
shifts of different paths are almost same, i.e., p̄l = p; so, the expression of x(t) is as follows

x(t) = D f (t)ejpt + c(t) f (t) + w(t), (25)

where, f (t) = s∗(−t), and c(t) = k
M
∑

m=1

M
∑

m′=1
ρm(t)ρ∗m′(t).

Finally, the discrete-time TR target signal model is given by

x = Df� q + f� c + w, (26)

where D = k
L
∑

l=1
|αl |2e−jv̄l τl is the focusing factor of the multipath signals, f ∆

= [ f0, f1, · · · , fN−1]
T

is the waveform vector and N is the sample number. q ∆
= [1, ejp, · · · , ej(N−1)p]T , where the

vectors w and c represent the noise and clutter, respectively.
The TR signal model is constructed, and the TR received signal is obtained. Thus, we

can describe a new binary hypothesis test problem for TR detection, shown as

H1 :x = Df� q + f� c + w

H0 :x = f� c + w. (27)

3.2. TR-ALRT Detector

For the binary hypothesis testing problem, it is difficult to derive the detector directly.
To this end, we consider a mathematical means of simplification: the whitening process. So,
we whiten the vector x as follows:

r =
(

FCFH + W
)−1/2

x. (28)

where F = Diag(f), and C and W are the covariance matrix forms of c and w, respectively.
After whitening, (27) can be further simplified, and the expression is described as

H0 :r ∼ CN (0, I)

H1 :r ∼ CN (0, I + D), (29)

where D = σFM−1/2(f� q)(f� q)HM−1/2, with σF = kLσ4
α and M = FCFH + W.

Next, we perform a likelihood ratio test on r and obtain

`(r) = ln
(

f (r|H1 )

f (r|H0 )

)H1
≷
H0

η, (30)
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where η is the detection threshold, and f (r|H1 ) and f (r|H0 ) are the probability density
functions (pdfs) of the alternative hypothesis H1 and the null hypothesis H0, respectively.
The pdf of H1 is as follows

f (r|H1 ) =
1

π|I + D| exp
(

rH(I + D)−1r
)

, (31)

and the pdf of H0 is expressed as

f (r|H0 ) =
1

π|I| exp
(

rHr
)

. (32)

Next, we take the logarithm of `(r) and remove the constant term to obtain the reduced
form of `(r) as follows

`(r) =
1

|I + D|

[
rHr− rH(I + D)−1r

]H1
≷
H0

η

=

∣∣∣∣ xH(f� q)
(W + FCFH)

∣∣∣∣2 H1
≷
H0

η. (33)

However, when the target Doppler is unknown, the vector r does not satisfy the
Gaussian distribution, and the TR detector is no longer a closed expression, making it
unsuitable for detecting a target with the unknown Doppler.

To detect the target of an unknown Doppler, we consider using the pdf f (p) of p and
the average likelihood ratio test to obtain the corresponding TR detector. Then, we derive
the TR average likelihood ratio test (TR-ALRT) detector for an unknown Doppler shift,
which is expressed as

`TR-ALRT(r) =
∫

ψ
`(r|p ) f (p)dp

H1
≷
H0

η

=
∫

ψ

1
1 + α

exp
(

σF
1 + α

∣∣∣xHM−1(f� q)
∣∣∣2) f (p)dp

H1
≷
H0

η, (34)

where ψ = [pl , pu] is the interval of p. α stands for the signal-to-clutter-noise ratio (SCNR),
which significantly impacts the performance of the detector. The expression for α is

α = σF(f� q)H(FCFH + W)−1(f� q)

= σFtr
{

FH
(

FCFH + W
)−1

FqqH
}

. (35)

3.3. TR-ALRT-WO Detector

We introduce a waveform optimization method to maximize SCNR and improve the
probability of detecting an unknown Doppler shift moving target in multipath clutter
environments. However, clutter is present, and the moving target’s Doppler is unknown;
the TR-ALRT detector cannot adapt to the environment and Doppler information. Therefore,
based on the mathematical background in [33], we use a transition criterion, namely the
average performance criterion, to optimize f to adapt to the environment and Doppler
information. This average performance standard is as follows

β=σFtr
{

FH
(

FCFH + W
)−1

FZ
}

, (36)

where Z = E
{

qqH}. Appendix A analyzes the reasons for choosing such a criterion.
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Then, based on the average performance criterion, the improvement of detection
performance can be obtained by maximizing the average performance criterion. Thus,
under the energy constraint, the optimization problem is described as

max
F

β=σFtr
{

FH(FCFH + W
)−1FZ

}
s.t. tr{FFH} ≤ Es

, (37)

where Es is the maximum energy available for transmission. If F is the solution of
tr{FFH} ≤ Es, it is feasible for some γ (γ > 1) to lead to γtr{FFH} = Es; so, the en-
ergy constraint is effective. In the following, we utilize a framework in [27] to tackle the
waveform optimization problem.

According to the framework, we introduce two auxiliary variables, A and B, and the
energy constraint can be expressed as

tr{FHF} = tr{AB}, (38)

where B is a diagonal matrix expressed as

B ∆
= (W−1 � I)−1, (39)

and
A ∆

= FHW−1F. (40)

The variable to be solved is converted from F to A. The optimization problem can be
boiled down to a semidefinite programming problem (SDP), and the optimal variable Aopt
can be obtained using the CVX toolbox [34].

Using an efficient cyclic iterative algorithm, the optimal Fopt can be synthesized by the
optimum Aopt obtained by SDP. An auxiliary variable, R, is essential during the process of
the efficient cyclic algorithm. The auxiliary matrix R is given by

R = VbVH
a , (41)

where the Va and Vb are obtained by solving the singular value decomposition (SVD) of
W−1/2FA

1/2
opt. Finally, the optimal Fopt is given by

Fopt = Diag
{

Bdiag
(

A1/2
opt R∗W−1/2

)}
. (42)

By substituting the optimal Fopt into (34), the performance of the TR-ALRT detector
can be further enhanced. We define the detector using the optimal Fopt as the TR-ALRT-
waveform optimization (TR-ALRT-WO) detector, which is expressed as

`TR−ALRT−WO(r) =
∫

ψ
`(r|p ) f (p)dp

H1
≷
H0

η

=
∫

ψ

1
1 + αopt

exp
(

σF
1 + αopt

∣∣∣xHM−1(fopt � q)
∣∣∣2) f (p)dp

H1
≷
H0

η, (43)

where
fopt = diag

{
Fopt

}
, (44)

and

αopt = σFtr
{

FH
opt

(
FoptCFH

opt + W
)−1

FoptqqH
}

. (45)
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3.4. Parameter Estimation

In real scenarios, the time-delay and attenuation coefficient of each propagation path,
the target’s Doppler shift and the clutter and noise of the environment are unknown.
However, in the target detection problem, these parameters seriously affect the performance
of algorithms. These parameters must be estimated through some methods in advance.

(1) Time-Delay Estimation: At present, there are many estimation algorithms for time
delay. We can first make a rough estimation, such as using the adaptive matched filter
(AMF) method [12], and secondly, for the multipath signal environment, the Kumaresan–
Tufts (KT) algorithm can be utilized [35].

(2) Clutter and Noise Estimation: By utilizing geographic, meteorological or prescan
information, it can be assumed that the C and W are known prior [36,37].

(3) Doppler Estimation: First, we can use prior knowledge about the target type, such
as whether the target is an aircraft, a ship or a missile. Secondly, we can use the prescan
procedures to obtain rough estimates. Finally, these values can be obtained by some
cognitive methods, such as those in the literature [33,38,39].

(4) Amplitude Estimation: According to the obtained time delay and Doppler shift, we
can utilize the method in [24] to determine the propagation paths’ attenuation coefficient.

4. Conventional Detector and Algorithm Flowchart
4.1. Conventional Detector

This article also derives the conventional likelihood ratio test (C-LRT) detector and
uses it as a comparison benchmark for the TR-ALRT-WO detector. The received signal y(t)
is used to detect a moving target for the C-LRT detector. In Appendix B, we describe the
detailed derivation procedure of the C-LRT detector.

4.2. Algorithm Flowchart

The proposed TR-WO detection algorithm gives the steps for computing the TR-ALRT-
WO detector, which are as follows (Algorithm 1).

Algorithm 1: Computation of the TR-ALRT-WO detector `TR−ALRT−WO

Require: The discrete-time received signal y(n);
The discrete-time TR received signal x(n);
Ensure: The TR-ALRT-WO detector `TR−ALRT−WO;
1. Compute SC by (63);
2. Estimate the amplitude αl ;
3. Compute the αopt by (45) and fopt by (44);
4. Compute the `TR−ALRT−WO detector by (43);
5. return `TR−ALRT−WO.

5. Numerical Simulation Analysis

To illustrate the performance of our proposed TR-WO detection algorithm, we conduct
numerical analyses in this section. In this paper, the CVX package solves the convex
problem [34]. The CVX package is a MatLAB-based convex optimization modeling system.
CVX translates Matlab into a modeling language, allowing constraints and goals to be
specified using standard Matlab expression syntax. CVX supports many standard problem
types, including linear and quadratic programs, second-order cones and semidefinite
programs. We use the Monte Carlo simulation experiment to obtain the receiver operating
characteristic (ROC) curves.

In this paper, the signal-to-noise ratio (SNR) is defined as

SNR =
Esσ2

α

σ2
n

, (46)

and we define the signal-to-clutter ratio (SCR) as



Remote Sens. 2023, 15, 4225 12 of 20

SCR =
σ2

α

σ2
ρ

. (47)

Table 1 enumerates the prior information on the clutter and noise covariance matrices
the proposed detection algorithm requires.

Table 1. The covariance matrices of the clutter and noise.

Covariance Matrices Clutter Noise

Distributions Cm,n = σ2
ρ ρ(m−n)2

, 1 ≤ m, n ≤ N Wm,n = σ2
nδ[m− n], 1 ≤ m, n ≤ N

In this section, we set ρ = 0.7, σ2
ρ = 1, and σ2

n = 0.01. For the case where the target
Doppler frequency shift is unknown, we assume that p follows a uniform distribution on ψ.
The accuracy of prior information estimation plays a significant role in determining the
detection performance of the algorithm proposed in this paper. To make the algorithm
we proposed perform better, we need to estimate the prior information as accurately
as possible.

5.1. Detection Performance Compared with Other Algorithms

In this subsection, we assess the detection performance of the proposed algorithm
compared with other algorithms. Under the same conditions, we compare some algorithms
utilizing multipath signals with our proposed detection algorithm, including the TR-
LRT detector and TR-GLRT detector, as well as some non-TR technology algorithms,
such as the T-AMF algorithm in [8], the multipath AMF (MP-AMF) detection algorithm
in [15], and the GLRT detection algorithm in [16]. A snapshot process of TR includes
two transmissions, i.e., forward transmission and backward transmission, whereas each
snapshot of the conventional detection process includes only one transmission. Therefore,
in order to ensure fairness, the number of snapshots of the conventional detection is twice
that of the TR detection. We set L = 25, SCR = 0 dB, and the normalized Doppler shift
follows a uniform p ∼ U (−1, 1). Figure 4 shows the detection probabilities Pd of different
detection algorithms versus the SNR. Figure 4 consists of three subgraphs with false-alarm
probabilities (a) Pf a = 10−2, (b) Pf a = 10−3, and (c) Pf a = 10−4, respectively.

From Figure 4, it is obvious that the proposed TR-ALRT-WO detector has the best
detection performance under different false-alarm probabilities, and the detection prob-
ability of the TR detector is higher than that of the non-TR detectors. This is because the
TR-ALRT-WO detector can adapt to the Doppler information and can suppress clutter,
while the TR-ALRT detector can only average unknown Doppler information; the TR-LRT
detector cannot deal with the existence of clutter and an unknown Doppler. It shows that
our proposed detection algorithm is the most suitable for moving target detection in a
mixed environment.
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Figure 4. Cont.
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Figure 4. Detection probabilities versus SNR for different algorithms. Here, L = 25, SCR = 0 dB,
p ∼ U (−1, 1), (a) Pf a = 10−2, (b) Pf a = 10−3 and (c) Pf a = 10−4.

5.2. Detection Performance versus the Propagation Paths

In this subsection, we study the effect of propagation path number on the proposed
algorithms’ detection performance. We set p ∼ U (−1, 1), SCR = 0 dB and Pf a = 10−4.
The connection between the detection probability and the propagation paths is shown in
Figure 5.

The variation curve of detection probability with SNR under different path numbers
is shown in Figure 5a. The detection probabilities versus the propagation path number are
shown in Figure 5b under SNR = 3 dB and SCR = 0 dB. The numeric values in the legend’s
parentheses indicate the number of propagation paths. The simulation results show that as
the number of paths increases, the detection probabilities of different detectors increase.
This result indicates that our proposed detection algorithm can increase energy through
the focusing effect and effectively utilize multipath signals. The TR-ALRT-WO detector
utilizes the multipath signals and uses the waveform design method to suppress clutter
while adapting to target Doppler information to improve detection performance. Therefore,
its detection performance is superior to TR-ALRT and C-LRT detectors. In contrast, the TR-
ALRT detector can utilize multipath signals through TR technology; however, for unknown
Doppler and clutter information, the TR-ALRT detector is helpless. The C-LRT detector
does not consider the multipath signals, clutter or Doppler information; therefore, it cannot
adapt to the environment.

5.3. Detection Performance versus the Target Doppler Shift

Here, we consider the detection performance versus the normalized target Doppler
shift p. We set SNR = 1 dB, SCR = 0 dB, L = 30, Pf a = 10−4 and two different Doppler
shift intervals, U (−2, 2) and U (−1.5, 1.5). We also study the corresponding Pd when the
normalized target Doppler shift is known. We obtain the optimal α by maximizing (35) of
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each normalized Doppler; therefore, different normalized target Doppler shifts result in
different detection probabilities. The simulations of the case are shown in Figure 6.
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Figure 5. The connection between the detection probabilities and the propagation paths number:
(a) The detection probabilities versus the SNR. (b) The detection probabilities versus the propagation
paths number. Here, Pf a = 10−4, and p ∼ U (−1, 1).

From the two subgraphs in Figure 6, it can be seen that the PD of the TR-ALRT-
WO detector is slightly lower than that under known Doppler conditions. Due to the
frequency domain overlap between the target and clutter signals, all curves with p = 0
exhibit poor values. The TR-ALRT detector only utilizes multipath signals and averages
unknown Doppler information, and the C-LRT detector cannot adapt to a moving target
and the mixed environment. Therefore, the detection probabilities of these two detectors are
relatively low. The TR-ALRT-WO detector outperforms the TR-ALRT and C-LRT detectors
significantly, demonstrating the good ability of our proposed detector to adapt to the
environment information and detect a moving target with an unknown Doppler shift.

5.4. Detection Performance versus the SCR

Here, we investigate the detection performance versus SCR. We set the Doppler shift
interval U (−1, 1), two propagation paths L = 25 and L = 30, Pf a = 10−4. The trend of
detection probability versus the SCR corresponding to different conditions of SNR = 0 dB
and SNR = 1 dB is shown in Figure 7a,b.
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Figure 6. The detection probability curves versus the normalized Doppler shift. Here, L = 30,
Pf a = 10−4 and the normalized target Doppler shift intervals are (a) U (−2, 2) and (b) U (−1.5, 1.5).

In Figure 7a, the SNR is set to 0 dB. When the detection probability of the TR-ALRT-WO
detector is greater than 0.9, SCR is only 4dB, while the TR-ALRT detector needs to satisfy
SCR = 10 dB to achieve the detection probability. Even worse, the detection probability
of the C-LRT detector, which does not utilize the TR technology, is always lower than
0.12. The results of Figure 7a show that the TR-ALRT-WO detector exploits multipath
signals, mitigating clutter, adapting to a moving target with unknown Doppler information
and improving the target detection probability.

We set the SNR as 1 dB in Figure 7b. In the case that SNR is different from that of
Figure 7a, the phenomenon of Figure 7b is consistent with that of Figure 7a. Even if the
SCR is low, the detection probability of our proposed TR-ALRT-WO detector is still high.
However, unlike the TR-ALRT-WO detector, the C-LRT detector‘s detection probability
remains very low, while slowly increasing with the increase in the SCR and tending to
saturation. Figure 7b further indicates that the TR-ALRT-WO detector can adapt to the
mixed clutter and multipath signals environment and the target Doppler information, as
well as improve detection probability.



Remote Sens. 2023, 15, 4225 16 of 20

-10 -8 -6 -4 -2 0 2 4 6 8 10

SCR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

TR-ALRT-WO(30)

TR-ALRT-WO(25)

TR-ALRT(30)

TR-ALRT(25)

C-LRT(30)

C-LRT(25)

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10

SCR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

TR-ALRT-WO(30)

TR-ALRT-WO(25)

TR-ALRT(30)

TR-ALRT(25)

C-LRT(30)

C-LRT(25)

(b)

Figure 7. The detection probability comparison versus SCR for different SNRs. Here, the Doppler
shift interval U (−1, 1), Pf a = 10−4, L = 25 and L = 30, and the SNRs are (a) SNR = 0 dB and
(b) SNR = 1 dB.

6. Conclusions

We propose a novel detection algorithm called the TR-WO detection algorithm to
address the challenge of detecting moving targets with unknown Doppler shifts in envi-
ronments exhibiting multipath signals and clutter. First, we provide a description of the
moving target detection problem. Subsequently, we formulate the binary hypothesis test
problem for the TR model and derive the TR-ALRT-WO detector. Experimental results
demonstrate that the TR-ALRT-WO detector outperforms other detectors in multipath
signals and clutter scenarios. It can exploit multipath signals, mitigate clutter interfer-
ence, and adapt to the unknown Doppler information of a moving target. It should be
noted that in this paper, the clutter, noise, and Doppler shift are known prior. However,
the detection performance will degrade somewhat if the prior information is not estimated
accurately. Possible future concerns include extending the detection algorithm to the case
of uncertainty of prior knowledge.
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Appendix A

Mathematical Background for the Average Performance Criterion
The J-divergence is related to the binary hypothesis detection of detection problems,

and the J-definition of divergence is as follows

DJ = E{log(`(r))|H1 } − E{log(`(r))|H0 }. (A1)

When the p is unknown for the detection in (27), the J-divergence can be written as

DJ = E{DJ |p}. (A2)

When the p is known, the detection problems in (27) and (29) are equivalent. Therefore,
considering (29), DJ |p can be derived as

DJ |p =

(
− log(1 + α) +

α2 + α

1 + α

)
−
(
− log(1 + α) +

α

1 + α

)
=

α2

1 + α
, (A3)

where α is defined in (35).
Since F(a) = a2/(1 + a) is a convex function, by Jensen’s inequality, we obtain

DJ = E
{

DJ |p
}
= E

{
α2

1 + α

}
≥ (E{α})2

1 + E{α} , (A4)

where the lower bound of J-divergence is expressed by

DJ,LB =
(E{α})2

1 + E{α} . (A5)

Additionally, F(a) is a monotonically increasing function. Consequently, DJ,LB is
maximum when E{α} is maximum. Since the criterion considered in (36) is equal to E{α},
maximizing the average performance criterion leads to maximizing the lower bound DJ,LB.

In addition, DJ can be mathematically transformed, which is expressed as

DJ = E
{

α2

1 + α

}
= E

{
(1 + α)2

1 + α
− 2(1 + α)

1 + α
+

1
1 + α

}

= E
{

α− 1 +
1

1 + α

}
. (A6)

For large α, i.e., large SCNR, DJ can be approximated by

DJ ≈ E{α− 1}. (A7)

Therefore, in this case, the maximization of the average performance standard is
well approximated by the maximization of J-divergence. According to the above analysis,
J-divergence is positively correlated with the binary hypothesis test detection performance
in Equation (27). Furthermore, the average performance criterion is positively correlated
with the lower J-divergence bound. Therefore, (36) is scientifically feasible.
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Appendix B

Derivation of the C-LRT Detector
We discretize y(t) to y(n), and the expression for y(n) is given by

y(n) =
M

∑
m=1

ρms(n− nτm) +
L

∑
l=1

αls(n− nτl )e
jvl(n−nτl )/ fs+n(n), n = 0, . . . , N − 1 (A8)

The conventional signals are divided into three parts, expressed as

e(n) =
M

∑
m=1

ρms(n− nτm), (A9)

d(n) =
L

∑
l=1

αls(n− nτl )e
jvl(n−nτl )/ fs (A10)

y(n), e(n), d(n) and n(n) are stacked into vectors as follows:

y = [y(0), · · · , y(N − 1)]T ,

d = [d(0), · · · , d(N − 1)]T ,

e = [e(0), · · · , e(N − 1)]T ,

n = [n(0), · · · , n(N − 1)]T . (A11)

Similar to TR, we describe the binary hypothesis testing problem for conventional
signals as follows:

H0 : y = e + n
H1 : y = d + e + n.

(A12)

In H0, y satisfies the complex Gaussian distribution and is given by

y ∼ CN
(

0, Ψy|H0

)
, (A13)

where the covariance matrix Ψy|H0
of y under H0 is expressed as

Ψy|H0
= σ2

ρ SCSH
C + σ2

nIN , (A14)

and
SC = [s1, · · · , sL]N×L (A15)

Here, sl is expressed by

sl =
[
s(0− nτl )e

jvl(0−nτl )/ fs , · · · , s(N − 1− nτl )e
jvl(N−1−nτl )/ fs

]T
. (A16)

If a moving target is present, it is the alternative hypothesis H1, and y satisfies

y ∼ CN
(

0, Ψy|H1

)
, (A17)

where
Ψy|H1

=
(

σ2
ρ + σ2

α

)
SCSH

C + σ2
nIN . (A18)
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Under H0 and H1, the pdfs for the conventional received signal vector can be de-
scribed as

p(y|H0 ) =
1

πN
∣∣∣Ψy|H0

∣∣∣ exp
(
−yHΨ−1

y|H0
y
)

, (A19)

p(y|H1 ) =
1

πN
∣∣∣Ψy|H1

∣∣∣ exp
(
−yHΨ−1

y|H1
y
)

, (A20)

where

Ψ−1
y|H0

=
1
σ2

n
IN −

1
σ2

n
SC

(
σ2

n
σ2

ρ
IL + S

H

CSC

)−1

S
H

C , (A21)

Ψ−1
y|H1

=
1
σ2

n
IN −

1
σ2

n
SC

(
σ2

n
σ2

ρ + σ2
α

IL + SH
C SC

)−1

SH
C . (A22)

The C-LRT is defined as

`C−LRT(y) = ln
(

p(y|H1 )

p(y|H0 )

)H1
≷
H0

ηC−LRT, (A23)

where ηC−LRT is the threshold of conventional detection.
Ignoring the constant term, the C-LRT detector further reduces to

`C−LRT(y) = yH
(

Ψ−1
y|H0
−Ψ−1

y|H1

)
y

= yHSC
1
σ2

n

((
σ2

n
σ2

ρ + σ2
α
− σ2

n
σ2

ρ

)
IL

)−1

SH
C y. (A24)
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