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Abstract: Object detection in remote sensing images faces the challenges of a complex background,
large object size variations, and high inter-class similarity. To address these problems, we propose
an adaptive adjacent layer feature fusion (AALFF) method, which is developed on the basis of
RTMDet. Specifically, the AALFF method incorporates an adjacent layer feature fusion enhancement
(ALFFE) module, designed to capture high-level semantic information and accurately locate object
spatial positions. ALFFE also effectively preserves small objects by fusing adjacent layer features and
employs involution to aggregate contextual information in a wide spatial range for object essential
features extraction in complex backgrounds. Additionally, the adaptive spatial feature fusion (ASFF)
module is introduced to guide the network to select and fuse the crucial features to improve the
adaptability to objects with different sizes. The proposed method achieves mean average precision
(mAP) values of 77.1%, 88.9%, and 95.7% on the DIOR, HRRSD, and NWPU VHR-10 datasets,
respectively. Notably, our approach achieves mAP75 values of 60.8% and 79.0% on the DIOR and
HRRSD datasets, respectively, surpassing the state-of-the-art performance on the DIOR dataset.

Keywords: adjacent layer feature; object detection; remote sensing image

1. Introduction

Object detection in remote sensing images is the process of positioning and recognition
of interested objects. It has a wide range of applications, such as intelligent detection [1],
port management [2], military reconnaissance [3], urban planning [4], etc.

Traditional object detection methods [5,6] need to design features according to the
characteristics of the interested objects, and have problems such as low efficiency and poor
generalization ability, which cannot meet the requirements in practical applications.

In recent years, the advancement of deep learning techniques has been remarkable,
with convolutional neural networks (CNNs) emerging as a dominant approach in various
image recognition tasks [7–9]. This is primarily attributed to their remarkable ability to
extract and represent features effectively.

Currently, object detection methods based on CNNs can be categorized into two-stage
and one-stage approaches. Two-stage methods initially generate candidate regions, filtering
out numerous background boxes, and balancing positive and negative samples to enhance
object detection recall. Subsequently, the objects of interest are classified and localized
based on this analysis. These methods, such as Fast R-CNN [10] and Faster R-CNN [11],
are recognized for their higher accuracy but lower efficiency. On the other hand, one-
stage object detection methods directly estimate object positions and categories from input
images, eliminating the need for additional candidate region generation. These methods
are characterized by their simpler and more efficient structures, enabling fast real-time
detection in various applications. Examples of one-stage methods include YOLO [12],
SSD [13], and RetinaNet [14].

However, in different imaging platforms and imaging methods, the objects in optical
remote sensing images may appear to have different aspect ratios, spatial deformation,
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orientations, and spatial resolutions. Different methods have been developed to address
these problems. Yu et al. [15] employed deformable convolution to align feature maps of
different scales, and designed a feature fusion module using dilated convolution to enhance
the perception of object shape and direction. Hou et al. [16] designed an asymmetric
feature pyramid network to enrich the spatial representation of features and improve the
detection of objects with extreme aspect ratios. Wang et al. [17] combined pooling and
dilated convolution to design a global feature information complementary module, which
aggregated non-neighborhood multi-scale contextual information while enhancing the
detailed feature information of the object to improve the model’s detection of objects at
different scales.

Although progress has been made in object detection of remote sensing images, chal-
lenges still remain. These challenges include the following:

(1) Remote sensing images have a broader coverage range and more complex back-
grounds compared to natural scene images, which severely interfere with object
detection. Extracting discriminative features of the objects becomes difficult, as illus-
trated in Figure 1a, where a train station appears similar to the surrounding buildings.
Moreover, backgrounds that resemble the texture or shape of objects can lead to false
detections.

(2) Some object categories exhibit high similarity, such as the basketball courts and tennis
courts shown in Figure 1b which share similar appearance features. To differenti-
ate between them, it is necessary to utilize texture or contextual information as an
auxiliary means.

(3) Objects exhibit significant scale variations, both the inter-class and intra-class objects.
Figure 1c demonstrates airplanes of different scales, while Figure 1d depicts vehicles
and overpasses with considerable scale differences. These variations undoubtedly
increase the difficulty of accurate detection.
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Figure 1. Examples of the aforementioned challenges. (a) A train station amidst a complex back-
ground; (b) visually similar basketball and tennis courts; (c) airplanes with significant scale variations,
and (d) vehicles and overpasses with considerable scale differences (The images are sourced from the
DIOR dataset).
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To address the aforementioned challenges, we propose an adaptive adjacent layer
feature fusion object detection method based on RTMDet [18], focusing on the fusion
interaction of highly correlated adjacent layer features and the adaptive fusion of different
scale features, so as to capture the discriminative features of objects. The main contributions
of this paper are as follows:

(1) An adjacent layer feature fusion enhancement (ALFFE) module is designed to enable
the model to embed the discriminative spatial and semantic information. ALFFE fuses
adjacent layer features to improve spatial perception and capture high-level object
semantics. Involution is employed to overcome the difficulty of extracting object
semantic information in complex backgrounds.

(2) In order to make full use of features at different scales, the adaptive spatial feature
fusion module (ASFF) is introduced to improve the scale invariance of the features
and better adapt to objects of different scales by adaptively fusing the multi-scale
features at each spatial location.

(3) Extensive experiments on multiple datasets demonstrate the effectiveness of our
method, with state-of-the-art accuracy achieved on the DIOR dataset.

2. Related Work
2.1. One-Stage Object Detection Methods

One-stage object detection methods have gained prominence due to their balance
between speed and accuracy. These methods can be further classified into anchor-based
and anchor-free approaches, depending on whether they employ predefined anchors.

Anchor-based methods generate a large number of anchors across an image to improve
recall and precision. Examples of anchor-based methods are YOLOV3 [19], YOLOV4 [20],
SSD, and RetinaNet. However, this approach often leads to an imbalance between positive
and negative samples, as only a few anchors effectively cover the objects of interest. Fur-
thermore, if the scale and size of the anchors significantly differ from those of the objects,
detection accuracy may decrease. For instance, remote sensing images containing objects
with large aspect ratios such as ships, airports, and bridges may experience challenges in
accurate detection if the anchors fail to adequately cover them.

To mitigate the impact of anchor settings, researchers have explored anchor-free object
detection methods that eliminate the need for predefined anchors. These methods primarily
rely on predicting key points or center points of objects. CornerNet [21] transforms the
object bounding box detection problem into key point detection, specifically targeting the
top-left and bottom-right vertices of the objects. By establishing correspondences between
these key points, the boundaries of the objects are determined. CenterNet [22] treats objects
as single points and predicts their center points, while FCOS [23] transforms anchors into
anchor points by predicting the distances between anchor points and the four edges of
object bounding boxes. These anchor-free methods exhibit promising potential. Recent
notable methods such as YOLOX [24] and YOLOV6 [25] have emerged, further advancing
the anchor-free approaches.

In this paper, the anchor-free method RTMDet (real-time models for object detection)
is used as the baseline. The overall structure of RTMDet is similar to that of YOLOX,
consisting of CSPNeXt, CSPNeXtPAFPN, and SepBNHead. The internal core module of
CSPNeXt is the improved CSPLayer [26], where the original basic block (Figure 2a) is
refined utilizing a 5 × 5 depthwise separable convolution (Figure 2b). The 5 × 5 depthwise
separable convolution is used to increase the receptive field and improve the feature extrac-
tion capability at a small computational cost. A channel attention module is also integrated
into the CSPLayer to further improve the performance of the model via learning to assign
appropriate weights to channels, enabling the model to better capture and utilize discrimi-
native features. The CSPNeXtPAFPN uses the same basic building blocks as CSPNeXt with
bottom-up and top-down feature propagation [27]. In the detection heads, RTMDet utilizes
SepBNHeads, which share convolution weights and separate batch normalization layers,
since RTMDet believes that the detected features of the object are similar for different
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feature levels at relative scale sizes and introducing BN directly into the detection heads
with shared parameters would result in sliding means and lead to error.
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(c) improved CSPLayer.

CSPNeXt is divided into five different sizes according to the depth, such as tiny, s, m,
l, and x. In this paper, we choose CSPNeXt-m with moderate accuracy and complexity.
CSPNeXt-m can output five features with different resolutions noted as C1, C2, C3, C4,
and C5, respectively. C3, C4, and C5 are used for subsequent feature fusion enhancement
since C1 and C2 reside in the shallow layer of the network and possess limited spatial
and contextual information. Considering an input image size of H × W × 3, the size
of the output features C3, C4, and C5 are H/8 × W/8 × 192, H/16 × W/16 × 384, and
H/32 ×W/32 × 769.

2.2. Multi-Scale Feature Fusion

Remote sensing images usually contain various types of objects, which may vary
greatly in scale, and the size of objects in the same category also varies in scale depending
on the image resolution. In addition, there are numerous small objects in remote sensing
images, and for small objects it is easy to lose information in the feature extraction down-
sampling process, resulting in missing detection. These problems bring great challenges for
the task of object detection in remote sensing images. The multi-scale feature fusion method,
which combines objects information at multiple scales for judgement, is an effective method
to solve these problems. At present, many researchers have performed research in this field.
Li et al. [28] obtained richer context information using bidirectional fusion of deep features
and shallow features as well as skip connections. Dong et al. [29] improved the detection
performance of remote sensing objects at different shapes and sizes by aggregating the
multilevel output of FPN [30] and the global contextual information of the entire image.
Li et al. [31] used a dual-path structure and deformable convolution to improve the fea-
ture extraction capability for rotating objects, and utilized channel attention and adaptive
feature fusion to guide the feature layers to learn and retain the most appropriate features.
Xu et al. [32] alleviated the difficulty of extracting object semantic information due to
changes in contextual information by fusing original and complementary features. Wang
et al. [33] proposed a feature reflow pyramid structure to improve feature representation
through adding a feature flow path from a lower level to each scale. Lv et al. [34] integrated
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features from three different scales into features at the same scale, while using a spatial
attention weighting module to adjust the fusion ratio of features at different scales to
enhance the flexibility of the fusion method. Cheng et al. [35] inserted channel attention
into the top level of the feature pyramid network to construct the relationship between the
feature maps of different channels, and obtained more discriminative multilevel features
by fusing features of different scales.

The method proposed in this paper focuses on the fusion and interaction of the features
of adjacent layer with high correlation, and further mining and exploiting the contextual
information to enhance feature representation. Furthermore, in order to make full use of
multi-scale features, ASFF [36] is employed to adaptively adjust the degree of respective
involvement of multi-scale features in the fusion process to improve the scale invariance of
the features.

3. Methodology
3.1. Overview

The proposed method is developed on the framework of the anchor-free detector
RTMDet [18], which consists of three parts: feature extraction, adaptive adjacent layer
feature fusion, and SepBNHeads. The architecture of the proposed method is shown in
Figure 3. In the feature extraction, three different scales of the image features are extracted
using CSPNeXt-m and are noted as C3, C4, and C5, respectively. In the adaptive adjacent
layer feature fusion, the features dimensions are aligned, and the deep layer features are
upsampled and fused with the adjacent layer features to obtain the features F3, F2, and
F1, respectively. Then, adjacent layer features are deeply fused by ALFFE to enhance the
feature representation. Finally, ASFF is employed to enhance the scale invariance and
discrimination of features by learning adaptive weights for the fusion of three different
scales of features achieving adaptive fusion. In the detection heads, we utilize SepBNHeads
in line with the RTMDet.
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C5, are extracted from the backbone. SepBNHeads denote decoupled detection heads with shared
convolution weights and separated batch normalization layers.

3.2. Involution

In contrast to the spatial independence and channel specificity of convolutional opera-
tions, involution [37] is spatial-specific and channel-agnostic. Involution kernels are distinct
in the spatial extent but shared across channels, which reduces the kernel redundancy.
On the one hand, involution can aggregate contextual information over a wider spatial
range, capturing long-distance spatial relationships with a larger receptive field. On the
other hand, involution adaptively assigns weights at different locations. In other words, it
assigns large weights to information-rich places in the spatial domain and focuses more on
these places.
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Given an input feature map X ∈ RH×W×C with a pixel Xi,j ∈ Rc, the corresponding
involution kernelHi,j,...,g ∈ RK×K, g = 1, 2, 3, ···, G, is fixed. H, W, and C denote the height,
width, and number of channels of the feature map, respectively. g denotes the number of
groups sharing the same convolution kernel in the channel dimension and K denotes the
size of the kernel. The feature map output by involution is obtained by multiplying and
adding the input feature map by the involution kernel. The definition is as follows:

Yi,j,k = ∑
(u,v)∈∆K

Hi,j,u+[ K
2 ], [

kG
C ]Xi+u,j+v,k· (1)

The shape of the involution kernelH depends on the shape of the input feature map X.
The kernel generation function is symbolized as φ, and the calculation ofHi,j is as follows:

Hi,j = φ
(
Xi,j
)
= W1σ

(
W0Xi,j

)
(2)

where W0 ∈ R
C
r ×C and W1 ∈ R(K×K×G)× C

r denote two linear transformations, r is the
channel reduction ratio, and σ denotes the non-linear activation function for the two linear
transformations after batch normalization.

3.3. Adjacent Layer Feature Fusion Enhancement Module

The adjacent layer features are highly correlated and do not have a “semantic gap”
due to the large differences between features. Therefore, we consider fusing the features
of adjacent layers further improves feature representation. The deep features correspond
to a larger receptive field and contain more semantic information, which is beneficial in
identifying the object category. However, they do not contain much spatial information,
which is crucial to object positioning. On the contrary, shallow features contain more
spatial information, such as the texture of objects, which is conducive to object localization.
Meanwhile, the semantic representations are weak, which is not conducive to identifying
the category of objects.

The simultaneous fulfillment of accurate object localization and class recognition
requirements can be achieved by transferring and fusing information between features of
adjacent layers. Moreover, small objects in images often have limited available information,
and their spatial information gradually diminishes with increasing network depth, leading
to missed detections. To address this, we propose an adaptive adjacent layer feature
fusion enhancement (AALFFE) module. The structure of this module is illustrated in
Figure 4. Firstly, involution with spatial specificity and channel independence is employed
to aggregate contextual information from both deep and shallow features, enhancing
the extraction of discriminative features within complex backgrounds. Next, a 1 × 1
convolution is used to reduce the number of channels to 128, simultaneously deepening the
network and improving its modeling capabilities. Additionally, deep and shallow features
are further extracted using a 5 × 5 depthwise separable convolution, which offers a larger
effective receptive field compared to the commonly used 3 × 3 convolution. This enables
the capture of more local spatial and contextual information with reduced computational
effort. Subsequently, a 1 × 1 convolution is employed to increase the number of feature
channels to 256, enhancing information interaction across channels. The deep features are
then upsampled to match the spatial size of the adjacent shallow features, and element-
wise addition is performed to synthesize the feature information from the adjacent layers,
improving feature representation. Finally, the shallow features and the features obtained
after initial fusion are concatenated along the dimension, and a 3× 3 convolution is applied
to further strengthen the fusion and interaction of spatial and channel information.
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Figure 4. The architecture of ALFFE.

After aligning the channels number of features C3, C4, and C5 to 256 dimensions, C5
and C4 are upsampled by a factor of 2 to obtain features F3, F2, and F1 after fusion with
C4 and C3, respectively, in the form of element-by-element addition. The process can be
formulated as follows:

F3 = CBS1×1(C5) (3)

F2 = CBS1×1(C4) + Upsample(CBS1×1(C5)) (4)

F1 = CBS1×1(C3) + Upsample(C4) (5)

Let us consider the features F2 and F1. The feature FALFFE1 is obtained by feeding F2
and F1 into the adjacent layer feature fusion enhancement module. The process can be
formulated as follows:

F21 = Upsample(CBS1×1(DWBS5×5(CBS1×1(IBS(F2))))) (6)

F11 = CBS1×1(DWBS5×5(CBS1×1(IBS(F1)))) (7)

FALFFE1 = CBS3×3(Cat(F21 + F11, F1)) (8)

Similarly, FALFFE2 is obtained using feature F3 and feature F2. The formula is as follows:

FALFFE2 = CBS3×3(Cat(F32 + F22, F2)) (9)

In Equations (3)–(9), CBSn×n(·) represents a module consisting of a convolutional
layer (with a kernel of size n × n), a BN layer, and a SiLU layer. Similarly, DWBS5×5(·)
denotes a depthwise separable convolution (with a kernel of size 5 × 5), followed by a BN
layer and a SiLU layer. IBS(·) denotes an involution layer, followed by a BN layer and
a SiLU layer. Upsample(·) denotes bilinear interpolation upsampling. Cat(·) denotes the
feature concatenation operation.

3.4. Adaptive Spatial Feature Fusion

The ASFF module assigns weights for different levels of features, which determines
the degree of involvement during the fusion. This enables the adaptive selection of features,
thus improving the robustness of the feature embedding. In this process, the weights of
features are determined by the global information and how favorable they are to the object.

The number of channels and size of features must be aligned before the fusion. Given
the number of channels of the features are already aligned in Section 3.3, it is only required
to align the sizes of the features at different scales. In addition, the extraction of semantic
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information in feature F3 is further enhanced by using involution before feature adaptive
fusion to obtain feature F33.

F33 = IBS(F3) (10)

where IBS(·) denotes an involution layer, a BN layer, and a SiLU Layer.
For ASFF1: X3→1 is obtained by upsampling feature F33 by a factor of 4, while X2→1 is

obtained by upsampling feature FALFFE2 by a factor of 2. For ASFF2: X3→2 is obtained by
convolving the feature F33 with a 3 × 3 kernel and stride 2, while X1→2 is obtained through
upsampling the feature FALFFE1 by a factor of 2. For ASFF3: feature FALFFE1 is obtained
by applying maxpooling with a 3 × 3 kernel and stride 2, followed by convolution with a
3 × 3 kernel and stride 2 to obtain feature X1→3. Similarly, X2→3 is obtained by convolving
feature FALFFE2 with a 3 × 3 kernel and stride 2. The features are adjusted according to the
following equations:

X3→1 = Up4(F33) (11)

X2→1 = Up2
(

FALFFE2

)
(12)

X3→2 = CBS3×3(F33) (13)

X1→2 = Up2(FALFFE1) (14)

X1→3 = CBS3×3
(

Maxpooling3×3
(

FALFFE1

))
(15)

X2→3 = CBS3×3
(

FALFFE2

)
(16)

In Equations (11)–(16), Up4(·) and Up2(·) denote nearest interpolation upsampling by
factors of 4 and 2, respectively; CBS3×3(·) denotes a module consisting of a convolution
layer with a 3 × 3 kernel, a BN layer, and a SiLU layer. Maxpooling3×3(·) indicates
maxpooling with a 3 × 3 kernel and stride 2.

Then, the adaptive fusion feature ASFFl is obtained by weighted addition of the three
adjusted features. The vectors at any spatial location (i, j) on the fused feature map are
a weighted fusion of the vectors at the same spatial location on the three feature maps
before fusion, with the coefficients (the spatial importance weights of the feature maps)
being adaptively learned by the network and are shared across all channels. The formula is
as follows:

ASFFl = αl
ijX

1→l + βl
ijX

2→l + γl
ijX

3→l (17)

where αl
ij + βl

ij + γl
ij = 1, αl

ij, βl
ij, γl

ij are three resized feature maps obtained using the
softmax formula after stitching in dimensions, and all take values in the range [0,1]. For
example, the calculation of βl

ij is as follows:

βl
ij =

e
λl

βij

e
λl

αij + e
λl

βij + e
λl

γij

(18)

where λl
αij

, λl
αij

, and λl
αij

are obtained from the adjusted features through convolution with
a 3 × 3 kernel.

4. Experiment

To evaluate the performance of backbone, ALFFE, and ASFF, ablation studies are
conducted on the DIOR [38] dataset and HRRSD [39] dataset to evaluate the performance
of the proposed method. The performance of the proposed method is assessed on the
NWPU VHR-10 [40] dataset.
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4.1. Datasets

The DIOR dataset represents a significant contribution to the field of remote sensing
image object detection, offering a comprehensive collection of 23,463 images encompassing
192,472 instances and 20 common categories. These categories span a wide range of objects,
including airplane (AP), airport (AI), baseball field (BD), basketball court (BC), bridge (BR),
chimney (CH), dam (DA), expressway service area (ESA), expressway toll station (ETS),
harbor (HA), golf field (GF), ground track field (GTF), overpass (OV), ship (SH), stadium
(SD), storage tanks (ST), tennis court (TC), train station (TS), vehicle (VE), and windmill
(WM). Each category is represented by approximately 1200 images, providing ample data
for training and evaluation.

The images in the DIOR dataset exhibit dimensions of 800 × 800 pixels, with varying
resolutions, ranging from 0.5 m to 30 m. This diversity in image resolution introduces
challenges related to scale variations and high inter-class similarity, further compounded
by intra-class diversity. To ensure scientific rigor, the dataset provides official data divisions
for experimentation, allocating 5862 images for model training, 5863 images for model
validation, and 11,738 images for model testing.

In comparison, the HRRSD dataset, released in 2019, is another notable remote sensing
image object detection dataset. It comprises 21,761 images featuring 55,740 object instances
distributed across 13 common classes. The common categories encompass airplane (AP),
baseball field (BD), basketball court (BC), bridge (BR), crossroads (CR), ground track
field (GTF), harbor (HA), parking lot (PL), ship (SH), storage tank (ST), T junction (TJ),
tennis court (TC), and vehicle (VE). Each category is well represented with approximately
4000 object instances, ensuring a robust and diverse dataset.

The NWPU VHR-10 dataset, on the other hand, represents a valuable resource in
the realm of remote sensing image object detection. It consists of 650 annotated images,
encompassing 3651 object instances across 10 common categories. These categories include
airplane (AP), ship (SH), storage tank (ST), baseball field (BD), tennis court (TC), basketball
court (BC), ground track field (GTF), harbor (HA), bridge (BR), and vehicle (VE). While no
specific data division is provided, a random selection process is employed, allocating 60%
of the images for training, 20% for validation, and the remaining 20% for testing purposes.

4.2. Experimental Settings and Evaluation Metrics

(1) Implementation Details

We implement our method based on MMDetection [41], with an Intel Core i9-10900K
CPU and an NVIDIA RTX3090 GPU. For experiments on the three datasets, the input image
size is set to 800 × 800. We use the AdamW [42] optimizer for model optimization, with the
weight decay set to 0.05. The feature extraction network CSPNeXt-m is initialized using the
weights pretrained in ImageNet. The initial learning rates are set to 0.004, 0.002, and 0.01 on
the DIOR, HRRSD, and NWPU VHR-10 datasets, respectively. The batch sizes are set to 8,
8, and 6, respectively. The learning rates are tuned using a combined QuadraticWarmupLR
and CosineAnnealingLR strategy. On the DIOR and HRRSD datasets, experiments are
conducted using a two-stage training strategy and mixed precision accelerated training
for a total of 300 epochs. Data enhancements such as Mosic, Mixup, and random flip are
used in the first 270 epochs of training to improve the model performance. However, the
Mosic and Mixup enhancements are extremely distorted, so weak data enhancements such
as random resize and flip are used in the second stage. In the last 30 epochs, weak data
enhancements are used to allow the model to be fine-tuned in a state that better matches
the feature distribution of the original dataset. On the NWPU VHR-10 dataset, a total of
160 epochs are trained without mixed precision training, with data enhancements such as
random resize and flip.

(2) Evaluation Metrics

In the conducted experiments, the mean average precision (mAP), frames per second
(FPS), and the number of parameters are employed as performance evaluation metrics
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to comprehensively assess the model’s performance. The mAP represents the average
precision (AP) across all categories and serves as a comprehensive metric commonly used
for evaluating object detection model performance. The AP value for each category is
calculated as the area under the precision–recall (PR) curve, plotted with recall on the x-axis
and precision on the y-axis.

Precision refers to the proportion of samples correctly classified as positive samples
out of all samples detected as positive. Recall, on the other hand, represents the proportion
of positive samples that are correctly detected. Precisely, precision and recall are defined
as follows:

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

where TP denotes the number of correctly detected objects, FP denotes the number of
incorrectly detected objects, and FN denotes the number of missed objects.

The AP and mAP can be calculated using the following formulas:

AP =
∫ 1

0
P(R)dR (21)

mAP =
1
K

K

∑
i=1

APi (22)

where K denotes the number of categories, and larger values of AP and mAP denote more
accurate prediction results.

4.3. Ablation Study

In order to validate the effectiveness of ALFFE and ASFF of the proposed method, abla-
tion experiments are conducted on the DIOR dataset and the HRRSD dataset.
Tables 1 and 2 present the achieved mean average precision (mAP) values using different
methods on the DIOR and HRRSD datasets, respectively. Here, mAP50 and mAP75 repre-
sent the mAP values when the intersection over union (IOU) threshold is set to 0.5 and 0.75,
respectively. A larger threshold indicates more accurate predicted object locations. The
baseline method refers to detection using multilevel features extracted from the CSPNeXt-m
backbone, with the dimensions adjusted to 256.

Table 1. Ablation experiments on the DIOR dataset.

Method mAP50 mAP75 FPS Parameters (M)

Baseline 74.2 58.2 34.1 15.0
Baseline + ALFFE 76.5 (+2.1) 60.1 (+1.9) 28.0 17.9

Baseline + ALFFE + ASFF 77.1 (+2.9) 60.8 (+2.6) 26.6 21.7

Table 2. Ablation experiments on the HRRSD dataset.

Method mAP50 mAP75

Baseline 88.0 77.0
Baseline + ALFFE 88.6 (+0.6) 79.8 (+2.8)

Baseline + ALFFE + ASFF 88.9 (+0.9) 79.0 (+2.0)

The mAP, FPS, and the number of parameters achieved by the different methods on
the DIOR dataset are shown in Table 1 (where FPS and parameters are obtained at the input
image size of 800 × 800). The baseline method’s mAP50 and mAP75 achieve 74.2% and
58.2%, respectively. The mAP50 and mAP75 can be improved by 2.1% and 1.9%, respectively,
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to 76.5% and 60.1% with the addition of the ALFFE designed in this paper. For example,
in Figure 5(a1–a4,b1–b4), the addition of ALFFE to the baseline can avoid false detection
of vehicles and accurately locate the bridge. The addition of ASFF further improves the
mAP50 and mAP75 by 77.1% and 60.8%, respectively, since it can adaptively fuse features of
different scales to improve the scale invariance of the features and better adapt to objects of
different scales. At the same time, Figure 5(c1–c4) amply demonstrate that ALFFE can equip
the model with the capability to accurately extract the discriminative features required to
identify a class of objects, and ASFF can achieve more accurate object localization through
the integration of different levels of features. Compared to the ground truth, although
the localization of the detected chimney is not especially accurate, it is still a satisfactory
detection result, since accurate identification and localization is extremely challenging
in the case of significant intra-class variation. Furthermore, our method achieves high
accuracy while the number of parameters in the model is small and the detection speed
is moderate.

As observed in Table 2, the baseline method reaches 88.0% for mAP50 on the HRRSD
dataset, improving to 88.6% with the addition of ALFFE, and then 88.9% with the addition
of ASFF. The mAP75 improvement is more pronounced compared to mAP50, since ALFFE
and ASFF enable the model to locate objects and predict their categories more accurately.

4.4. Quantitative Comparison and Analysis

To assess the performance of the proposed method, comparative experiments are
conducted on three commonly used remote sensing image datasets. The methods used for
comparison on the DIOR dataset include the two-stage methods CSFF [35], FRPNet [33],
CANet [28], and MFPNet [43]; the one-stage anchor-based methods HawkNet [44], and
ASSD [45]; and the anchor-free methods O2-DNet [46], and AFDet [47]. Table 3 shows
the detection results of the different methods on the DIOR dataset. Compared with other
methods, our method achieves the best mAP with smaller computational effort. In addition,
the performance of the proposed method is the best for the classes of airplane, ship, vehicle,
etc., indicating that the proposed method has satisfactory detection results for small objects.
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The performance of different methods on the HRRSD dataset is summarized in Table 4,
which includes HRCNN [39], Lang et al. [48], FCOS [23], and RepPoints [49]. It can be
noticed that the proposed method achieves the best mAP using a backbone of moderate
complexity. Moreover, the best AP is achieved for some categories such as basketball court
and T junction, suggesting that the proposed method may excel at capturing the texture
features inside the objects.
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Table 3. Quantitative results of different object detection methods on the DIOR dataset. (Param means the number of model parameters).

Method AP AI BD BC BR CH DA ESA ETS GF GTF HA OV SH SD ST TC TS VE WM mAP Param

MFPNet 76.6 83.4 80.6 82.1 44.3 75.6 68.5 85.9 63.9 77.3 77.2 62.1 58.8 77.2 76.8 60.3 86.4 64.5 41.5 80.2 71.2 /
O2-DNet 61.2 80.1 73.7 81.4 45.2 75.8 64.8 81.2 76.5 79.5 79.7 47.2 59.3 72.6 70.5 53.7 82.6 55.9 49.1 77.8 68.4 /

ASSD 85.6 82.4 75.8 80.5 40.7 77.6 64.7 67.1 61.7 80.8 78.6 62.0 58.0 84.9 65.3 65.3 87.9 62.4 44.5 76.3 71.1 /
HawkNet 65.7 84.2 76.1 87.4 45.3 79 64.5 82.8 72.4 82.5 74.7 50.2 59.6 89.7 66 70.8 87.2 61.4 52.8 88.2 72.0 /

CSFF 57.2 79.6 70.1 87.4 46.1 76.6 62.7 82.6 73.2 78.2 81.6 50.7 59.5 73.3 63.4 58.5 85.9 61.9 42.9 86.9 68.0 /
AFDet 82.4 81.5 81.9 89.8 51.7 74.9 58.7 84.2 73.3 79.5 81.0 44.2 62.0 77.8 63.2 76.9 91.0 62.5 59.3 87.1 73.2 20.29

FRPNet 64.5 82.6 77.7 81.7 47.1 69.6 50.6 80.0 71.7 81.3 77.4 78.7 82.4 62.9 72.6 67.6 81.2 65.2 52.7 89.1 71.8 /
CANet 70.3 82.4 72.0 87.8 55.7 79.9 67.7 83.5 77.2 77.3 83.6 56.0 63.6 81.0 79.8 70.8 88.2 67.6 51.2 89.6 74.3 64.60
Ours 90.0 80.5 81.0 90.1 52.5 78.7 65.7 84.0 73.5 81.2 80.7 65.3 65.4 88.9 84.7 78.6 89.9 68.3 62.3 80.1 77.1 21.70

Table 4. Quantitative results of different object detection methods on the HRRSD dataset (“Dark-tiny”: CSPDarkNet-tiny).

Method Backbone AP BD BC BR CR GTF HA PL SH ST TJ TC VE mAP
HRCNN ResNet-101 82.93 72.11 24.94 28.31 32.26 80.57 61.57 21.35 57.64 78.76 10.25 74.83 42.84 51.43

FCOS ResNet-101 96.82 91.21 54.10 89.69 94.42 97.45 95.05 63.15 90.46 94.91 82.23 87.85 91.82 86.86
Lang et al. Dark-tiny 98.94 91.61 71.30 85.31 89.98 95.89 92.11 60.79 89.72 97.28 73.15 93.61 93.43 87.16
RepPoints ResNet-101 97.49 91.90 60.83 91.04 95.10 98.22 95.70 71.78 90.05 94.36 82.26 89.83 94.25 88.71

Ours CSPNeXt-m 97.10 89.80 84.20 90.40 89.70 90.80 90.10 77.30 90.40 90.50 84.60 90.50 90.50 88.90
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Table 5 shows the performance of different methods on the NWPU VHR-10 dataset,
comparing methods such as ABNet [50], CANet [28], MSGNet [51], EVCP [52], and Liu
et al. [53]. The proposed method achieves the highest detection accuracy. These results
highlight the effectiveness and generality of the proposed method for multi-category remote
sensing image object detection tasks.

Table 5. Quantitative results of different object detection methods on the NWPU VHR-10 dataset.

Method AP BC BR GTF HA SH ST TC VE BF mAP

ABNet 100 95.98 69.04 99.86 94.26 92.58 97.77 99.26 95.62 97.76 94.21
CANet 100 90.60 93.90 99.80 89.80 81.90 94.60 90.70 89.90 90.30 92.20

MSGNet 92.93 92.02 91.07 99.98 99.09 93.68 97.90 91.82 92.22 98.60 95.53
EVCP 98.90 91.60 87.80 99.70 91.80 92.50 99.80 91.10 88.60 99.80 94.10

Liu et al. 99.50 95.40 82.20 99.20 89.60 88.40 90.20 89.20 92.90 98.70 92.50
Ours 99.60 92.90 96.30 99.10 97.20 91.40 100 90.30 90.60 99.30 95.70

4.5. Visualization and Analysis

Some typical detection results on the DIOR dataset are shown in Figure 6. It can be
noticed that the proposed method obtains satisfactory detection results for objects with
complex backgrounds, large variations in object scales, and high inter-class similarity.
The proposed method can alleviate the problem of small object information loss and has
the capability to extract discriminative features from objects, such as the detection of the
airplanes in Figure 6a, the ships in Figure 6b, and the tennis court in Figure 6h. In addition,
our method exhibits the ability to accurately extract object information from complex
backgrounds, such as the ground track field in a complex background in Figure 6g and
an airport with an irregular aspect ratio in Figure 6f. Moreover, the accurate detections of
the overpass in Figure 6c and the bridge in Figure 6d demonstrates that our method has
fine contextual information extraction capability, as the bridge and overpass have similar
features and contextual information is required to distinguish them well.
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Remote sensing images exhibit variations in imaging conditions and image quality,
posing challenges for object detection. In Figure 7, challenging scenes with clouds, uneven
chromaticity, color distortion, low resolution, and shadowing are depicted. The proposed
method demonstrates its effectiveness in accurately extracting discriminative features and
detecting objects in such scenes, where the semantic information of objects is difficult to
capture and can be easily suppressed by noise.
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The detection results of some typical objects in HRRSD dataset are shown in Figure 8.
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In the results obtained on the NWPU VHR-10 dataset, the feature maps used for
prediction in the model are visualized using AblationCAM [54] to visualize the perceptual
capability of the proposed method for the objects. The results of some typical objects
are shown in Figure 9. In this case, the shift from blue to red in the figure indicates
the level of weak-to-strong focus on this area. The warm color means that the model
is paying more attention to this area. It can be seen from Figure 9 that the method pro-
posed can accurately focus on the centers of all types of objects, almost unaffected by the
surrounding environment.
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5. Conclusions

This paper aims to address the challenges caused by the large variation in object scales,
complex environmental backgrounds, and high inter-class similarity in remote sensing
image object detection. We propose an effective adaptive adjacent layer feature fusion
(AALFF) method for remote sensing image object detection based on RTMDet. The major
contributions include: (1) Designing an adjacent layer feature fusion enhancement module
(ALFFE). (2) Introducing the adaptive spatial feature fusion module (ASFF). The ALFFE
module enables the model to better capture high-level semantic information of objects and
accurately locate their spatial positions by fusing adjacent layer features. It also mitigates
the problem of missed small objects and enhances the capture of crucial object information
within complex backgrounds. The ASFF is introduced to adaptively adjust the degree
of feature participation at different scales during fusion to better accommodate objects
with varying scales. Ablation experiments on the DIOR and HRRSD datasets demonstrate
the effectiveness of different components in AALFF. Our method achieves state-of-the-
art performance on the DIOR dataset. Furthermore, our method achieves satisfactory
performance with a small number of model parameters, striking a good balance between
speed and accuracy. Experimental results on the DIOR, HRRSD, and NWPU VHR-10
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datasets demonstrate the successful detection of objects with large scale variation, complex
backgrounds, and high inter-class similarity.

Currently, deep-learning-based methods for remote sensing image object detection
often require a large number of annotated samples for training deep neural networks. How-
ever, acquiring a large-scale annotated dataset in the remote sensing field is a challenging
task. Additionally, with the continuous advancement of remote sensing technology, new
remote sensing scenarios and object types are continuously emerging. Detecting these new
scenarios and objects often faces the challenge of limited data availability. Therefore, in the
future, our research will focus on few-shot object detection in remote sensing images, aim-
ing to effectively utilize limited data resources and enhance the effectiveness and accuracy
of object detection.
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