
Citation: Wang, J.; Ren, J.; Peng, Y.;

Shi, M. Spectral Segmentation

Multi-Scale Feature Extraction

Residual Networks for Hyperspectral

Image Classification. Remote Sens.

2023, 15, 4219. https://doi.org/

10.3390/rs15174219

Academic Editors: Salah Bourennane

and Paul Scheunders

Received: 2 July 2023

Revised: 18 August 2023

Accepted: 26 August 2023

Published: 28 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spectral Segmentation Multi-Scale Feature Extraction Residual
Networks for Hyperspectral Image Classification
Jiamei Wang 1, Jiansi Ren 1,2,* , Yinbin Peng 1 and Meilin Shi 1,2

1 School of Computer Science, China University of Geosciences, Wuhan 430078, China
2 Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences,

Wuhan 430078, China
* Correspondence: renjsv@cug.edu.cn

Abstract: Hyperspectral image (HSI) classification is a vital task in hyperspectral image processing
and applications. Convolutional neural networks (CNN) are becoming an effective approach for
categorizing hyperspectral remote sensing images as deep learning technology advances. However,
traditional CNN usually uses a fixed kernel size, which limits the model’s capacity to acquire new
features and affects the classification accuracy. Based on this, we developed a spectral segmentation-
based multi-scale spatial feature extraction residual network (MFERN) for hyperspectral image
classification. MFERN divides the input data into many non-overlapping sub-bands by spectral
bands, extracts features in parallel using the multi-scale spatial feature extraction module MSFE,
and adds global branches on top of this to obtain global information of the full spectral band of the
image. Finally, the extracted features are fused and sent into the classifier. Our MSFE module has
multiple branches with increasing ranges of the receptive field (RF), enabling multi-scale spatial
information extraction at both fine- and coarse-grained levels. On the Indian Pines (IP), Salinas (SA),
and Pavia University (PU) HSI datasets, we conducted extensive experiments. The experimental
results show that our model has the best performance and robustness, and our proposed MFERN
significantly outperforms other models in terms of classification accuracy, even with a small amount
of training data.

Keywords: hyperspectral image (HSI); multi-scale; spectral segmentation; grouped convolution;
residual structure

1. Introduction

Hyperspectral images (HSI), typically with several hundred contiguous spectral bands
per pixel, include an abundance of spectral and spatial information and have very high
spatial resolution and correlation [1]. HSI is currently employed in numerous applications,
including defense [2], land cover analysis [3], crop monitoring [4], and medical disease
diagnosis [5]. One of the most important tasks in HSI analysis is hyperspectral image
classification (HSIC), which involves assigning each pixel in an HSI to a specific land cover
class using spatial and spectral information.

Early HSIC research focused on the use of traditional machine learning methods, such
as support vector machines (SVM) [6], k-nearest neighbors [7], and logistic regression [8],
among others. At the same time, considering the existence of redundant information and
noise in the spectral bands, as well as the small number of training samples in HSIC com-
pared to the high dimensionality of the HSI data, which can easily be prone to overfitting
and Hughes phenomenon [9], therefore, approaches to dimensionality reduction, such as
principal component analysis (PCA) [10], subspace learning [11], and sparse representa-
tion [12] has been widely used to solve these problems. Nevertheless, these approaches can
only extract superficial characteristics of the image based on the spectral information of
HSI, ignoring the spatial information and cannot fully extract the image’s deeper features.
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To further improve the performance of HSIC by exploiting spatial information,
Zhong et al. [13] presented an iterative approach to obtain spatial information from spec-
tral classification data samples using selective spatial filters. Duan et al. [14] used local
edge-preserving filtering and global edge-preserving smoothing to obtain edge-preserving
features and used the superpixel segmentation method and support vector machine to
obtain hyperspectral image classification results. Zhang et al. [15] presented a model based
on the local correntropy matrix (LCEM), which reduces the dimensionality of the original
hyperspectral data, selects local neighbors in a sliding window using cosine distance to con-
struct LCEM, and finally sends the correntropy matrices to the support vector machine for
classification. Additionally, extended multi-attribute profile methods (EMAP) [16], Markov
random field-based methods [17] and superpixel segmentation-based methods [18] are
additional typical methods for the spatial classification of spectral.

In recent years, a growing number of deep learning approaches have been applied to
HSIC, such as stacked autoencoders (SAE) [19], convolutional neural networks (CNNs) [20,21],
and recurrent neural networks (RNNs) [22], among others. Among them, CNN is widely
used due to its advantages of automatic extraction of image features and self-learning up-
dates of parameters. Liu et al. [23] presented a 2D-CNN capable of automatically learning
features from complex hyperspectral image data structures for HSIC. Yu et al. [24] suggested
a lightweight 2D-3D CNN model to efficiently extract fine features. Chen et al. [20] pre-
sented a 3D-CNN model combined with regularized depth feature extraction. Roy et al. [25]
presented a hybrid spectral CNN made up of 2D and 3D-CNN. These 3D-CNN classifica-
tion frameworks have good classification performance but also require high computational
costs. Since 2D-CNN operates on a two-dimensional space without considering the image
depth, and is much less in terms of the number of parameters compared to 3D-CNN, we
have used 2D-CNN to extract spatial and spectral features in order to be able to reduce the
computational complexity of our model.

The depth of the network affects the majority of models’ performance, yet numer-
ous studies have demonstrated that as network depth rises, CNN models suffer from
information loss due to the gradient disappearance problem [26], resulting in poor results.
The proposal of ResNet [27] and DenseNet [28] effectively addressed this problem, and
subsequently, many scholars have added them to deep network models in conjunction
with CNN for HSIC. Paoletti et al. [29] presented a ResNet model (PResNet) based on
a pyramidal bottleneck residual cell ground that can perform fast and accurate HSIC
combining spatial and spectral information. Li et al. [30] presented a double branch and
double attention mechanism network (DBDA) with a dense connection structure and Mish
activation function. The model’s performance in terms of optimization and generalization
was also enhanced. Wu et al. [31] presented a reparameterization-based null-spectrum
residual network (RepSSRN) and used it for HSIC. The residual network has a powerful
feature transformation capability, so we continued to use the residual structure and dense
blocks in the proposed model.

Although the receptive field (RF) is the area that directly influences the convolution
operation, the majority of the current CNN models for HSIC employ a fixed-size RF
for feature extraction, which limits the model learning weights. Typically, larger RFs
are unable to capture fine-grained structures, but coarse-grained image structures are
typically eliminated by RFs that are too tiny [32]. Therefore, to synthetically extract multi-
scale information at both the fine-grained and coarse-grained levels of an image, we
developed a spectral segmentation-based multi-scale spatial feature extraction residual
network (MFERN) for HSIC. Specifically, we first proposed a multi-scale spatial feature
extraction module, MSFE, which separates the input image’s spectral bands into various
RFs for each branch. We stack convolutional layers with a 3 × 3 kernel size to increase
the RF while decreasing the computational cost. Moreover, we apply “selective kernel”
(SK) convolution [33] operations to all but the first two branches to improve the model’s
effectiveness and adaptability. In addition, we suggest an improved spectral segmentation
residual module SSRM, which divides the input patches into a number of equal-width
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groups along the spectral dimension, constructs multiple parallel convolutional networks
to extract spatial and spectral features, and finally fuses the features of each parallel CNN.
It should be noted that considering the simplicity of the practice, we do not really build
many CNNs but use grouped convolution for equivalent implementation. We replace
the normal convolution layer with grouped convolution [34] based on the dense block in
the DenseNet network [28] and combine MSFE with grouped convolution to replace the
3 × 3 kernel size convolution layers in the dense block. Additionally, considering that the
parallel CNN constructed by grouping operations extracts features from certain spectral
bands independently, we add a global branch consisting of a normal 1 × 1 kernel size
convolutional layer and an MSFE module to the original residual structure to extract the
feature map’s global information. In conclusion, the following are this paper’s significant
contributions:

(1) A multi-scale spatial feature extraction module MSFE is proposed, which extracts
information at different scales using convolutional layers with different receptive field
sizes after dividing the spectral bands, exploiting the multi-scale potential at a finer
granularity level for efficient and comprehensive extraction of spatial information.

(2) In this paper, we propose an improved spectral segmentation residual module SSRM,
which combines the MSFE module with grouped convolution, divides the input
patches along the spectral dimensions, constructs multiple parallel CNNs to extract
the features separately and adds a global branch on top of the original residual
structure to synthesize the local and global information of the space and spectrum.

(3) The effectiveness of the presented module was tested using three HSI datasets, and
the presented MFERN approach used fewer training samples to reach state-of-the-art
classification accuracy.

The remainder of the paper is structured as follows. The second part details the
specifics of the MFERN method’s implementation details, the third part delivers the re-
sults and analysis of the experiments, the fourth part is a discussion of the strengths and
weaknesses of the methodology of this paper, and the fifth provides part a summary of the
paper’s work and recommendations for further study.

2. Materials and Methods

We initially describe the proposed multi-scale spatial feature extraction module MSFE
in this section, followed by a modified spectral segmentation residual module (SSRM) for
the combined acquisition of global and local information of space and spectrum, and finally
summarize the general framework of our proposed multi-scale spatial feature extraction
residual network (MFERN) approach based on spectral segmentation.

2.1. Multi-Scale Spatial Feature Extraction Module

Let the HSI dataset be X ∈ RH×W×B, where B stands for the number of spectral bands,
H and W stand for the height and width of the spatial dimension, respectively. The input
Xp ∈ Rp×p×B to MFERN is a patch of size p× p× B, with p being the size of the patch
given in advance. Generally speaking, the larger the size p of a patch, the more spatial
information it contains, so it is particularly crucial to understand how to extract spatial
information more effectively and thoroughly, for which we present the Multi-Scale Spatial
Feature Extraction module (MSFE). Figure 1 depicts the basic construction of this module.

Specifically, for a feature map input, x ∈ Rp×p×c, we partition it uniformly into s
subsets of feature maps xi, i = 1, 2, . . . , s, where each xi has the same spatial size but the
number of channels is c/s. Except for x1, which does not go through the convolution
layer and is a shortcut connection, the remaining xi, i = 2, 3, . . . , s of the corresponding
convolutional layers have increasing RF in that order. As Szegedy et al. [35] suggest that
convolution with larger spatial filters is computationally extraordinarily expensive, yet
reducing its size comes at a significant cost in terms of expressivity. As shown in Figure 2,
where Figure 2a indicates that the feature map size of a 5 × 5-sized feature map after one
layer of 5 × 5 convolution is 1 × 1, and Figure 2b indicates that the feature map size of a
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5 × 5-sized feature map after two layers of 3 × 3 convolution is also 1 × 1, which suggests
that the two layers of 3 × 3 convolution have the same RF as one layer of 5 × 5 convolution,
and thus the 5 × 5 convolution can be replaced by two layers of 3 × 3 convolution. Thus,
we acquire a larger size convolution and RF equivalently by repeatedly stacking smaller
3 × 3 convolutions, with enhanced non-linearity due to the use of one more activation
function for two convolution layers compared to one. Specifically, x2 passes through
only one 3 × 3 convolutional layer, while xi, i = 3, 4, . . . , s first passes through i− 2 3 × 3
convolutional layers, respectively, denoted by Kj(·), j = 1, 2, . . . , i− 2, and Kj(·) consists
of convolution, Batch Normalization (BN) [36] and ReLU [37] activation functions (ReLU)
in turn, followed by feature cascading, where the space size of the cascaded feature map
xconcat remains unchanged and the number of channels becomes s− 2 times the original one.

xconcat =K1(x3)⊕ K2(K1(x4))⊕ · · · ⊕ Kj(K...(K1(xi)))

s ≥ 3, i = 3, 4, . . . , s, j = 1, 2, . . . , i− 2
(1)

where ⊕ denotes the feature concat operation for the channel dimension. Note that all
feature maps are subjected to a fill operation to maintain the feature map’s original spa-
tial size.

Figure 1. Multi-scale spatial feature extraction module (with s = 4 as an example).

Figure 2. Small networks replacing 5 × 5 convolution. (a) 5 × 5 convolution results, (b) 3 × 3
convolution results.

The cascaded feature map xconcat is subjected to a Selective Kernel (SK) convolution
operation in order to improve the MSFE module’s adaptability, as depicted in Figure 3.
Three steps make up this operation: Split, Fuse, and Select. Several pathways with various
convolutional kernel sizes are produced by the operation Split. In this paper, the number
of paths is s− 2, and the convolutional RF of each path is the same as the convolutional
RF of the feature map subset xi, i = 3, 4, . . . , s. Therefore, we also use the stacked 3 × 3
convolution to achieve the effect of increasing the convolutional kernel size. The Fuse oper-
ation aggregates and combines data from many paths to produce a global and composite
representation of the selection weights. The Select operation aggregates feature maps with
different kernel sizes based on selection weights. Using the example of s = 4, i.e., two
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paths for the SK convolution operation, we will describe in detail the procedure for this
operation.

Figure 3. Selective kernel convolution.

Split: For a given feature map xconcat ∈ Rp×p×D, where D = c− 2c
s , two transforma-

tions F3×3 : xconcat → U3 ∈ Rp×p×D and F5×5 : xconcat → U5 ∈ Rp×p×D are first performed,
with kernel sizes of 3 and 5, respectively; where both F3×3 and F5×5 are the same as previous
operations, consisting of the convolution, BN and ReLU in turn, and the convolution of the
5 × 5 kernel is equivalently formed by stacking the convolutions of two 3 × 3 kernels.

Fuse: One basic idea for implementing adaptive tuning of neurons with different sizes
of RF is to design a gate mechanism for controlling the information flow into the following
layer of neurons from many branches carrying information at varied scales. The result of
fusing multiple (in this case is two) pathways by summing the elements is first:

U = U3 + U5 (2)

Global average pooling [38] is then used to generate channel-wide statistics for G ∈ RD

to embed the global information.

Gd = Fgap(Ud) =
1

p× p

p

∑
m=1

p

∑
n=1

Ud(m, n) (3)

where Gd is the dth element of G and Fgap stands for global average pooling.
Finally, to facilitate guidance on precise and adaptable selection, a compact feature

Z ∈ Rl×1 is produced by a fully connected layer of:

Z = Ff c(G) = δ(FBN(WG)) (4)

where the ReLU activation function is δ, FBN stands for batch normalization and W ∈ Rl×D.
A reduction rate r is used to adjust the value of l to evaluate its impact on the model’s
effectiveness:

l = max(
D
r

, L) (5)

where L stands for the minimum value of l. In this paper, L = 32 is set.
Select: Use cross-channel soft attention, guided by the compact feature descriptor Z,

to adaptively select information at different spatial scales. Specifically, a softmax operator
is applied to the numbers on the channel:

am =
eAmZ

eAmZ + eBmZ , bm =
eBmZ

eAmZ + eBmZ (6)

where A and B ∈ RD×l , the soft attention vectors of U3 and U5 are denoted by a and b,
respectively. Notably, Am ∈ R1×l is the mth row of A and am is the mth element of a, as are
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Bm and bm. The attention weights on each kernel are used to create the final feature map
x
′
concat, which is calculated as follows:

xm
′

concat = am ·Um
3 + bm ·Um

5 , am + bm = 1 (7)

where x
′
concat = [x1

′

concat, x2
′

concat, . . . , xm
′

concat], xm
′

concat ∈ Rp×p, · denotes the multiplication
operation. For the resulting final feature map x

′
concat, some of the channels have RFs of

size 5 × 5, some have RFs of size 7 × 7, and the rest have RFs of size 11 × 11, so x
′
concat

has rich multi-scale spatial features and gains both the advantage of multiple channels
and a priori knowledge of inter-channel attention. Note that the formulae provided
above are for the case where s = 4. Cases with more paths can be deduced by extending
Equations (1), (2), (6) and (7).

Finally, after cascading all subsets of feature maps and putting them through the ReLU
activation function, the MSFE module’s final output y is obtained:

y = δ(x1 + x2 + x
′
concat) (8)

where δ is the ReLU activation function.

2.2. Spectral Segmentation Residual Module

Our SSRM module divides the input patches into a number of equal-width groups and
constructs multiple parallel CNNs to extract spatial and spectral features from different
group subbands, but in practice, we do not actually construct these parallel CNNs but rather
use packet convolution for equivalent implementation. In addition, we further improve
the residual block by adding a global branch for information fusion at the feature level,
which combines the advantages of local and global features to obtain a richer and more
comprehensive feature representation. The group convolution equivalence and residual
block improvement are discussed in detail below.

Figure 4a shows the basic module designed in DenseNet [28]. Since Xie et al. [34]
suggested that grouped convolution has a better FLOPs/accuracy trade-off than ordinary
convolution, its ability to improve accuracy while reducing complexity. Let C0 be the
number of input channels, k be the size of the convolution kernel, H ×W be the size of the
output feature maps, C1 be the size of the output channels, and the number of groupings is
g. Then for normal convolution, its parameter number is K2 × C0 × C1; and for grouped
convolution, its parameter number is K2 × C0

g ×
C1
g = K2 × C0×C1

g , which shows that the
total number of parameters of grouped convolution is 1/g of the number of parameters of
ordinary convolution. Thus, we use grouped convolution to replace the original ordinary
convolution in (a). In the original module, information from the feature maps is extracted
using convolution kernels of kernel size 3 × 3, but it is difficult to extract information at
different scales using fixed-size convolution kernels, so we combine the MSFE module
introduced in Section 3.1 with grouped convolution, as depicted in Figure 4b, and Figure 4c
is an equivalent implementation of (b). Specifically, for an input feature map Xin ∈ Rp×p×K,
we divide it into T feature map subsets by spectral dimension, and the number of spectral
bands in each feature map subset b = K/T. If K is not divisible by T, we repeatedly copy
the final value of the spectral band to extend the spectral band until it is divisible by K.
This leads to:

X
′
in = {X(0,b]

in , X(b,2b]
in , . . . , X((T−1)b,K]

in } (9)

After the spectral division is completed, T sets of parallel feature extraction branches
are constructed, and for each set of branches, they first pass through a 1 × 1 kernel size
convolutional layer, enabling the combination of information across channels and the
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addition of non-linear features. This is followed by an MSFE module to extract multi-scale
spatial features:

Xm
out = Φm

MSFE(Φ
m
conv1(X((m−1)b,mb]

in )), m = 1, 2, . . . , T (10)

where the vector Xm
out is the output of the mth group of branches, ΦMSFE(·) denotes the

MSFE module, and Φconv1(·) denotes the convolution layer with a 1 × 1 kernel size.

Figure 4. (a) basic module designed in DenseNet, (b) aggregated residual transform, (c) equivalent
implementation by using group convolution with group number equal to T.

Finally, we stitch the T features extracted from T sets of parallel branches and after the
ReLU we obtain the final output of the module:

Xout = [X1
out, X2

out, . . . , XT
out] (11)

Considering that the parallel CNN constructed by grouping operations extracts fea-
tures from certain spectral bands independently and lacks global feature information for
the whole spectral band, we added a global branch to the original residual block, which
also consists of a 1 × 1 kernel size convolutional layer and an MSFE module, except that
instead of grouped convolution, two normal convolutional layers are used. The original
branch is used to extract the spatial and spectral features from the local band, while the
new global branch is used to extract the global spatial and spectral features from the entire
input band. The structure of our designed SSRM is shown in Figure 5.

Figure 5. Spectral Segmentation Residual Module (SSRM).

2.3. Overview of a MFERN

The final complete architecture of the Multi-Scale Spatial Feature Extraction Residual
Network (MFERN) based on spectral segmentation is depicted in Figure 6, where the
specific parameters of each of these layers are shown in Table 1. The input size for MFERN
is p× p× B, where B is the number of spectral bands and p is the patch size. The input
bands are split into T groups by the first grouped convolutional layer, then two spectral
segmentation residual modules SSRM is connected to extract spectral and spatial features,
followed by a general convolutional layer (1 × 1) for fusing spectral features and a global
average pooling layer (GAP) for fusing spatial features and reducing the spatial size of the
input patch’s spatial size to 1× 1. The final classification result is then obtained through
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the use of softmax regression. The output of the classifier is the conditional probability of
the output of class q; it can be utilized to obtain the final result. Suppose the conditional
probability is ŷ = [ŷ1, ŷ2, . . . , ŷq], then:

ŷj =
exp(θ(j)1 T + θ

(j)
2 )

∑
q
i=1 exp(θ(j)1 T + θ

(j)
2 )

, j = 1, 2, . . . , q (12)

where T is the input to the classifier and both θ1 and θ2 are parameters. We employ the
commonly used minimized cross-entropy loss function to train the framework:

Loss = −
n

∑
i=1

q

∑
j=1

y(i)j logŷi
j (13)

where the truth and prediction labels are y and ŷ, respectively, n is the total amount of
minimum batch samples, and the total amount of categories is q.

Figure 6. A general framework for a spectral segmentation-based multi-scale spatial feature extraction
residual network (MFERN).

Table 1. MFERN structure on the IP, SA, and PU datasets.

Layer IP SA PU

1 × 1 * 200; T = 9, padding = 1; 288 204; T = 11, padding = 1; 297 103; T = 11, padding = 1; 160

1 × 1 (Global) 288; padding = 0; 288 297; padding = 1; 297 160; padding = 1; 160

MSFE (Global) 288; padding = 1; 288 297; padding = 1; 297 160; padding = 1; 160

1 × 1 * (Local) 288; T = 9, padding = 0; 288 297; T = 11, padding = 1; 297 160; padding = 1; 160

MSFE * (Local) 288; T = 9, padding = 1; 288 297; T = 11, padding = 1; 297 160; padding = 1; 160

1 × 1 288; padding = 0; 128 297; padding = 1; 128 160; padding = 1; 128

* denotes group convolution.

3. Results
3.1. Dataset

In this section, we design experiments to assess how well our suggested model per-
forms on three commonly used datasets: Indian Pines, Salinas, and Pavia University.

Indian Pines (IP) dataset was collected over the Indian Pines Test Site in northwest
Indiana by the 224-band Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [39],
covering 224 spectral bands between 0.4 and 2.5 um in wavelength. The image size was
145 × 145 and contained 16 vegetation classes. Twenty-four water absorption bands were
removed, leaving 200 bands available for training.

Salinas (SA) dataset, which spans 224 spectral bands with wavelengths ranging from
0.4 to 2.5 um, was collected by AVIRIS over the Salinas Valley in California. The image
size is 512 × 217 and contains 16 land cover classes. Twenty water absorption bands were
removed from the experiment, and the actual bands used for training were 204.
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Pavia University (PU) dataset was acquired over Pavia, northern Italy, by the Reflection
Optical System Imaging Spectrometer (ROSIS) [40] and covers 103 spectral bands between
0.38 and 0.86 um in wavelength. The image size is 610 × 340 and contains nine land cover
classes.

We pre-processed the data by first normalizing the values to the range [0, 1], followed
by a data augmentation operation that flipped the input patch vertically or horizontally
and then randomly rotated it by 90◦, 180◦ or 270◦.

For the IP dataset, we used 5% of the labeled samples for training, 5% for validation,
and 90% for testing. On the other hand, for the SA and PU datasets, we used 0.5% of
the labeled samples for training, 0.5% for validation, and 99% for testing. The number
of training, validation, and testing samples for each class is displayed in Tables 2–4. We
selected the best model on the validation set to be evaluated on the testing set, and we
divided the labeled samples 10 times at random, with all results being the average of these
10 runs.

Table 2. Quantity of samples used for training, validation, and testing on the IP dataset.

No. Classes Train Val Test

1 Alfalfa 2 2 42
2 Corn-notill 71 71 1286
3 Corn-mintill 41 41 748
4 Corn 12 12 213
5 Grass-pasture 24 24 435
6 Grass-trees 37 37 656
7 Grass-pasture-mowed 1 1 26
8 Hay-windrowed 24 24 430
9 Oats 1 1 18
10 Soybean-notill 48 48 876
11 Soybean-mintill 123 123 2209
12 Soybean-clean 30 30 533
13 wheat 10 10 185
14 Woods 63 63 1139
15 Buildings-Grass-Trees-Drives 19 19 348
16 Stone-Steel-Towers 5 5 83

Table 3. Quantity of samples used for training, validation, and testing on the SA dataset.

No. Classes Train Val Test

1 Brocoli_green_weeds_1 10 10 1989
2 Brocoli_green_weeds_2 19 19 3688
3 Fallow 10 10 1956
4 Fallow_rough_plow 7 7 1380
5 Fallow_smooth 13 13 2652
6 Stubble 20 20 3919
7 Celery 18 18 3543
8 Grapes_untrained 56 56 11,159
9 Soli_vinyard_develop 31 31 6141
10 Corn_senesced_green_weeds 16 16 3246
11 Lettuce_romaine_4wk 5 5 1058
12 Lettuce_romaine_5wk 10 10 1907
13 Lettuce_romaine_6wk 5 5 906
14 Lettuce_romaine_7wk 5 5 1060
15 Vinyard_untrained 36 36 7196
16 Vinyard_vertical_trellis 9 9 1789
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Table 4. Quantity of samples used for training, validation, and testing on the PU dataset.

No. Classes Train Val Test

1 Asphalt 33 33 6565
2 Meadows 93 93 18,463
3 Gravel 10 10 2079
4 Trees 15 15 3034
5 Painted metal sheets 7 7 1331
6 Bare Soil 25 25 4979
7 Bitumen 7 7 1316
8 Self-Blocking Bricks 18 18 3646
9 Shadows 5 5 937

3.2. Experimental Setup

To assess the performance of the MFERN model, we conducted experiments on an
Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz and an NVIDIA GeForce RTX 2080 using the
Pytorch framework. We used the Adam [41] optimizer to update all training parameters in
the framework.

Training epochs have a direct impact on the model. Fewer training rounds may not be
enough for the model to fully learn the complex patterns of the data, while more training
epochs may cause the model to overfit the training data. Additionally, as the training epochs
increase, the model training time also increases. Therefore, in order to find a suitable train-
ing epochs setting that avoids overfitting and underfitting while making the training time
as small as possible, we conducted experimental exploration. Specifically, we initially set
the maximum training epoch = 500 when training on each dataset and output the OA value
of the model on the validation set when epoch = {100, 150, 200, 250, 300, 350, 400, 450, 500}
during the training process, and then finally plot a graph to observe the change of OA
value with the increase in epochs, the experimental results are shown in Figure 7, and it can
be observed that on the three datasets when the epoch is less than 250, the model has poor
accuracy and exhibits the characteristics of underfitting. This is because the model has not
yet sufficiently learned the complex patterns of the input data to capture the underlying
relationships of the data. At this point, the model’s fitting ability is weak and cannot match
the training data well. As the training epochs increase, the model gradually improves
its fitting ability and reduces underfitting to some extent. When epoch = 300, the model
converges, and the model accuracy changes weakly when the epochs increase again after
that; therefore, in order not to increase the training time of the model, all the experiments
after that are trained with 300 epochs.

The batch size is set to 128, the initial learning rate (lr) is set to 0.001, and the network
was trained from scratch without using predefined weights. At 100 epochs, the lr is
multiplied by a factor of 0.1, changing to 0.0001, and at 250 epochs, the lr continues to be
multiplied by a factor of 0.1, changing to 0.00001. The precision (OA), average precision
(AA), and Kappa coefficient act as evaluation metrics to assess the effectiveness of the
suggested approach.

Figure 7. Variation curves of the validation set OA values with increasing epoch on the (a) IP dataset,
(b) SA dataset, and (c) PU dataset.
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3.3. Effect of Input Patch Size

The size of the input patch determines how much spatial information it contains. In
general, the larger the input patch, the more local spatial information it contains, but at the
same time, the more interfering pixels it contains, or it may contain overlapping regions
with no new content, which can confuse the classifier and make the model less accurate.
Therefore, appropriate patch size is important to obtain reliable and good accuracy. In order
to assess the impact of spatial input size on MFERN performance and to find the optimal
input patch size for each dataset, we conducted an experimental exploration. Specifically,
we initially set the number of MSFE divisions s = 4 and the number of SSRM groupings
T = 5 and verified the variation of model OA, AA, and Kappa values on the three datasets
when the patch size was set to {7, 9, 11, 13, 15, 17, 19, 21}, respectively. Figure 8 displays the
findings of the experiment, where it can be noticeable that the optimal input patch size
varies for the three datasets. When the patch size is 9 × 9, the model performs best for the
IP dataset; when the patch size is 19× 19, the model for the SA dataset yields the best result;
when the patch size is 11 × 11, the model for the PU dataset reaches its optimal value.
However, as the patch size continued to increase, the model accuracy for each dataset
tended to increase and then decrease, indicating that as the patch size continued to increase,
more distracting pixels were included in the patch, confusing the CNN feature extraction
and therefore, the accuracy started to decrease. In the subsequent experiments, we fixed
the patch size of each dataset to the value corresponding to its optimal performance.

Figure 8. Classification results using various patch sizes on the (a) IP dataset, (b) SA dataset and
(c) PU dataset.

3.4. Effect of the Number of MSFE Divisions

For the MSFE module, the number of divisions s determines the maximum RF size
that can be used to extract spatial features. The larger the s, the more 3 × 3 convolutions
are stacked on the branch, and the larger the RF of the convolutional layer to which the
branch is applied. However, for different datasets, the applicable RF size varies, so in order
to obtain the optimal setting of the number of MSFE divisions, we conducted experiments
by taking the number of MSFE divisions s as {2, 3, 4, 5, 6} and observing the variation of
OA, AA, and Kappa values of the model on the three datasets, respectively. The results of
the experiment are displayed in Figure 9. It can be seen that the model performs best for
the SA dataset and PU dataset when s = 4, while for the IP dataset, s = 3 provides the best
classification performance. This is because the input patches of SA and PU are larger, and
their spatial information is more complex, so it is better to use a larger RF for classification,
while the input patches of the IP dataset are smaller and suitable for using a relatively small
RF. However, for all three datasets, the model performance tends to decrease when s = 5
and 6 because when the RF is too large, the model may incorrectly extract many useless
features, confusing the classifier and possibly overfitting the model. Additionally, it can be
noted that when s = 2, the MSFE module becomes a normal residual block and can only
obtain information about the 3 × 3 size RF when the OA, AA, and Kappa values are lower
on all three datasets, so this verifies that our proposed MSFE module can indeed exploit
the multi-scale potential at a finer level of granularity and extract spatial information from
the feature maps.
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Figure 9. Classification results using various number of MSFE divisions s on the (a) IP dataset, (b) SA
dataset and (c) PU dataset.

3.5. Number of Groups in SSRM

The amount of groupings in SSRM determines the number of spectral bands divided
and the number of parallel MSFEs to be used for feature extraction and is, therefore, a
parameter to be considered. According to the experimental findings in Section 3.4, we set
the number of MSFE divisions to be s = 3 on the IP dataset, and s = 4 on the SA and PU
datasets. On this basis, we explored the OA values on the three datasets when the number
of groupings T of the SSRM takes odd values between 1 and 23, respectively. The results of
the experiment are displayed in Figure 10, where it is evident that the optimal number of
groups T varies for different datasets, with the optimal number of groups T being 9, 11,
and 5 for the IP, SA, and PU datasets, respectively. It can be noted that when T takes the
value of 1, the group convolution degenerates to a normal convolution, which is equivalent
to having two global branches without local branches, and since the OA value at T = 1 is
not high for all three datasets, therefore, this validates the validity of the improved grouped
convolution in our presented SSRM, i.e., the validity of the local branches. Validation of the
validity of global branching will be explored in a subsequent subsection on ablation studies.

Figure 10. Classification results using different numbers of SSRM groups T on the (a) IP dataset,
(b) SA dataset and (c) PU dataset.

3.6. Ablation Study

To demonstrate the contribution of the MSFE and SSRM modules of our proposed
method to the final classification results of the model, we conducted an ablation study
on three datasets. Specifically, we kept the other experimental settings unchanged while
replacing our SSRM module with the basic module designed in DenseNet in Figure 4a, i.e.,
at this point the model does not use the MSFE module, the convolutions are all normal
convolutions rather than grouped convolutions, and there is no global branching. We use
this as the baseline model, which we name Baseline, and Figure 11 depicts the model’s
construction. We add the modules we have designed to this model in turn to verify the
validity of the different designs and modules.
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Figure 11. Baseline model structure.

(1) Base+GC: We replace all the convolution layers except the last one with grouped
convolution on top of the Baseline to verify the effectiveness of using grouped convolution,
at which point the model structure is shown in Figure 12.

Figure 12. Base+GC model structure.

(2) Base+GC+GB: We verify the validity of our proposed global branching by adding
global branches to the two residual blocks in the model based on the use of grouped
convolution, with only normal convolutional layers on the global branches, specifically a
1 × 1 kernel size convolutional layer and a 3 × 3 kernel size convolutional layer. Figure 13
illustrates the model’s current structure.

Figure 13. Base+GC+GB model structure.

(3) Base+GC+GB+MSFE(MFERN): We replace all the convolutional layers of kernel
size 3 × 3 in the model with MSFE modules based on the use of grouped convolution and
the addition of global branches, at which point the residual blocks in the model are our
proposed SSRM modules and the model structure is the final structure of our presented
MFERN method, as displayed in Figure 6. We can verify the effectiveness of the suggested
MSFE and SSRM modules through this experiment.

Table 5 displays the findings of the ablation study using the three datasets, and it can
be observed that, compared to Baseline, the addition of grouped convolution (Base+GC) to
Baseline improved OA by 0.09%, AA by 0.05% and Kappa by 0.10% on the IP dataset and on
the SA and PU datasets, OA, AA, and Kappa improved by 0.29%, 0.27%, 0.33%, and 0.06%,
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0.09%, 0.07%, respectively. Thus, using grouped convolution instead of normal convolution
is effective, especially for the SA dataset. Later, adding global branches (Base+GC+GB) to
the use of grouped convolution, it can be seen that compared to Baseline, OA improves by
0.15%, AA improves by 0.29%, and Kappa improves by 0.17% on the IP dataset, OA, AA,
and Kappa improve by 0.42%, 0.42%, and 0.46%, respectively, on the SA and PU datasets,
0.46% and 0.25%, 0.20% and 0.33% on the SA and PU datasets, respectively. Therefore, our
proposed global branch is valid, and it is able to extract global feature information for the
whole spectral band. Finally replacing all 3 × 3 kernel size convolutional layers with the
MSFE module (MFERN) on top of the previous one, the OA, AA and Kappa values on
all three datasets are significantly improved compared to Baseline, Specifically, for the IP
dataset, OA improved by 0.30%, AA by 0.70% and Kappa by 0.34%, and for the SA and
PU datasets, OA, AA, and Kappa improved by 0.52%, 0.47%, 0.58% and 0.41%, 0.50%, and
0.55%, respectively. In summary, the baseline model has the worst performance, while
the performance of the model continues to improve with the addition of our suggested
modules, with the best results when all of our suggested modules are used, so that the
MFERN model we proposed achieves the most advanced performance.

Table 5. Ablation study results.

Model
IP SA PU

OA AA κ × 100 OA AA κ × 100 OA AA κ × 100

Baseline 98.17 ± 0.38 97.45 ± 0.82 97.91 ± 0.34 98.43 ± 0.45 98.63 ± 0.56 98.25 ± 0.50 97.90 ± 0.58 96.23 ± 1.31 97.22 ± 0.90
Base+GC 98.26 ± 0.31 97.50 ± 0.88 98.01 ± 0.26 98.72 ± 0.44 98.90 ± 0.35 98.57 ± 0.48 97.96 ± 0.53 96.32 ± 1.25 97.29 ± 0.85
Base+GC+GB 98.32 ± 0.31 97.73 ± 0.78 98.08 ± 0.35 98.84 ± 0.36 99.04 ± 0.23 98.70 ± 0.40 98.14 ± 0.44 96.42 ± 1.18 97.54 ± 0.68
MFERN 98.46 ± 0.39 98.13 ± 0.82 98.24 ± 0.29 98.94 ± 0.39 99.09 ± 0.25 98.82 ± 0.43 98.33 ± 0.47 97.71 ± 0.28 97.78 ± 0.63

3.7. Comparison with Other Methods

In this section, we contrast our MFERN model with other deep learning-based HSIC
methods. Specifically, we compare our approach with ResNet [27], DFFN [42], SSRN [43],
PResNet [29], A2S2K-ResNet [44], HybridSN [25], RSSAN [45], SSTN [46], and DCRN [47].
Among them, ResNet, DFFN, and PResNet use 2D-CNN, SSRN, A2S2K-ResNet, and
RSSAN is based on 3D-CNN, HybridSN and DCRN use a hybrid CNN of 2D-CNN and
3D-CNN, and SSTN is based on Transformer. The experimental setup for this method was
set up as described in Section 3.2, and the parameters were set to the values paired with
the optimal experimental results in Sections 3.3–3.5, as follows: the IP dataset patch size of
9 × 9, the number of divisions s = 3, and the number of groupings T = 9; the SA dataset
patch size of 19 × 19, the number of divisions s = 4, the number of groupings T = 11; the
PU dataset patch size of 11 × 11, the number of divisions s = 4, the number of groupings
T = 5. The detailed architecture of MFERN on the three datasets is shown in Table 1.
The IP dataset is used as an example. All grouped convolutional layers have 288 filters in
9 groups. In other words, we divide the spectrum into 9 groups and extract features using
9 CNNs, respectively, each of which has a bandwidth of 32. The normal convolutional
layer in SSRM, on the other hand, has 288 filters, and the final 1 × 1 convolutional layer
has 128 filters. All the convolutional layers have a step size of 1. We chose this number of
convolutional kernels in order to keep the network parameters around 10 MB on the IP and
PU datasets and 50 MB on the SA dataset because of the larger input patches and higher
number of subgroups in the SA dataset. For a fair comparison, the Pytorch framework
was used for all compared methods; we trained the model using fewer samples, and the
samples from the training, validation, and testing sets were chosen at the scale described
in Section 3.1, for the IP dataset, we used 5% of the labeled samples for training, 5% for
validation, and 90% for testing; for the SA and PU datasets, we used 0.5% of the labeled
samples for training, 0.5% for validation, and 99% for testing. The other hyperparameters
were set as described in the original paper of the model. Tables 6–8 display the outcomes of
the experiment.

Overall, our proposed MFERN outperforms the other methods on all three datasets.
Specifically, MFERN’s OA, AA, and Kappa values on the IP dataset were 98.46 ± 0.25,
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98.13 ± 0.82 and 98.24 ± 0.29, respectively. On the SA and PU datasets, the OA, AA, and
Kappa values were 98.94 ± 0.39, 99.08 ± 0.23, 98.82 ± 0.43 and 98.33 ± 0.47, 97.71 ± 0.28,
and 97.78 ± 0.63. Compared to ResNet, DFFN, and PResNet, which are also based on
2D-CNN, MFERN has improved OA values by 2.40–9.57%, 1.70–8.01% and 3.20–10.26%
over the IP, SA and PU datasets, and the above three methods are also based on residual
networks, suggesting that our MSFE module helps to improve the model performance.
Compared with the 3D-CNN-based SSRN, A2S2K-ResNet, MFERN’s method is closer to,
but slightly better than, these two methods. This is because although we use a 2D-CNN,
designing global branches in SSRM enables us to obtain spectral features for the whole
band so that no spectral information is lost and obtain higher performance. Our method
also performs better than the Transformer-based SSTN method; this is because we combine
MSFE with group convolution in SSRM to reduce the input dimensionality of each MSFE
module performing feature extraction while better extracting multi-scale spatial features,
after which the features extracted from local and global branches are combined to obtain,
for the full band, both spectral and multi-scale spatial features. It can be seen that the
performance of RSSAN based on 3D-CNN and HybridSN based on hybrid CNN of 2D-
CNN and 3D-CNN is not very good. The reason may be that the HybridSN network is more
complex, which will increase the time and resource consumption for training and inference
and is prone to overfitting problems, leading to unsatisfactory classification accuracy, while
the RSSAN network is too simple, which may not be able to capture complex features
in the data, leading to a decrease in accuracy. Taken together, networks such as RSSAN
and SSTN with fewer parameters than MFERN have lower model accuracy than MFERN,
which indicates that MFERN is able to keep the model complexity within a reasonable
range while ensuring higher accuracy.

On both IP and PU datasets, compared with the DCRN model, which obtains the next
best performance, the DCRN model adopts a dual-channel structure to extract spectral and
spatial features of hyperspectral images separately, which may lead to a certain degree of
information loss, and the correlation and interplay between spatial and spectral features
may be lost when extracting both separately, which may limit the expressive power of the
features. In contrast, our SSRM module captures richer feature information by designing
local and global feature extraction branches, where the local branch focuses on fine-grained
local structural and textural features, which can perceive the subtle changes and local
information of the target object, thus enhancing the robustness of the model against noise,
occlusion, and other disturbing factors. The global branch, on the other hand, can obtain
the overall contextual information, providing a grasp of the overall features of the image
and improving the classification accuracy and robustness. On the SA dataset, the DFFN
network is deeper and extracts deeper features compared to the DFFN model that obtains
the next best performance but ignores the fact that different sizes of features are subject
to different RF and only uses a fixed-size RF for feature extraction, which restricts the
learning weight of the model. Our MSFE module solves this problem well, and the multi-
scale feature extraction branch provides different sizes of receptive fields to extract feature
information at different scales and also considers the spatial relationship between pixels
through the receptive fields at different scales, which helps the model to better understand
the spatial distribution characteristics of the target object and improve the classification
accuracy. Therefore, MFERN is more robust, does not need to stack too many blocks to
fully extract the feature information, ensures high accuracy in the case of small samples,
and keeps the model complexity at a low level. To check the classification performance
more visually, we plotted the classification maps and confusion matrix plots produced
using different methodologies on the three datasets, as shown in Figure 14–19. On all three
datasets, MFERN has a high classification accuracy with a low noise level.
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Table 6. Results of different classification methods on the IP dataset.

Class ResNet DFFN SSRN PResNet A2S2K-ResNet HybridSN RSSAN SSTN DCRN MFERN

OA(%) 89.86 ± 0.91 96.15 ± 0.39 97.39 ± 0.31 90.60 ± 0.67 97.01 ± 0.48 86.17 ± 0.87 91.52 ± 0.67 96.85 ± 0.51 97.80 ± 0.35 98.46 ± 0.39
AA(%) 88.45 ± 0.23 94.71 ± 0.72 86.36 ± 0.39 89.25 ± 0.74 92.44 ± 0.10 80.60 ± 0.82 83.96 ± 0.54 92.78 ± 2.32 97.26 ± 0.20 98.13 ± 0.82
κ × 100 89.44 ± 0.03 95.61 ± 0.45 97.02 ± 0.35 90.29 ± 0.77 96.59 ± 0.55 84.93 ± 0.28 90.17 ± 0.92 96.40 ± 0.58 97.49 ± 0.40 98.24 ± 0.29

1 75.24 87.80 90.24 71.65 88.41 70.65 70.12 88.11 93.68 95.12
2 88.58 94.32 97.82 89.22 98.01 83.61 87.34 96.88 98.31 97.74
3 86.21 95.05 98.13 87.72 96.42 84.94 85.89 95.92 97.46 95.31
4 85.09 97.65 91.08 86.03 95.89 75.11 78.40 96.07 95.31 100.0
5 88.45 93.33 95.63 89.40 94.89 89.65 91.06 91.84 95.26 98.62
6 97.98 94.06 99.70 97.66 99.14 95.21 98.00 98.17 98.97 99.39
7 81.50 96.00 96.00 83.00 85.50 85.71 80.50 96.50 100.0 100.0
8 97.09 99.77 100.0 97.94 99.88 90.79 99.88 99.97 100.0 100.0
9 81.94 100.0 83.33 72.92 90.42 100.0 83.30 81.92 95.14 100.0

10 85.63 97.71 96.79 86.43 94.30 82.30 87.90 95.73 95.96 96.34
11 90.33 96.92 95.70 91.10 96.75 87.86 93.38 97.17 97.60 98.87
12 76.97 94.19 99.44 79.94 98.06 70.32 84.11 97.43 98.62 97.94
13 97.64 97.84 100.0 98.31 99.26 100.0 95.14 99.32 98.65 100.0
14 96.42 98.77 99.39 95.64 99.59 99.21 97.85 99.23 99.75 99.91
15 87.90 100.0 100.0 89.45 94.13 80.31 83.07 95.32 94.92 99.14
16 92.26 86.19 85.71 95.54 96.43 98.92 89.29 98.99 97.47 91.67

Params.(MB) 83.90 14.68 12.94 85.97 19.10 98.38 0.84 0.96 9.35 9.49

Table 7. Results of different classification methods on the SA dataset.

Class ResNet DFFN SSRN PResNet A2S2K-ResNet HybridSN RSSAN SSTN DCRN MFERN

OA(%) 91.60 ± 0.02 97.29 ± 0.99 95.19 ± 0.91 92.18 ± 0.82 94.77 ± 0.58 91.59 ± 0.13 93.53 ± 0.02 95.72 ± 0.37 95.89 ± 0.52 98.94 ± 0.39
AA(%) 91.79 ± 0.63 97.22 ± 0.79 96.69 ± 0.71 93.92 ± 0.08 96.41 ± 0.79 90.81 ± 0.59 93.69 ± 0.78 97.44 ± 0.71 97.60 ± 0.59 99.09 ± 0.25
κ × 100 90.55 ± 0.13 97.99 ± 0.10 95.65 ± 0.02 91.29 ± 0.91 94.18 ± 0.65 90.29 ± 0.49 92.69 ± 0.13 95.12 ± 0.53 95.48 ± 0.54 98.82 ± 0.43

1 91.13 100.0 100.0 86.60 98.24 89.64 98.13 99.60 99.96 99.99
2 98.91 99.49 100.0 99.05 100.0 99.54 98.14 99.64 100.0 99.98
3 86.02 84.72 93.51 86.97 83.95 85.88 89.04 94.31 96.31 100.0
4 94.08 82.70 99.93 94.41 99.78 96.38 96.62 97.35 99.08 98.30
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Table 7. Cont.

Class ResNet DFFN SSRN PResNet A2S2K-ResNet HybridSN RSSAN SSTN DCRN MFERN

5 92.66 99.85 96.11 92.73 98.98 95.02 90.72 96.42 97.57 97.21
6 99.15 99.85 100.0 99.55 100.0 98.27 98.97 99.92 100.0 99.85
7 98.67 99.36 99.75 98.75 99.97 99.94 99.13 99.90 99.92 99.68
8 83.97 89.67 89.25 87.36 85.39 87.95 87.22 90.08 90.25 98.06
9 96.42 99.97 99.69 96.99 99.41 98.55 97.14 99.50 99.99 100.0
10 81.31 99.82 93.34 90.14 93.25 83.68 95.20 95.93 96.02 98.30
11 85.80 80.67 91.58 83.83 88.74 80.05 84.59 92.08 99.07 99.98
12 98.78 99.84 100.0 98.85 100.0 100.0 98.32 99.63 99.96 98.16
13 92.71 100.0 99.45 97.59 94.82 88.64 93.72 97.82 98.62 99.03
14 95.40 89.35 99.06 97.24 99.06 98.11 95.48 98.68 98.58 99.16
15 84.97 91.62 87.59 86.53 93.76 82.38 84.38 92.76 89.87 98.25
16 88.63 100.0 99.16 90.09 99.44 89.21 92.29 96.45 96.35 99.40

Params.(MB) 83.94 16.87 13.20 86.02 19.48 100.07 0.85 1.53 9.53 50.39

Table 8. Results of different classification methods on the PU dataset.

Class ResNet DFFN SSRN PResNet A2S2K-ResNet HybridSN RSSAN SSTN DCRN MFERN

OA(%) 89.18 ± 0.51 96.28 ± 0.85 97.86 ± 0.58 92.37 ± 0.06 98.14 ± 0.56 91.51 ± 0.42 90.85 ± 0.66 95.90 ± 0.76 98.18 ± 0.46 98.33 ± 0.47
AA(%) 82.84 ± 0.02 92.90 ± 0.28 95.79 ± 0.54 87.10 ± 0.08 97.20 ± 0.54 87.97 ± 0.12 84.22 ± 0.72 93.39 ± 0.45 96.98 ± 0.65 97.71 ± 0.28
κ × 100 85.57 ± 0.73 95.28 ± 0.12 97.16 ± 0.10 89.88 ± 0.85 97.53 ± 0.74 88.42 ± 0.90 88.49 ± 0.22 95.56 ± 0.01 97.50 ± 0.62 97.78 ± 0.63

1 90.76 94.04 96.25 90.65 98.83 88.63 89.82 96.94 98.36 99.00
2 98.76 99.37 99.24 98.39 99.83 96.87 98.51 99.24 99.55 99.92
3 71.07 96.68 89.85 80.10 87.37 71.39 73.71 86.25 82.08 95.93
4 91.39 91.49 97.76 93.53 95.38 95.98 89.15 90.68 95.21 95.03
5 98.88 96.77 99.65 99.81 99.89 97.49 99.15 99.90 99.91 100.0
6 80.38 98.31 98.97 90.47 98.89 86.26 92.05 97.59 98.85 98.99
7 70.91 88.64 99.70 73.75 98.64 74.91 70.71 95.53 98.33 99.30
8 86.80 96.41 96.32 87.89 96.99 87.51 75.89 94.00 96.59 96.69
9 99.47 83.03 99.89 93.33 90.02 85.70 88.99 91.38 98.40 93.36

Params.(MB) 82.70 15.05 6.76 84.73 23.23 57.52 0.58 0.97 4.88 10.63
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We further assessed the performance variation of the different methods when using
different training sample percentages; specifically, for the IP dataset, we explored the
variation of OA values for each method when the training sample size was taken from
6–10%, and for the SA dataset and PU dataset, we explored the variation of OA values for
each method when the training sample size was taken from 1–5%. Figure 20 displays the
experimental results.

Figure 14. Classification map of the IP dataset. (a) Ground truth map. (b) ResNet. (c) DFFN. (d) SSRN.
(e) PResNet. (f) A2S2K-ResNet. (g) HybridSN. (h) RSSAN. (i) SSTN. (j) DCRN. (k) MFERN.

Figure 15. Classification map of the SA dataset. (a) Ground truth map. (b) ResNet. (c) DFFN.
(d) SSRN. (e) PResNet. (f) A2S2K-ResNet. (g) HybridSN. (h) RSSAN. (i) SSTN. (j) DCRN. (k) MFERN.
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Figure 16. Classification map of the PU dataset. (a) Ground truth map. (b) ResNet. (c) DFFN.
(d) SSRN. (e) PResNet. (f) A2S2K-ResNet. (g) HybridSN. (h) RSSAN. (i) SSTN. (j) DCRN. (k) MFERN.

It can be seen that HybridSN performs poorly on the IP dataset, ResNet gives a poor
performance on the SA dataset, and RSSAN gives poor classification accuracy on the PU
dataset, while DFFN and DCRN have a more stable performance on all three datasets. The
method in this study significantly outperforms the other comparative methods even with
a small training sample set, which shows that MFERN can fully extract the spatial and
spectral features of hyperspectral images, making it have high classification accuracy even
with a small sample size. The performance gap between the methods gradually closes as
the training sample size increases, yet our suggested method consistently outperforms the
other approaches on the three datasets. This demonstrates the strong robustness of our
proposed MFERN approach.

To validate the feature extraction capability of our proposed MSFE and SSRM and
the representation capability of our trained models, we visualized the 2D spectral space
features proposed by the test samples in the three datasets through the t-SNE algorithm [48],
as depicted in Figure 21. In the figure, samples from the same class are clustered into one
group, while samples from different classes are kept apart, and samples from different
classes are shown using different colors are shown. The figure shows that on the three
datasets, the samples from various classes are more clearly distinguished, thus indicating
that our MSFE extracts feature more adequately at the fine- and coarse-grained levels and
that our MFERN model can learn abstract representations of spectral space features well
and with high classification accuracy.
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Figure 17. Confusion matrix plot for the IP dataset. (a) ResNet. (b) DFFN. (c) SSRN. (d) PResNet.
(e) A2S2K-ResNet. (f) HybridSN. (g) RSSAN. (h) SSTN. (i) DCRN. (j) MFERN.



Remote Sens. 2023, 15, 4219 21 of 26

Figure 18. Confusion matrix plot for the SA dataset. (a) ResNet. (b) DFFN. (c) SSRN. (d) PResNet.
(e) A2S2K-ResNet. (f) HybridSN. (g) RSSAN. (h) SSTN. (i) DCRN. (j) MFERN.



Remote Sens. 2023, 15, 4219 22 of 26

Figure 19. Confusion matrix plot for the PU dataset. (a) ResNet. (b) DFFN. (c) SSRN. (d) PResNet.
(e) A2S2K-ResNet. (f) HybridSN. (g) RSSAN. (h) SSTN. (i) DCRN. (j) MFERN.
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Figure 20. Overall accuracy of different methods on the (a) IP dataset, (b) SA dataset, and (c) PU
dataset with different ratios of training samples.

Figure 21. Visualisation results of the t-SNE algorithm on the (a) IP dataset, (b) SA dataset and (c) PU
dataset. The test sample features are represented by the dots, whose category labels are indicated by
different colors.

4. Discussion

In our extensive experiments on three different HSI datasets, the parameter exper-
iments allowed us to determine the optimal parameter settings for model training; the
ablation experiments verified the validity of our proposed module; and the comparison
experiments with other models showed that our proposed model achieves the best per-
formance in terms of OA, AA, and Kappa values, especially when the size of the training
samples is small; our model’s performance advantage is more obvious, which is mainly
based on the following reasons. Firstly, our proposed MSFE module has strong adaptive
ability, which can fully extract the multi-scale features of the image; secondly, the com-
bination of local branching and global branching of the SSRM module can fully exploit
the spatial and spectral features of hyperspectral images; lastly, the combination of the
above modules allows the proposed method to fully extract the feature information without
stacking a large number of blocks repeatedly, which keeps the number of parameters of the
proposed method under reasonable control. The number of parameters of the proposed
method is controlled within a reasonable range.

Although the proposed method achieves good performance in hyperspectral image
classification, it has the following limitations.

(1) The proposed method is more suitable for hyperspectral images with a large number
of channels, and the group convolution setting can extract the feature information on
different channels while reducing the number of parameters. However, for images
with a small number of channels, this setup is a little ribbed and should be improved
with specific problems.

(2) The complexity of the proposed method is not completely dominant; although it is
lower than most of the comparison models, it is still slightly higher than SSTN and
other models, which can be improved later.
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In order to address the above limitations, we will further improve the proposed
method in our future work.

5. Conclusions

In this paper, a spectral segmentation-based multi-scale spatial feature extraction
residual network (MFERN) is proposed for hyperspectral image classification. The network
consists of a multi-scale spatial feature extraction module (MSFE) and a spectral segmenta-
tion residual module (SSRM). The MSFE divides the spectral bands of the input image into
multiple non-overlapping sub-bands and processes each sub-band using spatial spectral
feature extraction branches with different RFs. We increase the RFs of the branches by
stacking convolution kernels of 3 × 3 size and using “selective kernel” convolution to im-
prove the adaptive capability of the model. SSRM combines the MSFE module with dense
block-based group convolution and adds a global branch to the original residual structure
to synthesize spatial-spectral information of the extracted feature maps. We conducted ex-
tensive experiments on three different HSI datasets, and the comparison experiments with
other models show that our proposed model has a more obvious performance advantage
when using fewer training samples, which suggests that our proposed module is able to
adequately extract the feature information of hyperspectral images, and thus has a higher
classification accuracy. Although the performance gap between the methods gradually
narrows as the number of training samples increases, our MFERN model consistently
outperforms the other methods on all three datasets. Possible future research directions
include the design of effective spectral attention modules and the fusion of 2D and 3D
CNNs in the network.
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