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Abstract: The SSS (sea surface salinity) is an important factor affecting global climate changes, sea
dynamic environments, global water cycles, marine ecological environments, and ocean carbon
cycles. Satellite remote sensing is a practical way to observe SSS from space, and the key to retrieving
SSS satellite products is to establish an accurate sea surface brightness temperature forward model.
However, the calculation results of different forward models, which are composed of different relative
permittivity models and SSR (sea surface roughness) brightness temperature increment models, are
different, and the impact of this calculation difference has exceeded the accuracy requirement of
the SSS inversion, and the existing SSR brightness temperature increment models, which primarily
include empirical models and theoretical models, cannot match all the relative permittivity models.
In order to address this problem, this paper proposes a universal DNN (deep neural network) model
architecture and corresponding training scheme, and provides different SSR brightness temperature
increment models for different relative permittivity models utilizing DNN based on offshore experi-
ment data, and compares them with the existing models. The results show that the DNN models
perform significantly better than the existing models, and that their calculation accuracy is close
to the detection accuracy of a radiometer. Therefore, this study effectively solves the problem of
SSR brightness temperature correction under different relative permittivity models, and provides a
theoretical support for high-precision SSS inversion research.

Keywords: sea surface salinity; sea surface brightness temperature forward model; relative
permittivity model; SSR brightness temperature increment model; deep neural network

1. Introduction

The SSS is one of the three fundamental components of physical oceanography, and
also an important factor affecting global climate changes, sea dynamic environments, global
water cycles, marine ecological environments, and ocean carbon cycles. The SMOS satel-
lite [1], Aquarius satellite [2], and SMAP satellite [3] have all demonstrated the feasibility
of measuring SSS from space using an L-band microwave radiometer [4,5], and the key to
retrieving SSS satellite products is to establish an accurate sea surface brightness tempera-
ture forward model [6]. However, the sea surface brightness temperatures calculated with
different forward models, which are composed of different relative permittivity models
and SSR brightness temperature increment models, are different, and the impact of this
calculation difference has exceeded the accuracy requirement of the SSS inversion [7,8].
Therefore, it is necessary to research the SSR brightness temperature increment model
under different relative permittivity models.

Empirical models and theoretical models are two types of SSR brightness temperature
increment models that are frequently utilized. Empirical models, which are straightforward
and convenient to use but typically only applicable to particular payloads and spatiotem-
poral factors, are fitted using a substantial amount of observational data, such as the
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Hollinger model [9], Camps 2003 model [10], WISE model [11], Gabarró model [12], Yueh
2013 model [13], etc. The theoretical model is based on the interaction between rough sea
surfaces and electromagnetic waves, and the radiation model of the sea surface can be
obtained by solving the theoretical solution of the electromagnetic wave scattering field
on the sea surface, such as the Kirchhoff Approximation (KA) [14], Small Perturbation
Method (SPM) [15], Two-Scale Model (TSM) [16], Small-Slope Approximation (SSA) [17],
Integral Equation Method (IEM) [18], Advanced Integral Equation Method (AIEM) [19],
etc. However, both types of models cannot match all the relative permittivity models, and
can only obtain good results under the specific relative permittivity model, while the errors
under other relative permittivity models are large. Therefore, different SSR brightness
temperature increment models should be provided for different relative permittivity mod-
els to make the calculation results of different forward models as close to the actual sea
surface situation as possible. As a result, the SSR brightness temperature increment models
corresponding to different relative permittivity models are provided in this paper based on
a deep neural network and offshore experiment data.

The rest of this paper is as follows: In Section 2, an offshore observation experiment is
discussed, and the offshore experiment data were measured and processed. In Section 3,
different SSR brightness temperature increment models for different relative permittivity
models are constructed based on a deep neural network and the offshore experiment data.
Finally, the discussion and conclusions are given in Sections 4 and 5.

2. Offshore Observation Experiment and Data Processing
2.1. Offshore Observation Experiment

The 1.4~1.427 GHz frequency band has been accepted internationally for retrieving
SSS [20], and the sea surface brightness temperature in this band is highly sensitive to
SSS and can realize all-time and all-weather observation. This frequency band is also
protected by international treaties and generally does not experience interference from
human signals.

An experimental study was conducted on an offshore platform (as shown in Figure 1)
from 11 August 2022 to 1 September 2022, with the observation platform situated about
30 km north of Yangma Island in Yantai, China (121.622◦E, 37.695◦N, as shown in Figure 2).
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Figure 2. Location of the offshore platform.

In the experiment, the sea surface brightness temperature was measured at differ-
ent incident angles through a radiometer; the SST and SSS were synchronously obtained
through the CTD (conductivity, temperature, and depth); the atmospheric pressure, at-
mospheric temperature, atmospheric relative humidity, wind speed, and wind direction
were synchronously obtained through the automatic meteorological station. The primary
technical indicators of the equipment are shown in Tables 1–3.

Table 1. Primary technical indicators of the radiometer.

Parameter Indicator

Frequency Band L
Central Frequency 1.415 GHz
3 dB Bandwidth 10 MHz

Polarization H/V
Spatial Resolution ≤20◦

Sensitivity ≤0.1 K@1 s Integration Time

Table 2. Primary technical indicators of the CTD.

Parameter Measurement Range Accuracy

Temperature 0~35 ◦C 0.002 ◦C
Conductivity 0~7 S/m 0.0003 S/m

Table 3. Primary technical indicators of the automatic meteorological station.

Parameter Measurement Range Accuracy

Atmospheric Pressure (hPa) 850~1050 ±1
Atmospheric Temperature (◦C) −50~50 ±0.3

Atmospheric Relative Humidity (%) 0~100 ±3
Wind Speed (m/s) 0~70 ±1
Wind Direction (◦) 0~360 ±10

To reduce the impact of the sun and RFI, the entire observing process was conducted
with our backs to the sun and not towards the land, and the installation diagram of
observation platform equipment is as follows (Figure 3):
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2.2. Sea Salinity Data Processing

In the experiment, the CTD directly measures the conductivity of seawater, and it needs
to be converted into seawater salinity using the following equation (2 psu ≤ S ≤ 42 psu,
−2 ◦C ≤ T ≤ 35 ◦C) [21,22].

S =
5

∑
i=0

aiR
i/2
T +

T − 15
1 + 0.0162(T − 15)

5

∑
i=0

biR
i/2
T (1)

where T (◦C) is the temperature of seawater, RT is the ratio of the conductivity at a standard
atmospheric pressure and a temperature of T (the superscript represents atmospheric
pressure), and the coefficients of Equation (1) are shown in Table 4.

Table 4. Coefficients of Equation (1).

Coefficient Value Coefficient Value

a0 0.008 b0 0.0005
a1 −0.1692 b1 −0.0056
a2 25.3851 b2 −0.0066
a3 14.0941 b3 −0.0375
a4 −7.0261 b4 0.0636
a5 2.7081 b5 −0.0144

sum 35 sum 0

2.3. Wind Speed Data Processing

The wind speed data used in SSS inversion is generally the wind speed at a 10 m
altitude; however, the installation height of the automatic meteorological station cannot
fully meet this requirement. Therefore, the following equation needs to be used to convert
the measured wind speed data into the wind speed at a 10 m altitude.

Uz =
U∗
0.4

(
ln

z
6.84×10−5

U∗ + 4.28× 10−3U2∗ − 4.43× 10−4

)
(2)

where Uz (m/s) is the wind speed at z (m) altitude, and U* is the wind friction velocity.

2.4. Removing the Effects of Atmospheric Radiation and Cosmic Radiation

Figure 4 depicts the complete transmission process of sea surface radiation to the
offshore platform radiometer.
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Figure 4. Transmission process of sea surface radiation to the offshore platform radiometer.

The sea surface brightness temperature that the offshore platform radiometer received
was influenced by SSR, sea surface foam, the atmosphere, and cosmic radiation [23,24]. Af-
ter removing all RFI-contaminated data and the data with large fluctuations, the brightness
temperature data that the radiometer measured can be expressed as follows [25,26]:

TBp_MR = TBp_SSR+Foam +
(
1− ep_SSR+Foam

)
· (TBD + ΓTB_COS) (3)

where TBp_MR is the p polarization brightness temperature received by the radiometer (p
= H, V that stand for the horizontal polarization and vertical polarization of electromag-
netic waves, respectively), TBp_SSR+Foam and ep_SSR+Foam are the p polarization sea surface
brightness temperature and the p polarization sea surface emissivity under the impact of
SSR and sea surface foam, respectively, TBD is the atmospheric downward radiation, Γ is
the atmospheric transmittance, and TB_COS = 3.7 K [27] is the cosmic radiation brightness
temperature (there are also some papers that take TB_COS = 2.73 K [26,28,29], and this article
will explain the reason for not taking this value in subsequent sections). The equations for
removing the effects of atmospheric radiation and cosmic radiation are as follows [30]:

TBp_SSR+Foam =
TBp_MR − (TBD + ΓTB_ cos)

SST − (TBD + ΓTB_ cos)
· SST (4)

TBD = sec θ
∫ ∞

0

[
kO2(z) + kH2O(z)

]
· Ta(z) exp(−τ sec θ)dz (5)

Γ = exp[− sec θ · τ] (6)

τ =
∫ h

0

[
kO2(z) + kH2O(z)

]
dz (7)

kO2(z, f ) = 1.1× 10−2 f 2
[

Pa(z)
1013

]
·
[

300
Ta(z)

]2
· γ
[

1

( f − f0)
2 + γ2

+
1

f 2 + γ2

]
(8)

γ = γ0

(
Pa

1013

)(
300
Ta

)0.85
(9)

γ0 =


0.59, Pa ≥ 333

0.59 · [1 + 0.0031 · (333− Pa)], 25 ≤ Pa < 333
1.18, Pa ≤ 25

(10)
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kH2O(z, f ) = k( f , 22) + kr( f ) (11)

k( f , 22) = 2 f 2ρv(z)
(

300
Ta(z)

)2.5
exp

(
− 644

Ta(z)

)
·
[

γ1

(494.4− f 2)
2 + 4 f 2γ2

1

]
(12)

kr( f ) = 2.4× 10−6 f 2ρv(z)
(

300
Ta(z)

)1.5
γ1 (13)

γ1 = 2.85
[

Pa(z)
1013

]
·
[

300
Ta(z)

]0.626
·
(

1 + 0.018
ρv(z)Ta(z)

Pa(z)

)
(14)

Ta(z) =


T0 − 6.5z, 0 ≤ z ≤ 11
Ta(11), 11 ≤ z ≤ 20

Ta(11) + (z− 20), 20 ≤ z ≤ 32
(15)

Pa(z) = P0 · exp
(
− z

7.7

)
(16)

ρv(z) = ρ0 exp
(
− z

CH

)
(17)

where SST is the sea surface temperature in Kelvin, θ is the incident angle of the radiometer,
ka(z) is the atmospheric attenuation coefficient (a can be taken as O2 and H2O, representing
oxygen and water vapor, respectively), z is the altitude in kilometers, τ is atmospheric
optical depth, h is the upper boundary of the atmosphere (for most microwave remote
sensing of the Earth, and certainly at the L-band, it is only the lower 30 km of the atmosphere
that needs to be taken into consideration), f is the frequency of the radiometer (1.415 GHz),
f 0 is the absorption line frequency (60 GHz), γ (GHz) is the line width parameter, γ0 is the
nonresonant line width, k(f, 22) is the absorption coefficient for the 22.235 GHz spectral line,
kr(f ) is the residual absorption coefficient, γ1 (GHz) is the line width parameter, Ta(z), Pa(z),
and ρv(z) are the temperature profile, the pressure profile, and the water vapor density
profile, respectively, T0 is the atmospheric temperature in Kelvin at sea level, Ta(11) is the
atmospheric temperature in Kelvin at z = 11 km, P0 is the atmospheric pressure in millibars
at sea level, ρ0 is the water vapor density in g/m3 at sea level, and CH is the scale height,
which is typically chosen to be between 2 and 2.5 km (in this article, CH = 2.25 km was
taken).

2.5. Removing the Effects of Sea Surface Foam and Flat Sea Surface Brightness Temperature

After removing the effects of atmospheric radiation and cosmic radiation from the
brightness temperature data received by the radiometer, the processed data can be ex-
pressed as follows [31,32]:

TBp_SSR+Foam = TBp_Sur · (1− Fr) + Fr · TBp_Foam

=
(

TBp_Flat + ∆TBp_SSR

)
· (1− Fr) + Fr · TBp_Foam

(18)

where TBp_Sur is the p polarization sea surface brightness temperature under the impact of
SSR, Fr is the whitecap coverage rate, TBp_Foam is the p polarization brightness temperatures
of the foam-covered sea surface, TBp_Flat is the p polarization flat sea surface brightness tem-
perature, and ∆TBp_SSR is the p polarization brightness temperature increment generated
by the SSR. The equation for removing the effects of sea surface foam and flat sea surface
brightness temperature is as follows:

∆TBp_SSR =
TBp_SSR+Foam − Fr · TBp_Foam

1− Fr
− TBp_Flat (19)
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Fr can be calculated using the following equation [33]:

Fr = 1.95× 10−5U2.55
10 exp(0.0861∆T) (20)

where U10 is the wind speed at a 10 m altitude, and ∆T = SST − T0 is the sea air temperature
difference.

TBp_Foam can be calculated using the following equations [34]:

TBH_Foam = (208 + 1.29 f ) ·
(

1− 1.748× 10−3θ − 7.336× 10−5θ2 + 1.044× 10−7θ3
)

(21)

TBV_Foam = (208 + 1.29 f )·(
1− 9.946× 10−4θ + 3.218× 10−5θ2 − 1.187× 10−6θ3 + 7× 10−20θ10) (22)

where f is the frequency of the radiometer, and θ is the incident angle of the radiometer.
TBp_Flat can be calculated using the following equations [35–37]:

TBp_Flat =
(

1− rp_Flat

)
· SST (23)

rH_Flat =

∣∣∣∣∣∣cos θ −
√

εr −
( n

n′
)2 sin2 θ

cos θ +
√

εr −
( n

n′
)2 sin2 θ

∣∣∣∣∣∣
2

(24)

rV_Flat =

∣∣∣∣∣∣ εr cos θ −
√

εr −
( n

n′
)2 sin2 θ

εr cos θ +
√

εr −
( n

n′
)2 sin2 θ

∣∣∣∣∣∣
2

(25)

where rp_Flat is the p polarization flat sea surface reflectivity, θ is the incident angle of the
radiometer, n = n′ − jn′′ is the complex refractive index of seawater, and εr is the relative
permittivity of seawater and can be described with the relaxation theory equation, such as
the Cole–Cole equation [38] and the double debye equation [39], as shown below:

εr = ε∞ +
εs − ε∞

1 + (jωτ)1−α
− j

σ

ωε0
(26)

εr = ε∞ + εs−ε1
1+jωτ1

+ ε1−ε∞
1+jωτ2

− j σ
ωε0

= ε∞ + εs−ε1

1+j f
f1

+ ε1−ε∞

1+j f
f2

− j σ
ωε0

(27)

where ε∞ is the relative permittivity at an infinite frequency, εs is the static relative per-
mittivity, j is an imaginary unit, ω = 2πf is the radian frequency with f in hertz, τ is the
relaxation time in seconds, α is an empirical parameter that represents the distribution of
relaxation times, σ is the ionic conductivity in mhos/meter, ε0 ≈ 8.85419 × 10−12 is the
permittivity of free space in farads/meters, ε1 is the relative permittivity at an intermediate
frequency, τ1 and τ2 are the first and second debye relaxation times in seconds, and f 1 and
f 2 are the first and second debye relaxation frequencies in hertz.

The parameters of the Cole–Cole equation and the double debye equation can be
expressed as a function of SST(T) and SSS(S) with the L-band relative permittivity model,
such as KS (1977) [40], ModKS (2000) [41], BA (2003) [42], BA (2004) [43], GW (2017) [44],
and GW (2021) [45] can all be used to depict the parameters in the Cole–Cole equation,
and MW (2004) [46], FASTEM (2011) [47], and MW (2012) [48] can all be used to depict the
parameters in the double debye equation. By way of illustration, the MW (2004) depicts the
parameters in the double debye equation as the following functions of T and S:

εs(T, S) = εs(T, 0) · exp
[
b0S + b1S2 + b2TS

]
(28)
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εs(T, 0) =
3.70886× 104 − 8.2168× 101T

4.21854× 102 + T
(29)

f1(T, S) = f1(T, 0) ·
[
1 + S ·

(
b3 + b4T + b5T2

)]
(30)

f1(T, 0) =
45 + T

a3 + a4T + a5T2 (31)

ε1(T, S) = ε1(T, 0) · exp
[
b6S + b7S2 + b8TS

]
(32)

ε1(T, 0) = a0 + a1T + a2T2 (33)

f2(T, S) = f2(T, 0) · [1 + S · (b9 + b10T)] (34)

f2(T, 0) =
45 + T

a8 + a9T + a10T2 (35)

ε∞(T, S) = ε∞(T, 0) · [1 + S · (b11 + b12T)] (36)

ε∞(T, 0) = a6 + a7T (37)

σ(T, S) = σ(T, 35) · R15(S) ·
RT(S)
R15(S)

(38)

σ(T, 35) = 2.903602 + 8.607× 10−2T
+4.738817× 10−4T2 − 2.991× 10−6T3 + 4.3047× 10−9T4 (39)

R15(S) = S · 37.5109 + 5.45216S + 1.4409× 10−2S2

1004.75 + 182.283S + S2 (40)

RT(S)
R15(S)

= 1 +
α0(T − 15)
(α1 + T)

(41)

α0 =
6.9431 + 3.2841S− 9.9486× 10−2S2

84.850 + 69.024S + S2 (42)

α1 = 49.843− 0.2276S + 0.198× 10−2S2 (43)

ε0 =
1

1.7975 · 2π
× 10−10 (44)

The coefficients of Equations (28)–(44) are shown in Table 5.
The equations of other relative permittivity models will not be listed in this arti-

cle. Finally, 18 sets of SSR brightness temperature increment data (including 9 sets of
H-polarization data and 9 sets of V-polarization data) were generated by using the afore-
mentioned nine relative permittivity models to process the data.
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Table 5. Coefficients of Equations (28)–(44).

Coefficient Value Coefficient Value

a0 5.7230 b0 −3.56417 × 10−3

a1 2.2379 × 10−2 b1 4.74868 × 10−6

a2 −7.1237 × 10−4 b2 1.15574 × 10−5

a3 5.0478 b3 2.39357 × 10−3

a4 −7.0315 × 10−2 b4 −3.13530 × 10−5

a5 6.0059 × 10−4 b5 2.52477 × 10−7

a6 3.6143 b6 −6.28908 × 10−3

a7 2.8841 × 10−2 b7 1.76032 × 10−4

a8 1.3652 × 10−1 b8 −9.22144 × 10−5

a9 1.4825 × 10−3 b9 −1.99723 × 10−2

a10 2.4166 × 10−4 b10 1.81176 × 10−4

b11 −2.04265 × 10−3

b12 1.57883 × 10−4

3. Deep Neural Network Model

The universal approximation theorem [49,50] shows that a feedforward neural net-
work with a linear output layer and at least one hidden layer with any kind of “squeeze”
property activation function can approximate any Borel measurable function from one
finite dimensional space to another with any precision as long as enough neurons are given
to its hidden layer. Therefore, the feedforward neural network was chosen in this paper.

The research ranges of θ, U10, and WD (wind direction) in 18 sets of SSR brightness
temperature increment data were set to [0◦, 60◦], [0, 12 m/s], and [0, 360◦], respectively,
and 18 datasets, which correspond to 9 H-polarization DNN models and 9 V-polarization
DNN models, were uniformly and randomly selected from the research ranges, and each
dataset contains 35,000 sets of data in the form of [θ, U10, WD, ∆TBp_SSR]; then, each dataset
was randomly divided into a training set and a testing set in an 8:2 ratio.

Before DNN training, training sets and test sets should be normalized. The data
normalization process is to convert all data into data between 0 and 1, which is to eliminate
the order of magnitude difference of data of various dimensions and avoid large network
prediction errors caused by a large order of magnitude difference in input data. The data
normalization method in this paper is the max–min method [51].

xk =
(xk − xmin)

(xmax − xmin)
(45)

where xk is a set of input data, and k is the serial number of a datum. xmax and xmin are the
maximum and minimum values of corresponding data.

The output of the DNN model needs to be renormalization to convert to the original
range, which is the inverse process of normalization. The equation is as follows:

yk = yk · (ymax − ymin) + ymin (46)

where yk is a set of input data, and k is the serial number of a datum. ymax and ymin are the
maximum and minimum values of corresponding data of the training sets.

The training model in this paper is a six-layer DNN model, with the input layer having
three neurons for θ, U10, and WD, the output layer having one neuron for ∆TBp_SSR, and
the hidden layer having 100 neurons; the random initial values were used as the DNN
parameters, and the fundamental architecture of the DNN model is as follows (Figure 5):
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The PReLU [52] was used as the activation function, as shown below (Figure 6):

PReLU(x) =
{

x, if x > 0
αx, if x ≤ 0

(47)
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The learnable parameter α, which is updated continually throughout the training
phase, is the slope of the negative semi-axis of PRelu. Additionally, PReLU permits a group
of neurons to share an α as well as allowing various neurons to have a distinct α. When
α is a very small constant, PReLU can be thought of as LeakyReLU [53], and when α = 0,
PReLU becomes ReLU [54].

The MSELoss was used as the loss function of the output layer, as shown below [55]:

MSELoss =
(
∆TBp_SSR_out − ∆TBp_SSR_target

)2 (48)
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where ∆TBp_SSR_out denotes the output value of the output layer neuron and ∆TBp_SSR_target
denotes its target value.

The Adam [56] and Backpropagation algorithms [57,58] were used as the training
algorithms, as shown below:

uh = uh−1 −
ηmh√
vh + γ

(49)

{
Wk(h + 1) = Wk(h)− ηδk ·Ak−1

Bk(h + 1) = Bk(h)− ηδk (50)

where h is the number of iterations, u is the parameter to be optimized, η is the learning rate,
mh is the first-order momentum, vh is the second-order momentum, γ is a small positive
number, Wk is the weight matrix between layers k − 1 and k, δk is the error matrix of layer
k, Ak is the output matrix of layer k, and Bk is the bias matrix of layer k.

The training process and forecast accuracy of the DNN models are shown in Table 6.

Table 6. The training process and forecast accuracy of the DNN models.

Model Forecast
Accuracy (K)

Learning Rate 0.01
(Iterate 8000 Times)

Learning Rate 0.003
(Iterate 30,000 Times)

Learning Rate 0.001
(Iterate 50,000 Times)

Learning Rate 0.0003
(Iterate 80,000 Times)

KS-H −0.38~0.47 −0.50~0.24 −0.34~0.25 −0.14~0.29
KS-V −0.29~0.35 −0.52~0.14 −0.39~0.15 −0.24~0.15

ModKS-H −0.16~0.69 −0.66~0.12 −0.30~0.21 −0.23~0.12
ModKS-V −0.26~0.35 −0.44~0.21 −0.23~0.15 −0.17~0.22
BA-H(03) −0.39~0.47 −0.28~0.38 −0.26~0.12 −0.22~0.06
BA-V(03) −0.32~0.68 −0.32~0.39 −0.31~0.26 −0.14~0.22
BA-H(04) −0.38~0.43 −0.63~0.22 −0.37~0.30 −0.29~0.28
BA-V(04) −0.23~0.76 −0.44~0.40 −0.14~0.38 −0.19~0.23

MW-H(04) −0.35~0.40 −0.06~0.77 −0.63~0.03 −0.31~0.36
MW-V(04) −0.45~0.75 −0.56~0.59 −0.19~0.31 −0.14~0.25

FASTEM-H −0.42~0.48 −0.40~0.17 −0.31~0.11 −0.28~0.18
FASTEM-V −0.20~0.73 −0.79~0.40 −0.51~0.35 −0.27~0.28
MW-H(12) −0.83~0.45 −0.63~0.55 −0.41~0.62 −0.23~0.36
MW-V(12) −0.41~0.48 −0.36~0.27 −0.27~0.21 −0.17~0.27
GW-H(17) −0.49~0.77 −0.24~0.52 −0.27~0.37 −0.12~0.37
GW-V(17) −0.55~0.52 −0.72~0.29 −0.18~0.23 −0.13~0.22
GW-H(21) −0.49~0.46 −0.78~0.32 −0.64~0.31 −0.13~0.22
GW-V(21) −0.23~0.41 −0.59~0.22 −0.22~0.14 −0.24~0.13

The forecast accuracy of the DNN models can be further improved by further lowering
the learning rate and continuing training, and the final performance of the DNN models is
shown in Table 7.

Where RMSE and MAE are the Root Mean Square Error and the Mean Absolute
Error [59,60], and their calculation equations are as follows:

RMSE =

√√√√√ n
∑

i=1
x2

i

n
=

√
x2

1 + x2
2 + · · ·+ x2

n
n

(51)

MAE =

n
∑

i=1
|xi|

n
=
|x1|+ |x2|+ · · ·+ |xn|

n
(52)

This article chooses SSR brightness temperature increment models like Hollinger [9],
WISE (2003) [10], WISE (2004) (containing two models calculated with the incident angle
and wind speed, which are called WISE1 and WISE2, respectively, according to the order
in reference [11]), TSM [16], and SSA [17] for research based on the data characteristics
of offshore platform experiments, and 108 forward models (including 54 H-polarization
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models and 54 V-polarization models) can be obtained by combining each SSR brightness
temperature increment model with the aforementioned 9 relative permittivity models. The
test sets were substituted into the 108 forward models, and the accuracy is shown in Table 8.

Table 7. Final performance of the DNN models.

DNN Model Forecast Accuracy (K) RMSE MAE

KS-H −0.13~0.14 0.0157 0.0103
KS-V −0.11~0.13 0.0156 0.0090

ModKS-H −0.13~0.13 0.0161 0.0101
ModKS-V −0.13~0.16 0.0185 0.0114
BA-H(03) −0.14~0.16 0.0177 0.0108
BA-V(03) −0.15~0.16 0.0191 0.0118
BA-H(04) −0.17~0.13 0.0183 0.0121
BA-V(04) −0.15~0.15 0.0173 0.0109

MW-H(04) −0.15~0.17 0.0182 0.0124
MW-V(04) −0.15~0.13 0.0168 0.0106

FASTEM-H −0.14~0.15 0.0169 0.0106
FASTEM-V −0.14~0.17 0.0176 0.0102
MW-H(12) −0.17~0.16 0.0189 0.0113
MW-V(12) −0.17~0.16 0.0190 0.0110
GW-H(17) −0.15~0.15 0.0177 0.0107
GW-V(17) −0.14~0.17 0.0166 0.0095
GW-H(21) −0.13~0.17 0.0170 0.0100
GW-V(21) −0.17~0.13 0.0184 0.0105

Table 8. Performance of the forward models on the test sets.

Model Forecast
Accuracy (K) Hollinger WISE WISE1 WISE2 TSM SSA

KS-H −1.57~1.49 −1.55~1.71 −1.51~1.69 −1.65~1.54 −0.47~0.61 −0.60~0.81
KS-V −0.79~1.29 −0.79~1.11 −0.79~1.18 −0.81~0.98 −0.35~0.55 −0.48~0.69

ModKS-H −2.38~0.59 −2.35~0.80 −2.32~0.79 −2.46~0.63 −1.28~−0.26 −1.41~−0.05
ModKS-V −1.80~0.11 −1.80~−0.07 −1.80~−0.01 −1.82~−0.20 −1.33~−0.58 −1.47~−0.49
BA(03)-H −2.04~0.59 −2.02~0.80 −1.98~0.79 −2.12~0.63 −0.94~−0.50 −1.07~−0.32
BA(03)-V −4.03~−1.14 −4.20~−1.33 −4.12~−1.26 −4.36~−1.45 −3.89~−1.94 −3.51~−1.75
BA(04)-H −0.31~2.55 −0.29~2.77 −0.25~2.76 −0.39~2.60 0.79~1.46 0.66~1.65
BA(04)-V −1.37~1.41 −1.53~1.23 −1.47~1.29 −1.69~1.10 −1.23~0.61 −0.85~0.81

MW(04)-H −1.25~1.48 −1.23~1.70 −1.19~1.69 −1.33~1.53 −0.15~0.41 −0.28~0.59
MW(04)-V −2.82~−0.02 −2.98~−0.20 −2.91~−0.13 −3.14~−0.33 −2.67~−0.81 −2.30~−0.62
FASTEM-H −1.34~1.38 −1.32~1.60 −1.28~1.59 −1.42~1.43 −0.24~0.30 −0.37~0.48
FASTEM-V −2.98~−0.17 −3.15~−0.35 −3.07~−0.28 −3.30~−0.48 −2.84~−0.97 −2.46~−0.77
MW(12)-H −1.25~1.48 −1.23~1.70 −1.19~1.69 −1.33~1.53 −0.15~0.41 −0.28~0.59
MW(12)-V −2.82~−0.02 −2.98~−0.20 −2.91~−0.13 −3.14~−0.33 −2.67~−0.81 −2.30~−0.62
GW(17)-H −1.55~1.50 −1.52~1.72 −1.49~1.70 −1.63~1.55 −0.45~0.62 −0.58~0.81
GW(17)-V −0.82~1.59 −0.82~1.41 −0.82~1.48 −0.84~1.28 −0.34~0.79 −0.51~0.99
GW(21)-H −1.58~1.48 −1.56~1.69 −1.52~1.68 −1.66~1.52 −0.48~0.60 −0.61~0.80
GW(21)-V −0.80~1.28 −0.80~1.09 −0.80~1.16 −0.82~0.97 −0.36~0.53 −0.49~0.67

The RMSE and MAE of the 108 forward models and the 18 DNN models on the test
sets are shown in Figures 7–10.

It can be seen from Tables 7 and 8, and Figures 7–10, that the DNN models perform
significantly better than the existing models, and that their calculation accuracy is close to
the detection accuracy of the radiometer (0.1 K).

Furthermore, this study processed offshore experiment data using TB_COS = 2.73 K and
employed the same methodology for its research and analysis, and the findings demonstrate
that although the 18 DNN models can also be trained to the level of Table 7, the errors of
the 108 forward models in Table 8 will increase. As a result, the experimental data in this
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article were processed with TB_COS = 3.7 K (the processed results of TB_COS = 2.73 K will
not be listed in this article).
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4. Discussion

The forecast accuracy of the DNN models should be set above 0.1 K because the
detection accuracy of the radiometer utilized in the offshore observation experiment is
0.1 K. Excessive training (such as setting the forecast accuracy within 0.1 K) will make
the DNN models learn too much error from the radiometer itself, which will lower the
reliability of the prediction results of the DNN models. As a result, the threshold for ending
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training regarding the DNN models in this paper is set to 0.1~0.2 K, and Table 7 shows that
all DNN models met the standards.

The reason for the low forecast accuracy of Hollinger, WISE, WISE1, and WISE2 is
that they do not consider the influence of wind direction. Although the forecast accuracy
of TSM and SSA is relatively high, they are unable to match the detection accuracy of
the radiometer (0.1 K), which may be due to the error of the ocean wave spectrum of the
offshore area used by the two algorithms.

The relative permittivity model also has an impact on the forward model. It can be
seen from Table 8 that KS (1977), MW (2004), FASTEM (2011), MW (2012), GW (2017), and
GW (2021) have good performances for the H-polarization forward models; KS (1977), GW
(2017), and GW (2021) have good performances for the V-polarization forward models;
and KS (1977) and GW (2021) perform similarly and well on the two polarization forward
models.

5. Conclusions

The calculation results of different forward models, which are composed of different
relative permittivity models and SSR brightness temperature increment models, are differ-
ent, and the impact of this calculation difference exceeds the accuracy requirement of the
SSS inversion. The existing SSR brightness temperature increment models, which primarily
include empirical models and theoretical models, cannot match all the relative permittivity
models, and can only obtain good results under the specific relative permittivity model,
while the errors under other relative permittivity models are large. Therefore, different SSR
brightness temperature increment models should be provided for different relative permit-
tivity models to make the calculation results of the forward model as close to the actual sea
surface situation as possible. In order to address this problem, this paper proposes a univer-
sal DNN model architecture and corresponding training scheme, and provides 18 different
SSR brightness temperature increment models (including 9 H-polarization models and
9 V-polarization models) for 9 widely used L-band relative permittivity models utilizing
DNN based on the offshore experiment data, and compares them with the existing mod-
els. The results show that the DNN models perform significantly better than the existing
models, and that their forecast accuracy is close to the detection accuracy of the radiometer
(0.1 K). Therefore, this study effectively solves the problem of SSR brightness temperature
correction under different relative permittivity models, and provides a theoretical support
for high-precision SSS inversion research.
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