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Abstract: In unmanned systems, remote sensing is an approach that collects and analyzes data such
as visual images, infrared thermal images, and LiDAR sensor data from a distance using a system
that operates without human intervention. Recent advancements in deep learning enable the direct
mapping of input images in remote sensing to desired outputs, making it possible to learn through
imitation learning and for unmanned systems to learn by collecting and analyzing those images.
In the case of autonomous cars, raw high-dimensional data are collected using sensors, which are
mapped to the values of steering and throttle through a deep learning network to train imitation
learning. Therefore, by imitation learning, the unmanned systems observe expert demonstrations and
learn expert policies, even in complex environments. However, in imitation learning, collecting and
analyzing a large number of images from the game environment incurs time and costs. Training with
a limited dataset leads to a lack of understanding of the environment. There are some augmentation
approaches that have the limitation of increasing the dataset because of considering only the locations
of objects visited and estimated. Therefore, it is required to consider the diverse kinds of the location
of objects not visited to solve the limitation. This paper proposes an enhanced model to augment
the number of training images comprising a Preprocessor, an enhanced Swin Transformer model,
and an Action model. Using the original network structure of the Swin Transformer model for
image augmentation in imitation learning is challenging. Therefore, the internal structure of the
Swin Transformer model is enhanced, and the Preprocessor and Action model are combined to
augment training images. The proposed method was verified through an experimental process by
learning from expert demonstrations and augmented images, which reduced the total loss from
1.24068 to 0.41616. Compared to expert demonstrations, the accuracy was approximately 86.4%,
and the proposed method achieved 920 points and 1200 points more than the comparison model to
verify generalization.

Keywords: data augmentation; deep learning; image processing; imitation learning; Swin Transformer;
action classification

1. Introduction

Recently, with the development of deep learning [1–3], imitation learning has been ap-
plied in various unmanned system-related domains, such as robotics [4,5] and autonomous
vehicles [6,7]. The combination of imitation learning and remote sensing leads to advanced
controls based on real-time analysis of incoming sensor data. By learning the historical
controls of an expert, the unmanned systems learn to navigate autonomously and adjust
their controls based on environmental conditions. For instance, unmanned aerial vehicles
(UAVs) equipped with image sensors can learn to mimic the flight patterns of experienced
human operators using raw omnidirectional images as inputs, predicting flight commands
that match the commands of the expert. Therefore, imitation learning is an approach where
an agent learns to perform tasks by mimicking the control patterns of an expert. They are
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categorized as inverse reinforcement learning (IRL) and behavioral cloning (BC). IRL [8]
is an algorithm that infers a reward function based on an agent’s observed actions. This
is useful when it is difficult to define a reward function manually in a complex environ-
ment. However, IRL requires a large amount of training data, and identifying the correct
reward function is computationally expensive, which makes it challenging for practical
use. In contrast, the basic idea behind BC [9] is to learn a policy that maps states to actions
by observing the actions of experts in similar states. Learning from examples of expert
demonstrations reduces the training time and computational resources needed to achieve
high performance because the agent does not have to rely on trial and error. However,
learning using a limited dataset may only perform well if the state space is included in the
expert dataset [10]. Therefore, obtaining datasets of various states for practical applications
is important.

Data augmentation is used to generate additional training data that capture various
images. Data augmentation is commonly used in behavior cloning and can be applied to
various image types, which generates new training images by applying various transfor-
mations to collected images. Transformations include geometric transformations such as
flipping, rotation, and cropping [11], random erasing [12], photometric transformations
such as color space transformations [13] and deep learning-based approaches such as
adversarial training [14], neural style transfer [15], and GAN [16]-based data augmenta-
tion [17]. The model enables learning various images from limited training images by
introducing variations to collected images. However, data augmentation approaches do not
augment images considering objects within the images. Understanding the arrangements
of objects in the images helps the model outperform the model trained with a typical global
representation of images.

Research has explored image augmentation by considering objects within images.
Examples include augmentation approaches based on the contour of an object considering
the shape of the object [18] or scene composition augmentation that replaces some objects in
the data with other objects [19]. In imitation learning, the learning arrangements of objects
are necessary because they capture their relative configurations, leading to an enhanced
understanding of the state representation and to increased generalization capabilities [20].
An example is PlaceNet [21], which considers the arrangements of objects. It extracts
objects and backgrounds from the image and inserts objects into the predicted background
locations to generate new images. However, this approach fails to consider the diverse
arrangements of objects because it assumes that objects with similar objects’ poses and back-
grounds share those same locations. Therefore, an augmentation approach that considers
diverse kinds of the location of objects not visited is necessary.

This paper proposes an imitation learning method for image augmentation to augment
states by considering one of the multiple object arrangements within the state, which
comprises a Preprocessor, an enhanced Swin Transformer model [22], and an Action
model as below. First, the Preprocessor removes any background that hinders image
augmentation and normalizes the image. The background refers to static objects that
do not move, and the image, excluding static objects, is preprocessed by resizing and
normalizing. Next, the pre-processed image is encoded and augmented using the Swin
Transformer+ model. The preprocessed image is partitioned based on the size of dynamic
objects, and subsequently encoded to represent the pixel values. The Swin Transformer+

model leverages the encoded values of objects to augment the image. The model uses
a cyclic shift as a spatial transformation to rearrange the objects in the image. Finally,
the actions were estimated and compared using supervised learning. The Action model
classifies actions based on the features extracted from the Swin Transformer+ model and
outputs probabilities of actions. The main contributions of this paper are as follows:

• Swin Transformer is a computer vision model that extracts local and global features
of an image with cyclic shift and window-based self-attention. However, we find
that applying Swin Transformer is a possibility for an imitation learning algorithm
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because it can be utilized to augment datasets. This is the first method using the Swin
Transformer model for imitation learning by data augmentation.

• Traditional Swin Transformer does not support any functions of augmentation, but
we revise the traditional Swin Transformer as an augmentation approach. We modify
its inner structure to shuffle the features of dynamic objects and generate a new
combination of the features of objects. It is possible to train with data that did not
previously exist by augmenting existing data.

• The proposed method involves modifying the architecture of the Swin Transformer
model by adding Preprocessor and Action model to augment images and train the
model to predict actions as imitation learning.

The remainder of this paper is organized as follows. Section 2 describes traditional im-
itation learning models and research on data augmentation for imitation learning. Section 3
details the proposed method for imitation learning using the Swin Transformer+ model
architecture. Section 4 explains the experimental process and results. Finally, Section 5
summarizes the proposed method and provides directions for future research.

2. Related Work

This section first explains imitation learning and related research. Next, the investiga-
tion of data augmentation approaches for solving problems arising from limited datasets in
imitation learning is discussed. Finally, the differences between the proposed method and
traditional data augmentation approaches are described in detail.

2.1. Imitation Learning

Imitation learning, which mimics human behavior, has received significant attention
owing to its ability to address complex problems using expert knowledge. The model
is trained to learn the behavioral patterns of experts by mapping the state and agent
action. Sasaki et al. [23] introduced a generalized behavior cloning objective function by
leveraging expert demonstrations as a pre-existing behavior cloning policy to generate an
optimal policy. However, iterating over multiple expert demonstrations is computationally
expensive and lacks robustness. Codevilla et al. [24] introduced imitation learning from
observation, which involved observing human drivers and using their actions to train
autonomous driving agents. Using ResNet [25] as the backbone model, adversarial training
was applied to input the data to make the agent more resilient to disturbances. However,
this approach has problems with biased training datasets that lack diversity and are difficult
to generalize because it is difficult to capture the full range of behaviors. Dasari et al. [26]
proposed Transformer-based one-shot imitation learning. The inductive bias helps the
policy learn different tasks using the agent’s trajectory and demonstration of the task as
Transformer inputs. However, because training data are limited, the training environment
may differ from the actual environment. This can result in poor policy performance when
applied to an actual environment in which situations are diverse, particularly if the task
involves subtle visual cues that are not present in the training data. MGAIL [27] is a
hierarchical structure for adversarial imitation learning. By training high-level tasks and
low-level motion planners with long-sequence data, the model can be generalized to unseen
expert observations. However, this requires an unbiased dataset, and collecting such a
dataset is difficult in many situations. Decision Transformer (DT) [28] is a framework that
combines behavior cloning with reinforcement learning. DT employs Transformer in its
model architecture to exploit the generalization performance demonstrated by Transformer.
Transformer trains the model to measure similarities between different parts of the input
sequences, focusing on the relationships between data rather than being limited to specific
dataset tasks. With a long sequence and attention mechanism, the DT showed improved
results with a long sequence. However, several hyperparameter adjustments are required,
and their performance is poor compared to that of existing BC approaches because they
cannot receive additional exploration or feedback in unobserved situations.
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Research on imitation learning often assumes having an unbiased or rich expert dataset.
Therefore, additional processes are necessary for collecting datasets, increasing costs.

2.2. Data Augmentation

Data augmentation can be used to create different variations of demonstrations to train
machine learning models to handle various situations and improve their generalization
capabilities. New training data are created by applying various transformations, including
geometric methods, such as flipping, rotation, and cropping [11], and photometric methods,
such as manipulating pixel values [12], to existing data. Some approaches apply data
augmentation to imitation learning. DART [29] injected noise into the observations of
an expert demonstration as a data augmentation method. The noise serves as variations
to the observation. In [29], a noise generator trains the Deep Q-Networks (DQN) [30] to
maximize the reward signal. However, this relies on specific noise injection and may not
be generalizable to all noise or environments. HG-Dagger [31] is a variant of Dagger [32]
that incorporates demonstrations and feedback from human experts during the learning
process. Whereas the current policy collects trajectories, an expert provides feedback to
update the policy. This method uses random perturbations and an adversarial method on
the demonstration data to create a diverse training set. However, this is time-consuming be-
cause it is designed for interactive imitation learning, which requires human expertise and
feedback during the learning process. Safety-Enhanced Dagger [33] uses symmetrical data
augmentation in imitation learning-based navigation learning. This approach generates a
counterpart by replicating a copy of the original sample and flips the data left and right
based on the prior knowledge of navigation. However, this data augmentation approach is
limited to creating a maximum of two samples by flipping horizontally. Augmented policy
cloning (APC) [34] is another approach for data augmentation that utilizes synthetic states
from sampled trajectories. This approach samples perturbations to add to the original
state and resamples a new action based on the synthetic state. However, it relies on the
assumption that synthetic states are plausible and the ability to query expert policy from
perturbed states. Visuomotor Imitation via Object-centric LeArning (VIOLA) [35] employs
a pre-trained Region Proposal Network (RPN) to obtain object proposals and generate
object-centric representations. The object-centric representations are then converted into
discrete tokens and processed by Transformer encoder to learn about relevant areas for
decision making. However, the generalization capacity of VIOLA is limited because it does
not exclude the background from the visual data, making it sensitive to visual changes
in the background. Corrected augmentation for trajectories and data-augmented genera-
tive imitation [36] use Generative Adversarial Imitation Learning (GAIL) [37] as the data
augmentation framework. A synthetic expert trajectory was produced to train imitation
learning by training a semi-supervised correction network. This method uses noise to
generate distorted actions and Correction Network for comparison with expert actions.
Subsequently, the Imitation Network was trained using the Correction Network as a guide,
to match the expert distribution without supervision. However, the synthetic expert trajec-
tory did not guarantee success, even though it went through the correction process and
filtered out unsuccessful corrections. Taylor Series Imitation Learning (TaSIL) [38] uses
the Taylor series as a policy expansion to compute higher-order derivatives. This method
was designed to mitigate environmental noise by controlling the effects of higher-order
dynamics and applying regularization to the second derivative to improve stability and
robustness. However, they rely on the availability of expert demonstrations and perform
poorly in complex and high-dimensional problems because it is evaluated on a limited set
of tasks.

Traditional approaches require additional training for the data augmentation process
or do not consider the arrangement of objects when augmenting the data. In this paper, an
enhanced Swin Transformer model is proposed that considers the arrangements of objects
and uses a cyclic shift to augment data. Furthermore, the proposed method reduces data
distortion compared to traditional methods, leading to better generalization. Table 1 shows
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a comparison of related imitation learning research and the proposed method. A total of
6 research is compared based on the factor of deep learning architecture, augmentation
method, and spatial relation. Spatial relation defines whether different arrangements
of objects are considered when augmenting data. In contrast to Decision Transformer,
DART, HG-Dagger, CAT and DAugGI, and TaSIL, the proposed method modifies the
inner structure of Swin Transformer architecture and augments data by shuffling features
of dynamic objects. The proposed method generates new data by considering diverse
arrangements of objects not visited before, which leads to an enhanced understanding of
the state representation.

Table 1. Comparison between imitation learning research and the proposed method.

Research Deep Learning Architecture Augmentation Method Spatial Relation

DART [29] DQN Noise Generator ×
HG-Dagger [31] - Data Aggregation ×

CAT and DAugGI [36] GAIL Adversarial Method ×
TaSIL [38] - Taylor Series ×

Decision Transformer [28] GPT - ×
The Proposed Method Swin Transformer Cyclic Shift

√

3. Swin Transformer+ Model for Imitation Learning

This section introduces the proposed data augmentation method for imitation learning.
First, an overview of the proposed method is presented. Next, the three phases of the
method are described in detail.

3.1. Overview

The proposed method comprises Preprocessor, a Swin Transformer+ model, and an
Action model. In the first phase, the Preprocessor removes the background, including
static objects such as walls, from the image and normalizes it. In this paper, “background
image” refers to the image after removing dynamic objects. The module uses a Background
Configurator to generate background images and Dynamic Object Extractor to preprocess
the image.

Next, the Swin Transformer+ model augments the preprocessed image using Patch
Encoder and two stages. The Patch Encoder partitions the preprocessed image into patches
of tokens and then converts the raw pixel RGB values inside the tokens into features. The
tokens are input to the first stage, which outputs features that are then transferred to the
second stage and Action model. The output feature from the second stage is also transferred
to the Action model.

Finally, the Action model uses a Multi-Layer Perceptron (MLP) to predict actions for a
given image as a state. The features from the Swin Transformer+ model are converted into
action distributions comprising multiple actions. The action with the highest probability
is selected from the action distribution. The structure of the enhanced Swin Transformer
model to augment the features by considering diverse arrangements of dynamic objects in
each state is shown in Figure 1.
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3.2. Preprocessor

The Preprocessor removes the background from the image to focus on dynamic
objects, adjusts the preprocessed image size, and normalizes the raw pixel RGB values
of the preprocessed image, as shown in Figure 2. The Preprocessor input is an image
from an expert demonstration; the image at time step t ∈ {1, 2, . . . , } is denoted by
it. The input and background image are input into the Dynamic Object Extractor. The
Background Configurator generates background image b by leaving only static objects
and removing dynamic objects one time. In this paper, objects are divided into static and
dynamic objects and non-moving objects are treated as static objects. Consequently, the
method generates a background image by preserving only the static objects and filling
the area where dynamic objects are occupied with a background color. Dynamic Object
Extractor subtracts background image b from image it, resulting in an image containing the
entire dynamic objects. The image without the background is then resized and normalized
to raw pixel RGB values. Finally, the Preprocessor outputs the preprocessed image pt, with
only dynamic objects, as input into the Swin Transformer+ model.
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The output pt is expressed in Equation (1):

pt = f c(
H

∑
j=0

W

∑
i=0

(ii,j
t − bi,j)) (1)

where ii,j
t and bi,j denote the pixel value of the input image and background image, respec-

tively, f c(·) represents the resizing and normalization process, and H and W denote the
height and width of the corresponding image, respectively.

3.3. Swin Transformer+ Model

The Patch Encoder consists of a Patch Partitioner that partitions the preprocessed
image into patches and a convolutional layer that extracts features. The differences between
the Swin Transformer model [22] and the proposed Swin Transformer+ model lie in the
patch partitioning and embedding process. First, the image in the Swin Transformer+ model
is divided into specific-sized patches considering the size of the dynamic objects clearly,
whereas the Swin Transformer model determines the patch size as a hyperparameter, not
considering the size of any dynamic objects. In addition, the Swin Transformer+ model
uses a convolutional layer [39] instead of the linear embedding in the Swin Transformer
model to extract 2D image features better.

Specifically, the patch size is determined in the Swin Transformer+ model to ensure that
the patch contains one dynamic object; therefore, the preprocessed image pt is divided by
the Patch Partitioner into n number of fixed-size patches, denoted as pt,1, pt,2, . . . , pt,n. The
convolutional layer encodes the raw RGB pixel values into token features ct,1, ct,2, . . . , ct,n,
as shown in Figure 3. The process of the Patch Encoder is expressed in Equation (2):

ct,n = Conv( f p(pt))(n = 1, 2, ..., N) (2)
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where Conv represents the convolutional layer, f p(·) represents Patch Partitioner, and N
denotes the total number of patches.
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Figure 3. Process of Patch Encoder.

The two stages in the Swin Transformer+ model comprise three Swin Transformer+

Blocks to extract and augment features. The three blocks are structured as (a), (b), and (c) and
contain the Padding Handler, Window Attention Processor, and MLP, as shown in Figure 4.
The input of the Swin Transformer+ Block is a set of tokens Ct = {ct,1, ct,2, . . . , ct,n}. The
features from each Swin Transformer+ Block are used to predict actions later, consider-
ing losses.
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The number and structure of the Swin Transformer+ Block are different from those of
the Swin Transformer Block. First, the number of Swin Transformer+ Blocks per stage is
different because it is determined by the window size. A window [22] is a unit for locally
bound tokens. Given that the window size is W and that the window moves by half of the
window size

⌊
W
2

⌋
, it is necessary to shift the window by

⌈
W
2

⌉
to create a difference in the

token arrangement compared to the initial token arrangement. Therefore, the number of
Swin Transformer+ Blocks is set to the number of

⌈
W
2

⌉
+ 1 with an additional step for the

usage of the initial token arrangements.
Each Swin Transformer+ Block has a different structure. The Padding Handler is

added to all Swin Transformer+ Blocks before and after the Window Attention Processor to
handle the problem of uneven division of images due to the fixed patch size considering
the dynamic objects. In contrast, there are no such functions of the Padding Handler in the
Swin Transformer Block. The first Swin Transformer+ Block only adds the Padding Handler
to the Swin Transformer Block, as shown in Figure 4a. The second Swin Transformer+

Block in the middle augments new features from the group of tokens using sequential
cyclic shifts without reversal, as shown in Figure 4b, where the reversal restores the original
order of tokens. The reverse is now exclusively conducted in the third Swin Transformer+
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Block, as shown in Figure 4c. Thus, the order of the Swin Transformer+ Blocks is cyclic
shift-cyclic shift-reverse. This differs from the Swin Transformer, which uses the order cyclic
shift-reverse-cyclic shift-reverse.

The components of the Swin Transformer+ Block are described in detail below. The
Padding Handler adds zero-value padding to ensure that the number of tokens in width
and height is evenly divided by the window size. If the number of tokens in the width
is not evenly divisible by the window size, additional column padding is required to
compensate for the insufficient number of columns. Similarly, for height, any deficiency in
the number of rows is compensated by additional rows. However, added paddings should
not be involved in attention calculations because their objective is to assist in grouping
tokens in a window rather than being involved in the attention calculation. Therefore, the
added paddings must be hidden during self-attention and removed after self-attention.
Consequently, the Padding Handler is positioned before and after the Window Attention
Processor: first, for adding paddings, and second, for removing the added paddings. The
process of Padding Handler is expressed in Equation (3):

tw
′
= tw + n, n = W − (tw % W)

th
′
= th + n, n = W − (th % W)

(3)

where tw and th denote the number of tokens in width and height, respectively, W denotes
the window size, n denotes the number of deficiencies when dividing tw and th by the
window size W, and % represents the remainder obtained after dividing the number.
Additional padding is added to tw, th through n number when tw, th are not divisible by W.
n is the value calculated by dividing tw, th by W and subtracting the remainder from W.

The Cyclic Shifter performs a cyclic shift starting from the second Swin Transformer+

Block in the stage. Considering the cyclic shift as data augmentation, the augmented
features are generated from the second Swin Transformer+ Block. The cyclic shift can
change the entire arrangement of the tokens without changing the encoded RGB pixels of
each token. As each token represents a dynamic object, any change in the arrangement of
the objects is seen as a form of data augmentation.

The Window Attention Processor applies the self-attention mechanism for tokens
within a window and uses both a cyclic shift mask [22] and padding mask to avoid
paddings and non-relevant tokens being involved in the attention mechanism. The values
of the token in the window and the value of the cyclic shift mask are denoted as en

k and cn
k ,

respectively, for the k-th token in the n-th window. The padding mask is generated based
on the window size W with a size of W ×W, where each value of the padding mask is
denoted as dn

k for k-th token in n-th window. When arranging all the tokens as a matrix and
grouping them into windows of length W from the top, if the padding size is greater than
W, the values inside the padding mask dn

k are all filled with a large negative value. Next,
if the padding and tokens are together in the window, only the portion of the padding
size included within the window will have its values changed in the padding mask to a
negative value. For windows where all the elements are tokens and no padding, the values
inside the padding mask are all filled with 0. The padding masks prevent added paddings
from being mixed into the attention score calculation by summing the padding mask values
with the cyclic shift mask values. The values of the padding masks with large magnitudes
are filtered through softmax to approximately 0. The parts within the mask filled with 0
remain unaffected and do not have any impact on the attention mechanism. Figure 5 shows
the use of both masks. The rectangle with the yellow color represents the token, while the
gray color rectangle represents added padding, and the window is delineated by a thick
black border. The black and white color in the padding mask indicates value within the
padding mask, respectively. Depending on whether each rectangle within the window
represents padding or token, the padding mask inserts the negative value for the padding
or 0 value for the token. Therefore, the black color represents the negative value, while
the white color represents the value of 0. The output of the Window Attention Processor
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is denoted as C′t. As C′t is the result within a single window, the attention results of all
windows within the image are aggregated as the final output.
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The output of Window Attention Processor C′t is expressed in Equations (4) and (5):

dn
k =

{
−100

0
i f en

k is padding
otherwise

(4)

C′t = σ(WAP(e n
k
)
+dn

k + cn
k ) (k = 1, 2, . . . , W2) (5)

where WAP represents Window Attention Processor, σ(·) denotes the softmax function,
and cn

k denotes the value of cyclic shift mask.
The MLP is the same as that in the Swin Transformer in that it is used for the mixing

features. By residual connection, the output feature is summed with the input of the Swin
Transformer+ Block and mixed using MLP. Features are extracted per Swin Transformer+

Block, generating n× i features owing to the n blocks and i stages.

3.4. Action Model

The Action model is used to estimate action based on the features of images from
the Swin Transformer+ model. The Action model contains an MLP that applies transfor-
mations and softmax to predict the actions. Because the features from each n-th Swin
Transformer+ Block and i-th stage are denoted as f i,n

t , the augmented features are repre-
sented as f 1,2

t , f 1,3
t , f 2,2

t , f 2,3
t . Then, all features are classified into actions. The output

after applying the MLP to feature f i,n
t is denoted as yi,n

t and the action probability dis-
tribution obtained by applying softmax to yi,n

t is denoted as YS
i, n,t. The equation for the

action probability distributions is a categorical cross-entropy loss function [40]. Finally, the
loss is calculated by comparing the ground truth of action YG

t with the predicted action
YS

i,n,t defined in Equation (6) where the numbers of layers and blocks are 2 and 3. The
total loss is obtained by summing up each feature loss in the n-th Swin Transformer+

Block and i-th stage. The total loss is optimized using an AdamW optimizer. Although
the augmented features use the same ground truth as the nonrelocated features, it is not
guaranteed that they have the same correct answer as the initial state. Therefore, each loss
from the augmented feature is multiplied by 1√

N
where N denotes the total number of

augmented features, considering the Swin Transformer+ Block numbers in each stage. The
1√
N

weight is assigned to each loss of the augmented features by making a difference in the
loss weight.

L =

2

∑
i=1

3

∑
n=1

ωn(YG
i,n,t −YS

i, n,t)
2
, ωn =

{
1 i f n = 1
1√
N

i f n = 2, 3 (6)
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4. Experiment

This section describes the experimental details. The experiment first involved training
the Swin Transformer+ model to converge using an expert demonstration dataset. Next, the
Swin Transformer+ model was tested to check its accuracy and adaptation in the unobserved
state. Finally, the experimental results of the Swin Transformer+, Swin Transformer model,
Decision Transformer model, and Vision Transformer model [41] were compared.

4.1. Datasets

To verify the proposed method, Atari [42]-based path planning was utilized. For the
experiments, a grand challenge dataset [43] was used. This dataset contains 1,779,771 im-
ages and 384 trajectories. The trajectories consisted of sequential image numbers, rewards,
terminal information, and actions. The trajectories were divided based on episodes. The
number of images used for training was 9216, each with a size of 210× 160× 3. Of the total
number of images, 90% were used for training the model and 10% were used for validation.
The distribution of the actions in the training images is presented in Table 2.

Table 2. Actions distribution of dataset.

Actions Up Right Left Down

Total Number 1875 2283 2687 2371

4.2. Experimental Environments

The hyperparameters of the proposed method are listed in Table 3. The input was
a single RGB image of 252 × 234 (height × width) after preprocessing. Each image was
labeled with actions from the stored trajectory as the ground truth. The common patch size
was defined as 18 × 13 (height × width) to contain a dynamic object, such as a pellet, in a
divided image. The patch partition splits the image into grids of 18 rows and 13 columns
and crops the sides of the preprocessed image by 9 pixels.

Table 3. Hyper parameters for Swin Transformer+.

Hyper Parameter Value

Image size (252, 234)
Patch size (18, 13)

Input channels 3
Classes 4

1st Stage Embedding dimension 32
2nd Stage Embedding dimension 128
Swin Transformer+ Block number [3, 3]

Multi-Head number [4, 4]
Window size 3
Dropout rate 0.5

Epochs 100
Learning rate 0.0003

Batch size 16

The window size was fixed at three and the window size unit was based on the
number of patches. The window size is a hyperparameter, considering the padding size
and the patch size. The total number of patches is divided twice with the same window
size. The first division is performed using the input of the total number of patches, and the
second division is performed after patch merging. Patch merging [22] increases the patch
size; however, it decreases the total number of patches by half. The decreased number
of patches must be further divided with the same window size. Padding is a tool used
to complement cases where the number of patches is not divisible by the window size.
However, because padding can introduce noise, only the minimum amount of padding
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is added. Consequently, window size 3 is determined by the greatest common divisor of
the combined total number of patches and paddings. The stage of the proposed method
was defined as three Swin Transformers+ Blocks with outputs of 32 and 128 dimensions.
At each stage, the dimensions were increased by a factor of four. Considering the pellet
size, which was originally 2 × 4 pixels in the raw input image, the dimensions were set
to 32, four times the original pellet size, to capture its representation. The total number of
classes was four, the same as the action types in the environment. The number of Swin
Transformer+ Block was only three, which means there are three Swin Transformer+ Blocks
in each stage, and the number of output features was three. The number of blocks was
considered to balance the distortion caused by the cyclic shift. Hyperparameters, such as
dropout, batch size, learning rate, and total training epochs, were also included.

The experiments were conducted on a Windows 10, i5-9400 processor, NVIDIA
GeForce GTX 1050 2 GB graphics card, and 32 GB DDR4 memory. The proposed method
was created using Python version 3.7.13, and PyTorch 1.8.0 was utilized to implement data
preprocessing and imitation learning with Swin Transformer+ for data augmentation.

4.3. Experimental Results

Figure 6 shows the training and validation losses of the proposed method. The training
loss of the proposed method started at 1.24068, decreased to 0.41616, and then converged.
This indicates that training for up to 92 epochs is necessary for convergence because the
lowest loss was recorded at 0.00587. The figure also shows the change in validation loss.
The initial validation loss of 1.24068 decreased to 0.68185. In the 89th epoch, the model
achieved the lowest validation loss of 0.56141 for the validation dataset.
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Figure 7 shows the accuracy of the proposed method during training and validation.
The initial accuracy for training was 30% but increased to 82%. Similarly, the validation
accuracy was 34% but reached approximately 81.5% after 100 epochs. However, the highest
validation accuracy 86.4% was achieved after 93 epochs. Based on these results, it was
assumed that overfitting occurred during the training process, leading to training results
up to epoch 90 as the optimal model. Therefore, it was verified that the proposed method
with augmented features helps learn experts’ control patterns through cyclic shifts and
dynamic object arrangement, thereby increasing accuracy.

The masks for the total tokens and padding are shown in Figure 8. The values of the
mask were different at each stage, depending on the number of tokens for padding added
to the tokens of the mask. The masks shown below were those used in the second stage:
Figure 8a shows masks for the total tokens. When the mask in Figure 8a is partitioned
with window size and converted to a matrix for self-attention calculation, it results in a
cyclic shift mask that is required for the attention process to prevent nonadjacent tokens
from being calculated together in the attention calculation. The purple color in Figure 8a
represents 0 value and other colors all represent positive values with only a difference in
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magnitude of value. The values of the cyclic shift mask go through the filtering process
where 0 remains 0, and all non-zero values convert to minus 100 values. The cyclic shift
mask inserts 0 value for the padding location since the padding value is blocked by the
padding mask. Figure 8b shows a mask for the paddings covered with a mask such that
the paddings are not processed in the attention calculation. The padding mask in Figure 8b
shows one of masks at the boundary of tokens. The purple color in Figure 8b represents
a negative value for paddings in the self-attention mechanism, while the yellow color
represents 0 value for tokens.
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The proposed method was compared with a Swin Transformer, Decision Transformer,
and Vision Transformer models. The accuracy and generalization performance were com-
pared, as shown in Table 4. To confirm the accuracy, we compare the action-estimated
results with the Swin Transformer, Decision Transformer, Vision Transformer, and Swin
Transformer+ models. Using the images stored in the training images, experimental com-
parison models output action prediction distributions that are compared with the action
labels. Generalization was tested when encountering situations outside the training dataset
and compared the earned scores between the models. When evaluated after training with
the same images, the accuracies of the Swin Transformer and Vision Transformer models
were higher than that of the proposed method by 11.6% and 8.7%, respectively. However,
the accuracy of the Decision Transformer was low compared to other models in comparison.
This is because Decision Transformer focuses on identifying the most optimal action related
to the result rather than replicating the exact same action as the expert for the next step.
Next, the best evaluation score, measured by considering the moving path automatically,
with the proposed method was 920, higher than that with the Swin Transformer model.
Furthermore, the proposed method had scores of 1020 and 1200, a higher score than De-
cision Transformer model and Vision Transformer model. The average evaluation score
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of the proposed method was 226, higher than that of the Swin Transformer model, and
35 and 59, higher than the Decision Transformer model and Vision Transformer model.
The results indicated that the performance of the proposed method was better than that of
the experimental comparison models. Although the accuracy was lower, using the cyclic
shift as an augmentation approach improved the imitation learning performance in an
actual environment. The Swin Transformer+ model was robust to variations in the object
arrangement by augmenting various features. This demonstrates the improvements in the
generalization performance and the possibility of increased robustness in diverse images
with the proposed method.

Table 4. Comparison with other models.

Model Accuracy (%) Best Eval. Score Avg. Eval. Score

The Proposed Method 86.4% 1700 286
Preprocessor + Swin Transformer

model + Action model 98% 780 60

Preprocessor + Vision Transformer
model + Action model 95.1% 500 227

Preprocessor + Decision Transformer
model + Action model 23.6% 680 251

5. Conclusions

We proposed imitation learning using a Swin Transformer+ model based on images.
The proposed method utilized the Swin Transformer+ model, Preprocessor, and Action
model to augment the images considering the diverse arrangements of objects. The actions
were predicted using augmented images, which were then compared to action labels. The
proposed method was evaluated for its capacity to learn an expert’s control pattern from
augmented images, using accuracy as an evaluation metric. Additionally, an experiment
was conducted to measure the best evaluation score using the proposed method. It was
confirmed that the Swin Transformer+ model performed better than the Swin Transformer
model and other comparison models in an actual environment. The proposed method
outperformed its counterparts with higher best and average evaluation scores, respectively,
than the other comparison models with the Preprocessor and Action models. The limi-
tation of the proposed method is that it is difficult to adjust the parameters according to
the environment due to the complexity of the structure of the Swin Transformer model.
Therefore, the challenge of this paper is to develop an automated method for adjusting
parameters such as window size and patch size according to various environments since
the parameters require detailed adjustments. Furthermore, the importance of quality expert
dataset is a challenge because the training is based on expert annotations.

In future research, it will be possible to develop an approach that can adapt to complex
scenarios with many objects and dynamic objects of various shapes. In addition, additional
augmentation techniques that can be used with cyclic shifts for imitation learning should
be investigated.
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