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Abstract: Potato holds significant importance as a staple food crop worldwide, particularly in
addressing the needs of a growing population. Accurate estimation of the potato Leaf Area Index
(LAI) plays a crucial role in predicting crop yield and facilitating precise management practices.
Leveraging the capabilities of UAV platforms, we harnessed their efficiency in capturing multi-
source, high-resolution remote sensing data. Our study focused on estimating potato LAI utilizing
UAV-based digital red–green–blue (RGB) images, Light Detection and Ranging (LiDAR) points,
and hyperspectral images (HSI). From these data sources, we computed four sets of indices and
employed them as inputs for four different machine-learning regression models: Support Vector
Regression (SVR), Random Forest Regression (RFR), Histogram-based Gradient Boosting Regression
Tree (HGBR), and Partial Least-Squares Regression (PLSR). We assessed the accuracy of individual
features as well as various combinations of feature levels. Among the three sensors, HSI exhibited
the most promising results due to its rich spectral information, surpassing the performance of LiDAR
and RGB. Notably, the fusion of multiple features outperformed any single component, with the
combination of all features of all sensors achieving the highest R2 value of 0.782. HSI, especially when
utilized in calculating vegetation indices, emerged as the most critical feature in the combination
experiments. LiDAR played a relatively smaller role in potato LAI estimation compared to HSI and
RGB. Additionally, we discovered that the RFR excelled at effectively integrating features.

Keywords: LAI; UAV; multi-sensor data; machine learning

1. Introduction

Potatoes are one of the most widely consumed staple foods [1]. They provide essential
carbohydrates and valuable nutrients, contributing to the diets of millions worldwide [2].
Moreover, being a major agricultural crop, potatoes play a vital role in economies and global
food security [3]. Monitoring the growth status of potato crops is of utmost significance
for effective agricultural management. However, due to their subterranean nature, direct
observation of potato growth presents challenges. In order to overcome this limitation,
an efficient approach involves calculating various indices based on above-ground plant
parts. One such vital index is the LAI, which serves as a reliable indicator of the crop’s
health and vigor. LAI measures the total green leaf area (one side) per unit of ground
surface area. It is a crucial parameter reflecting the canopy structure and the biochemical
status and is commonly used in the estimation of biomass [4], chlorophyll content [5], crop
yield [6], and other agroecosystem studies [7]. By leveraging LAI measurements, farmers
and researchers can gain valuable insights into the overall performance of potato crops,
enabling them to make informed decisions regarding irrigation, fertilization, and crop
management practices.
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In order to obtain accurate LAI values, the most traditional way is to cut out all the
leaves within the unit area and calculate the total area. Later, proximal sensing devices,
such as LAI-2000 (LI-COR, Inc., Lincoln, NE, USA) and Tracing Radiation and Architecture
of Canopies (3rd Wave Engineering, Nepean, ON, Canada) have been developed and
extensively used in estimating LAI in practices. However, these methods are inefficient and
costly as they heavily rely on human labor to conduct the measuring procedure. Remote
sensing, however, enabled by sensing platforms at a wide range of scales, has the potential
to conduct large-scale LAI measurement tasks.

Satellite and UAV are the two most widely used remote sensing platforms. There are
many applications of LAI assessment using satellite imagery. Liu et al. utilized Landsat
imagery to compute vegetation indices (VIs) and constructed a semi-empirical model
for estimating the LAI of various crops [8]. Sentinel-2 data have been used to compute
40 different VIs for investigating biophysical variables [9]. Satellites have an irreplaceable
advantage in large-scale LAI estimation [10,11], but their low spatial and temporal reso-
lution largely limits their application to precision agricultural management. Unmanned
Aerial Vehicle (UAV)-based remote sensing, on the other hand, overcomes these limitations
thanks to the flexibility in the data collection schedule, data accessibility, and the capability
of carrying multiple types of sensors. Leveraging various functionalities of the available
sensor, a variety of UAV-based remoting sensing platforms has been customized for dif-
ferent tasks in precision agriculture [12], such as crop classification and extraction [13,14],
stress [15], height [16], yield [17], biomass [18], nitrogen content [19,20], and LAI [21,22].
The UAV-LiDAR system can provide a comprehensive representation of the vertical struc-
ture of the research target, making it widely applicable in forest research [23,24]. The
UAV-RGB system is the most cost-effective and commonly used system. It captures RGB
images primarily for applications in classification (semantic segmentation) tasks [25,26].
When combined with photogrammetric methods, it can also generate point clouds for
further analysis [27]. The UAV-hyperspectral system has numerous applications in agricul-
ture, forestry, and other fields. Its most prominent application is the estimation of various
parameters or traits based on spectral information [28,29].

As a typical active sensor, LiDAR generates pulses to measure the observation targets
and output points cloud containing the structural information. These points can be used to
estimate canopy cover [30], height [31], and other features [32], and they can also support
the calculation of LAI. Zhang et al. utilized LiDAR data to compute various height-based
characteristics, achieving the highest R2 values of 0.679 (flowering stage) and 0.291 (mature
stage) using five machine learning models. However, due to the lack of spectral information,
these accuracies were lower by 0.083 and 0.327, respectively, compared to features from
HSI [33]. Similar results are also observed in [34], where spectral features have a higher R2

than structural features by 0.246–0.3, provided that the samples are acquired in a similar
region and at a similar time. When the size of plant leaves is small, due to the limitation of
data sampling density, LiDAR data are likely to be unable to fully capture leaf information.

Optical images are typically classified into categories, such as RGB images and
multi-/hyper-spectral images, based on the number of channels they possess. While
an RGB image consists of only three bands, it can still be used to calculate various features
and extract valuable information about LAI. Yang et al. tested six VIs for estimating sugar-
cane LAI over the whole growing stage, with the highest R2 reaching 0.668 [35]. Li et al.
combined color and texture features of RGB images, achieving the R2 of 0.86 [36]. However,
the low spectral resolution of RGB images makes it unable to capture features of a wider
range reflectance spectrum, resulting in its disadvantages to multi/hyper-spectral data for
crop growth monitoring [37].

The multi-/hyper-spectral images, containing abundant spectral information, reflect
the physiological and biochemical information of crops and can be used to calculate widely
recognized indices. Tao et al. evaluated hyperspectral indices and red-edge parameters
on LAI estimation, with R2 ranging between 0.62 and 0.76 for four growth stages [38].
Gao et al. utilized eight spectral indices to retrieve the LAI of winter wheat with correlation
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coefficients ranging from 0.677 to 0.851 [39]. Ma et al. evaluated the performances of four
methods for LAI estimation based on eight spectral indices, and the highest R2 of the
validation set reached 0.74 [40]. These methods could achieve good estimation accuracy
(R2 > 0.7), but the bands that constitute the VIs were still referenced from other studies,
and no specific selection was made for the research target. Ma et al. conducted band
selection based on four basic index types for cotton LAI estimation, and the highest R2

value reached 0.9 [41]. It remains to be discussed whether other vegetation types, such as
potatoes, require band selection and whether more complex index types are suitable for
band selection methods.

Though with the above promising results, each data source has limitations in estimat-
ing LAI on its own. Therefore, many researchers have started exploring the combination of
multiple data sources to estimate LAI. Luo et al. (2019) combined LiDAR and hyperspec-
tral data to predict the LAI of maize, wheat, and vegetables, and the R2 of combination
features reached 0.829 [42]. Yue et al. (2018) fused the VIs and height from RGB and HSI to
estimate above-ground biomass and LAI with the highest R2 for LAI exceeding 0.9 [43].
The combination of multiple data sources has shown a significant improvement in accuracy
compared to using a single data source. However, further research is needed to determine
the enhancement in crop LAI estimation that can be achieved by integrating these three
data sources.

The LAI assessment methods for various crops based on image features such as
vegetation indices have achieved good estimation accuracy, which is further enhanced by
the combination of multiple data sources. However, there are still two issues that need to
be further analyzed. The first one is how to select the bands for VI calculation. Most of the
studies use fixed bands VIs rather than considering the differences between different plants
in different growth states. Taking NDVI as an example, many studies will calculate NDVI
as an input feature, and the band selection (λ1 and λ2) shows great differences [17,44]. The
second one is that few studies have reported how the features of three data sources, RGB,
LiDAR, and HSI, contribute to the performance of LAI estimation.

Thus, the specific objectives of this study are to (1) validate whether the band combina-
tions used in previous studies are suitable for LAI estimation of potatoes, and comparative
experiments were conducted between fixed and optimized band combinations. (2) Investi-
gate the performance of single and combined data sources in the LAI estimation of potatoes.
(3) Examining the importance and contribution of features from different data sources in
the combination experiments.

The article is organized as follows. After Section 1, field experiments, data acquisition
and processing, and models with strategies are discussed in Section 2. Section 3 introduces
the ground data and the comparison results of different feature combinations. Differences
in ground data from two potato cultivars and the contribution and role of different data
sources are discussed in Section 4. Finally, Section 5 concludes the work.

2. Materials and Methods
2.1. Field Experiments

The field experiment was conducted in 2021 at the University of Wisconsin (UW)
Hancock Agricultural Research Station (HARS), which is a vegetable research farm located
in the Central Sands area of Wisconsin. The whole field was 41 m wide by 78 m long,
comprising a total of 32 individual plots. Each subplot was comprised of 8 rows, with each
row measuring 7.6 m in length and 0.9 m in width.

The experiment followed a split-plot design with 4 replications, as shown in Figure 1.
The field consisted of one strip without fertigation and one strip with fertigation. Within
each strip, two different nitrogen (N) rates were randomly assigned to the entire plot, as
specified in Table 1. Other production practices were implemented based on the recom-
mendations provided by UW Extension [45]. Two cultivars, Snowden (chipping potato
cultivar) and Colomba (yellow potato cultivar), were planted on 23 April and harvested
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on 15 September 2021. The sampling dates were scheduled for 30 June, 20 July, 23 July, 3
August, and 12 August.
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Table 1. Nitrogen Application Treatments and Schedule.

Name Seasonal Total
N Rate

Planting Emergence (Hilling) Tuber Initiation Fertigation Date

23 April 12 May 2 June 30 June 10 July 20 July 30 July

C 37 37 - - - - - -

R1 287 37 85 165 - - - -

R2 287 37 85 30 34 34 34 34

R3 392 37 85 134 34 34 34 34

Unit: kg/ha.

2.2. Data Collection

RGB, LiDAR, and Hyperspectral data were synchronously collected by three sensors
mounted on a Matrice 600 Pro platform (DJI Technology Co., Shenzhen, China) under
clear sky conditions five times in the growing season on 30 June, 20 July, 29 July, 3 August,
and 12 August. RGB images were taken by a Cyber-shot DSC-RX1R II camera (Sony
Group Corporation, Minato, Tokyo, Japan) and 3D point data were taken by a VLP-16
sensor (Velodyne Lidar Inc., San Jose, CA, USA), which uses an array of 16 infrared (IR)
lasers paired with IR detectors and emit each laser at 18.08 kHz. The HSI were taken
by a Nano-Hyperspec sensor (Headwall Photonics Inc., Bolton, MA, USA), containing
640 pixels in each scan line with a pixel pitch of 7.4 µm. The details of the sensors were
provided in Table 2. A Global Navigation Satellite System-aided Inertial Navigation System
(GNSS/INS), VN-300 (VectorNav, Dallas, TX, USA), was integrated with the sensors to
provide the longitude, latitude, and attitude indicator (yaw, pitch, and roll).

We used LAI 2000 Plant Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA) to measure
the LAI of the potato plants. It utilizes a “fisheye” optical sensor to calculate LAI by
capturing light measurements both above and below the canopy. This device measures
light interception at five different zenith angles simultaneously. Then, it employs a radiative
transfer model to compute the LAI.



Remote Sens. 2023, 15, 4108 5 of 18

Table 2. Sensor Descriptions.

Sensors Description

RGB camera
Sony Cyber-shot DSC-RX1R II

42 MP full-frame sensor
35 mm F2 lens

LiDAR unit

Velodyne VLP-16
100 m range

905 nm infra-red (IR) lasers
Dual Returns

Hyperspectral scanner
Headwall Nano-Hyperspec

274 bands with 2.2 nm spectral resolution (B1-B274)
visible-near-infrared range (400–1000 nm)

2.3. Image Process and Features Calculation

In our methodology, we adopted a rigorous approach to ensure the accuracy of image
processing. After collecting raw data from three sensors, we used GRYFN Processing Tool
V 1.2.6 (West Lafayette, IN, USA) software to preprocess them, such as orthorectification,
mosaic, geometric and radiometric correction. For HSI, the Hyperspec III software V
3.1.4 (Bolton, MA, USA) was also used for radiometric correction. Further corrections
and processes were achieved by Python. Our workflow follows a standardized process
that draws on methods commonly used in similar studies [17]. We conducted a visual
interpretation to assess the correctness of the processing results. To analyze the relationships
between the images and LAI, various related features were extracted from the processed
RGB, LiDAR, and HIS. These features will reduce the redundancy of the raw data and
emphasize some specific information about the plant. All the processing and features are
shown below, and corresponding formulas are shown in Table 3.

Table 3. Image Features Derived from Three Data Sources.

Sensors Name Definition

LiDAR

MaxPlantHeight Hmax − Hmin
H50th, H75th, H90th, H95th The 50th, 75th, 90th, and 95th percentile height values.

Canopy Volume Sum (Hallpoints)
Canopy Cover Numbernon-ground/Numberallpoints

Plant Area Index plant area/ground surface area

RGB

R Mean (DNR)
G Mean (DNG)
B Mean (DNB)

Normalized_R Mean (DNR/(DNR + DNG + DNB))
Normalized_G Mean (DNG/(DNR + DNG + DNB))
Normalized_B Mean (DNB/(DNR+ DNG + DNB))

Hyperspectral

NDVI (RNIR − RRED)/(RNIR + RRED)
EVI2 2.5 × (RNIR − RRED)/(1 + 2.4 × RNIR + RRED)

CIrededge RNIR/RRED-EDGE − 1
CIgreen RNIR/RGREEN − 1

MSRrededge (RNIR/RRED-EDGE − 1)/(RNIR/RRED-EDGE + 1)1/2

MTCI (RNIR − RRED-EDGE)/(RRED-EDGE − RRED)

Mean Mean value of each band
Std Standard deviation of each band

2.3.1. RGB-Based Features

The separate RGB images collected from the RGB camera were orthorectified by the
LiDAR-derived digital terrain model (DTM) and then mosaiced into one image in GRYFN.
The RGB mosaic showed no noticeable distortion. Images of each plot were extracted
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from it by the manually drawn plot boundaries, and we obtained 160 (32 plots by 5 times)
individual images. Before extracting the features of plots, we used the balanced histogram
thresholding (BHT) method to automatically remove the background (shadow and soil)
in Python.

Six features of each plot were calculated based on the processed images: mean pixel
value of red bands (R), mean pixel value of green bands (G), mean pixel value of blue bands
(B), the mean normalized value of red band (Normalized_R), the mean normalized value
of green band (Normalized_G), the mean normalized value of blue band (Normalized_B).

2.3.2. LiDAR-Based Features

All the raw data collected from LiDAR were georeferenced with the recorded position
in GNSS/IMU unit and transferred into the point cloud in GRYFN. Most points of LiDAR
were distributed within a reasonable range of potato plant heights. After separating the
points of different plots by plot boundaries, we used cloth simulation filtering (CSF) [46]
to distinguish the points of plant and ground in each plot. The basic idea of CSF is to
assume that an inverted point cloud surface is covered with a rigid cloth. By analyzing the
interactions between the cloth nodes and the LiDAR points, the cloth nodes can be used to
simulate the ground. The extracted ground points were used to generate DTM with 8 cm
spatial resolution. The median height of the ground points in each grid is set to the height
of that grid, while for grids where no ground points are extracted, the height is decided by
the mean value of the surrounding grids. The vertical distances of plant points to DTM are
considered the heights of the plant points. Besides the point cloud, GRYFN also outputs a
median-filtered digital surface model (DSM). With the categorized points, plant heights,
and DSM, we can calculate several features:

Height Percentile: The 50th, 75th, 90th, and 95th percentile height of plant points.
Canopy Volume: The number of points categorized as plants.
Canopy Cover: The ratio of the number of plant points to all the points.
Max Plant Height: The difference between the maximum height and the minimum

height of DSM.
Plant Area Index (PAI): The plant area, the sum of plant area density (PAD) values

multiplied by voxel volume per unit ground surface area. The index was calculated by the
algorithm in [47]. The algorithm scale and average returned lidar intensities for each lidar
pulse and used the Beer–Lambert law to estimate the PAD.

2.3.3. HSI-Based Features

The data collected from the hyperspectral scanner were orthorectified and georefer-
enced based on the position information of the GNSS/IMU unit. Then, raw digital numbers
were calibrated to reflectance based on the metadata and calibration panels in Hyperspec III
and GRYFN. The HSI exhibited standard green vegetation spectral curves. After separating
the reflectance map of each plot, the background was removed based on the threshold in
Python. The threshold was set to 0.15 at the 800 nm wavelength, and pixels with lower
values were removed. Images of each plot were also extracted by the plot boundaries. We
calculated two types of features, VI and statistical features, based on that.

We selected six typical indices as input features. The NDVI [48] is the most widely
used VI and can be used to monitor the phenology, quantity, and activity of vegetation.
The two-band enhanced vegetation index (EVI2) not only maintains the advantages of
EVI, improving linearity with biophysical vegetation properties and reducing saturation
effects but also does not need to use a blue band [49]. As red-edge reflectance-based
VIs are preferable for crop LAI and other canopy architectures estimation and are more
sensitive to leaf chlorophyll content [50]. We selected four VIs related to the red-edge bands
and chlorophyll, the red-edge chlorophyll index (CIrededge) [51], the green chlorophyll
index(CIgreen) [51], the red-edge modified simple ratio index (MSRrededge) [52], and the
MERIS terrestrial chlorophyll index (MTCI) [53].
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Besides, the mean and standard deviation (Std) of each of the HSI bands were calcu-
lated and used as input features for estimating LAI.

2.4. Feature Search/Selection/Comparison Strategies
2.4.1. Grid Searching Bands and Fixed Bands

The HSI imagery with 274 narrow bands supplies more refined spectral information
in constructing VIs, which are commonly calculated from fixed and broad spectral bands
based on previous studies. For example, the NDVI is the ratio of the difference between
the near-infrared (NIR) and red bands to the summation of these two bands. The band
ranges are commonly 770–890 and 630–690 nm for NIR and red, respectively. However,
with the HSI imagery, there are 55 bands within the NIR range and 27 within the red range.
Therefore, to locate the specific HSI bands with the best performance for estimating LAI,
we applied a grid-searching method in the feature selection step. First, we divide the bands
into five sets, blue, green, red, Red Edge, and NIR set. The spectral range of different sets is
slightly larger than the commonly used range to ensure that the best combination can be
searched as much as possible. For example, the range of NIR is set to 760–1000 nm, and
then, we calculated six groups of HSI-based VI based on the band sets, and the combination
with the highest Pearson correlation coefficient (r) of LAI in each group was selected as
the final output of this index. Furthermore, we compared the performance in estimating
LAI by VIs calculated using the selected HSI bands with the fixed (experienced) bands.
When the wavelength of the sensor and the experienced wavelength do not exactly match,
we use the band with the smallest difference from its wavelength as a substitute for the
following calculation.

2.4.2. Combination of VIs from Different Data Sources

VIs derived from RGB, LiDAR, and HSI data can be regarded as distinct subsets of
features, each with a unique focus. By combining these multi-source features, the input
can be enriched, leading to improved estimation capabilities of the models. To assess
the extent of this improvement, two sets of experiments were conducted. In the first
step, the three individual data sources were evaluated independently. Subsequently, in
the second step, the four combinations—RGB + LiDAR, RGB + HSI, LiDAR + HSI, and
RGB + LiDAR + HSI—were evaluated. All inputs underwent standardization, and the pa-
rameters were determined through a combination of grid searching and manual adjustment.

2.4.3. Statistical Features Selection and Combination with VIs

The VIs are considered subsets of the original reflectance data and typically emphasize
specific vegetation properties. In addition to VIs, statistical features are also important for
evaluating the biological conditions of vegetation. The mean and standard deviation of
each band were calculated as the original statistical features. However, these 548 features
cannot be directly used for model training due to the presence of invalid and redundant
information. To address this, we employed Recursive Feature Elimination with Cross-
Validation (RFECV) on the original features. RFECV is a method that depends on the chosen
estimator and requires feature importance as input. In this case, we utilized Random Forest
(RFR) and Support Vector Regression (SVR) as base models to extract two feature subsets.
Subsequently, we evaluated the performance of the four regression models using the two
resulting feature sets obtained from RFECV. This approach aimed to reduce redundancy
and identify the essential features for model training and estimation. The selected features
and the combination of VIs and selected features are evaluated.

2.5. Machine Learning Model

Four commonly used machine learning approaches, Support Vector Regression (SVR),
Random Forest Regression (RFR), Histogram-based Gradient Boosting Regression Tree
(HGBR), and Partial Least-Squares Regression (PLSR), were selected as learners to evaluate
the features. SVR is a supervised learning model from SVMs. The algorithm’s goal is to put
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more original points inside the hyperplane with a width ε and reduce the error outside.
Three parameters, kernel, gamma, and regularization parameter (C), were adjusted with
different input features. RFR is a supervised ensemble learning algorithm that constructs
several decision trees with training data. The outputs of these trees were integrated
to calculate the final estimation. HGBR tremendously accelerates the gradient-boosting
methods by categorizing the continuous features into integer-valued groups instead of
sorting continuous values. PLSR projects the input features and LAI to a new lower-
dimensional space and applies a linear regressor to fit the data. In this study, all the
regression models were performed using Python and the scikit-learn library [54]. As
effective parameter tuning plays a pivotal role in optimizing model performance and
unleashing its true potential, the optimal values of the model’s parameters were obtained
by grid search and manual adjustment. The name and explanation of the parameters are
shown in Table 4.

Table 4. The Names and Explanations of Parameters of Four Regression Models.

Model Hyperparameter Explanation

SVR
c squared L2 penalty

gamma gamma in RBF kernel

RFR

n_estimators number of trees
max_features the number of features to consider when looking for the best split

min_samples_leaf The minimum number of samples required to be at a leaf node
random_state Pseudo-random number generator to control the sub-sampling in the binning process

HGBR

max_iter The maximum number of iterations of the boosting process
learning_rate The learning rate, shrinkage

max_leaf_nodes The maximum number of leaves for each tree
random_state Pseudo-random number generator to control the subsampling in the binning process

PLSR
n_components Number of components to keep

tol The tolerance used as convergence criteria in the power method

2.6. Evaluation Metrics

The accuracy of the LAI estimation was evaluated using the coefficient of determi-
nation (R2), root-mean-square error (RMSE), and the mean absolute error (MAE). The
formulas of these metrics are shown below. R2 is positively correlated with model accu-
racy, while RMSE and MAE are just the opposite. In our experiment, we applied a 5-fold
cross-validation strategy, and repeat was set to 5. The final evaluation metrics are the mean
values of the 25 results.

R2 = 1−
∑n

i=1
(
yi − yi_pre

)2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1
(
yi − yi_pre

)2

n
(2)

MAE =
∑n

i=1 |y i − yi_pre
∣∣

n
(3)

where yi is the measured value, yi_pre is the estimated value, y is the mean value and n is
the sample number.

3. Results
3.1. Ground Data Statistics

The Colomba is an early maturing variety, harvested about 90 days after planting,
whereas the Snowden exhibits late maturation, occurring approximately 110–120 days after
planting. This discrepancy in maturation time is reflected in the distinct distribution of the
LAI illustrated in Figure 2. Snowden exhibited a pattern of initially increasing followed
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by a subsequent decline, while the Colomba consistently displayed a downward trend.
Additionally, Figure 2 provides visual representations in the form of time series images
depicting the growth progression of both vegetation types.
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In Figure 3, we also present the distribution of LAI of the two varieties under different
N rates. For the Colomba, LAI decreased over time under all four fertilization conditions.
However, the magnitude of LAI values is influenced by the rate of fertilizer application.
Specifically, the LAI of the control group is lower than that of R1, which is lower than the
LAI values of R2 and R3. This phenomenon is more prominent in Snowden, where both the
control group and R1 exhibited a declining trend in LAI. However, noteworthy is the fact
that the LAI values of R2 and R3 demonstrated an increasing trend when higher amounts
of fertigation were applied. The effect of fertigation on LAI is significant and leads to a
dataset with large variations. The regression experiments based on this dataset can prove
the generality of the model to some extent.
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3.2. Comparison of VIs with Searched and Fixed Bands

There are notable differences between the effectiveness of the searched bands and fixed
bands, especially in the Red Edge and NIR range, in Table 5. In general, the correlation
coefficients of these searched ones were greatly increased, with the maximum improve-
ment reaching 0.211. The NDVI and EVI, commonly used to characterize “greenness”,
demonstrated higher correlations compared to others in both searched and fixed bands
combination. After searching, the correlations between two VIs composed of the red-edge
band, CIrededge and MSRrededge, have significantly increased from 0.565 to 0.736 and from
0.548 to 0.759, respectively. These improvements provide evidence of the effectiveness of
the optimal (searched) VI for estimating LAI.
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Table 5. Comparison of Wavelengths of Searched Bands and Fixed Bands.

VI Green (nm) Red (nm) Red Edge (nm) NIR (nm) r Ref.

Searched bands

NDVI - 677.968 - 826.143 0.830 -
EVI2 - 708.93 - 773.065 0.823 -

CIrededge - - 726.622 901.337 0.736 -
CIgreen 551.908 - - 914.606 0.585 -

MSRrededge - - 717.776 901.337 0.759 -
MTCI - 631.525 713.353 797.393 0.549

Fixed bands

NDVI - 670 (669.121) - 800 (799.604) 0.820 [43]
EVI2 - 670 (669.121) - 800 (799.604) 0.736 [43]

CIrededge - - 710 (708.930) 800 (799.604) 0.565 [55]
CIgreen 550 (549.696) - - 800 (799.604) 0.519 [55]

MSRrededge - - 705 (704.507) 750 (750.95) 0.548 [52]
MTCI - 681 (680.179) 708 (708.93) 753 (753.161) 0.505 [53]

The searched bands are different from fixed bands and generally have longer wave-
lengths. This phenomenon indicates that vegetation with a similar reflectance spectrum can
have varying factors such as plant structure, biochemical composition, external environ-
mental pressures, and diseases, all of which can impact spectral characteristics. As a result,
relying solely on VI formulations based on fixed bands may not consistently yield optimal
results. Grid searching, on the other hand, can aid in identifying suitable combinations of
bands to a certain extent.

3.3. Combination of VIs from Different Data Sources

The evaluation results of single sources are shown in Table 6. The highest R2 for each
data source is underlined, and the highest R2 among all data sources is in bold. Despite
employing different data acquisition mechanisms, RGB and LiDAR achieved comparable
regression accuracy. The RGB image-derived traits have a slight advantage in estimating
potato LAI compared to those from LiDAR. With its extensive spectral information, the
HSI features exhibited significantly higher R2 compared to the other two data sources.

Table 6. Evaluation Accuracy of Single Source Features.

Sources Evaluation Model R2 RMSE MAE Evaluation Time (s)

RGB

RFR 0.668 0.826 0.649 4.93
SVR 0.726 0.751 0.592 0.19

HGBR 0.627 0.876 0.685 1.75
PLSR 0.638 0.862 0.698 0.07

LiDAR

RFR 0.666 0.824 0.643 4.93
SVR 0.552 0.958 0.750 0.10

HGBR 0.633 0.865 0.683 1.75
PLSR 0.640 0.856 0.693 0.07

HSI

RFR 0.766 0.688 0.539 2.20
SVR 0.762 0.694 0.544 0.15

HGBR 0.764 0.691 0.554 2.68
PLSR 0.738 0.729 0.598 0.09

In general, RFR was the most accurate and stable model. However, as an ensemble
of decision trees, it incurs higher time costs compared to other methods. SVR excels in
terms of runtime efficiency due to its lower training and prediction complexity. A solid
mathematical foundation and theoretical guarantees provide confidence in the model’s
performance. The HGBR model fell intermediate to RFR and SVR in terms of efficiency
and accuracy, while Partial Least Squares Regression (PLSR) represents the fastest model.
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Results of the four different combinations of the three data sources as predictors in
estimating potato LAI are shown in Figure 4. The best performance (R2 = 0.775) was given
by the RFR model with all features from LiDAR, RGB, and HSI, followed by 0.768 achieved
by the RFR model with features from LiDAR and HSI. Notably, the combined data sources
outperformed the individual ones. For example, the R2 of LiDAR + RGB was higher than
that of LiDAR or RGB alone, and the R2 of LiDAR + RGB + HSI was higher than that of
either component. The combinations of multiple data sources encompass diverse different
feature spaces, providing the regression model with richer input information. This, in turn,
improves the performance of estimating LAI.

Remote Sens. 2023, 15, 4108 11 of 18 
 

 

In general, RFR was the most accurate and stable model. However, as an ensemble of 
decision trees, it incurs higher time costs compared to other methods. SVR excels in terms 
of runtime efficiency due to its lower training and prediction complexity. A solid mathe-
matical foundation and theoretical guarantees provide confidence in the model’s perfor-
mance. The HGBR model fell intermediate to RFR and SVR in terms of efficiency and ac-
curacy, while Partial Least Squares Regression (PLSR) represents the fastest model. 

Results of the four different combinations of the three data sources as predictors in 
estimating potato LAI are shown in Figure 4. The best performance (R2 = 0.775) was given 
by the RFR model with all features from LiDAR, RGB, and HSI, followed by 0.768 
achieved by the RFR model with features from LiDAR and HSI. Notably, the combined 
data sources outperformed the individual ones. For example, the R2 of LiDAR + RGB was 
higher than that of LiDAR or RGB alone, and the R2 of LiDAR + RGB + HSI was higher 
than that of either component. The combinations of multiple data sources encompass di-
verse different feature spaces, providing the regression model with richer input infor-
mation. This, in turn, improves the performance of estimating LAI. 

  

(a) (b) 

  

(c) (d) 

Figure 4. Accuracy and Scatterplot of Different Feature Combinations from Three Data Sources. (a) 
LiDAR + RGB; (b) LiDAR + HIS; (c) RGB + HIS; (d) LiDAR + RGB + HIS. 

Figure 4. Accuracy and Scatterplot of Different Feature Combinations from Three Data Sources.
(a) LiDAR + RGB; (b) LiDAR + HIS; (c) RGB + HIS; (d) LiDAR + RGB + HIS.

When examining the combinations with the lowest accuracy values (0.687, 0.734, 0.745,
and 0.740), we can notice that the last three combinations, which incorporate HSI features,
exhibit similar and notably higher accuracy levels compared to the first combination. This
observation highlights the significance of hyperspectral information in estimating LAI with
different modeling approaches.

Among the four models, RFR emerged as the most suitable algorithm for estimating
LAI with combined features, as evidenced by its superior performance across all combi-
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nations. Each combination outperformed the single components individually. Notably,
RFR achieved the highest R2 value of 0.775 when utilizing all three feature subsets. On
the other hand, SVR, despite showing advantages in Table 6, did not perform well in
this set of experiments. Its results exhibited an opposite trend compared to RFR, and
in some combinations, the accuracy was even reduced. For instance, combinations such
as LiDAR + HSI and LiDAR + RGB + HSI performed worse than using HSI alone. The
results of HGBR show similarities to those of SVR, with both strengths and weaknesses
observed across different combinations. Finally, PLSR exhibited the lowest accuracy among
the models, with a difference of approximately 0.2 to 0.3 compared to other methods. In
addition to accuracy, efficiency is indeed an important metric to consider. During the grid
searching process for the best parameters, each feature combination requires parameter
tuning, leading to variations in evaluation times for each model. RFR had the greatest
uncertainty in evaluation time. On the other hand, PLSR and SVR were generally faster
and more stable compared to RFR and HGBR.

From Table 6 and Figure 4, it can be observed that the R2 of the combinations involving
all three data sources is slightly higher (by 0.009) compared to using HSI alone. Despite
doubling the amount of data and workload, the overall improvement is marginal, indicating
that the complementary information provided by RGB and LiDAR to HSI is limited in
this context.

3.4. Combination of VIs and Selected Statistical Features

The evaluation metrics of original statistical features and selected features are shown
in Table 7. The highest R2 values for the original or selected features are underlined, and
the highest R2 value in the table is in bold. RFR-based and SVR-based RFECV selected 44
and 40 features, respectively. These selected features and original features were fed into the
evaluation models to calculate the accuracy, and the selected ones achieved the same or
even better performance. The highest R2 reached 0.766. The significant reduction in the
number of features did not result in a significant decrease in accuracy, indicating that the
insignificant features had been removed. Moreover, the refinement of features brings a
significant reduction in evaluation time, which was reduced by 15.22%, 56.52%, 88.71%,
and 30%, respectively.

Table 7. Evaluation Accuracy of Original Statistical Features and Selected Features.

Selection Methods Base Model Evaluation Model Number of Features R2 RMSE Evaluation Time (s)

RFECV

RFR RFR 44 0.766 0.686 2.34
SVR SVR 40 0.763 0.694 0.10
SVR HGBR 40 0.746 0.713 1.66
RFR PLSR 44 0.747 0.717 0.07

-

- RFR 548 0.759 0.697 2.76
- SVR 548 0.763 0.695 0.23
- HGBR 548 0.750 0.712 14.70
- PLSR 548 0.741 0.721 0.10

These statistical features and combined VIs achieved reliable performance. When
combining them as input of evaluation models, the best R2 was improved from 0.778 to
0.782, as shown in Figure 5. Given that the RFR model achieved the highest accuracy in
the previous experiments, we generate the importance of each feature based on the RFR
model, shown in Figure 6. Similarly, HSI is the most important data source, and the six VIs
derived from it were in the top six. The feature importance confirmed with the modeling
results that the contributions of LiDAR and RGB were minimal. The features extracted by
LiDAR varied considerably, including the MaxPlantHeight in the seventh position and the
Height Percentile and Canopy Cover inside the top 10 of the countdowns. The importance



Remote Sens. 2023, 15, 4108 13 of 18

difference of RGB features is not significant. The green channel is slightly higher than the
red channel, and the red channel is slightly higher than the blue channel.
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4. Discussion

Many widely used vegetation indices were originally defined based on a broader
range of wavelengths (such as green, red, and NIR bands) when they were first proposed,
such as the VIs in Table 3. As hyperspectral data become more prevalent, selecting the
appropriate narrow bands for calculating these indices becomes critical. Researchers have
addressed this challenge and conducted studies to find the optimal bands for specific
vegetation indices, such as an optimal band combination for simple indices [41,56] and
optimal bandwidth [57]. In this study, we performed grid searching for several complex
VIs and selected the most relevant one for LAI as the optimal band. The optimal bands we
discovered for potatoes through our experiments are distinct from the commonly used fixed
bands and even differ from the optimal bands identified in other studies. This highlights
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the importance of conducting a dedicated band selection process for different research
targets when using hyperspectral data.

In the part of feature combination, we conducted ablation experiments, testing single
source features, pairwise combination features, and all features. The HSI performed better
than RGB, which in turn performed better than LiDAR. From our results, we can find
that the richer the spectral information in the data, the higher the prediction accuracy of
LAI. Similar findings are present in [58–60], showing that the multi-hyperspectral imagery-
derived model outperforms the LiDAR-derived model. In all four combination experiments,
the accuracy of the combination features was higher than the accuracy of their components.
This result indicates that multiple data sources can complement each other and improve
LAI prediction performance. However, the improvement in accuracy was not substantial
and aligned with the findings in [59–61].

VI is just a subset of features extracted from HSI, and a large amount of spectral
information remains unused. Therefore, we extracted another type of feature, statistical
features, to analyze the importance of each band. The results indicate that compared to
using all information, the important bands selected by RFECV are more advantageous for
estimating the target features. This is consistent with the results of other methods [62,63]
that also employ RFECV. It indicates that there is data redundancy when using hyperspec-
tral information for parameter estimation, and removing unnecessary data can lead to
better parameter estimation.

In precision agriculture, the accuracy estimation of LAI should be considered along
with the cost of UAV sensors, image acquisition efficiency, data processing complexity, and
other factors. Currently, RGB cameras have the lowest cost (~USD 3000) and the simplest
data processing workflow. The acceptable accuracy in experiments (R2 = 0.726 in Table 6)
indicates that RGB cameras are a good choice for LAI estimation under low cost and low
technical requirements. Compared to RGB cameras, LiDAR devices slightly cost more
(~USD 4000), and their powerful penetration capability may not be effectively utilized in
agricultural fields, resulting in lower accuracy (R2 = 0.666 in Table 6). Therefore, we do
not recommend using LiDAR as the sole sensor for LAI estimation. Hyperspectral sensors
perform best in terms of accuracy (R2 = 0.766 in Table 6). However, their prohibitive cost
(~USD 50,000) and the requirement for specialized knowledge are two main disadvantages.
In cases where high accuracy is demanded and the participants are knowledgeable in data
processing, hyperspectral sensors are a very suitable choice. If sensors that support custom
spectral channel settings are widely used, users can acquire only the bands sensitive to
the research parameters, such as the optimal bands obtained in Table 5. Consequently, the
overall cost of using multispectral or hyperspectral sensors will be further reduced. In
addition, our method can also be applied to other green vegetation, but the optimal bands
corresponding to them may vary, necessitating a re-evaluation of band selection. However,
the applicability of these methods to non-green vegetation requires further investigation.

While the current research emphasis is on deep learning, machine learning still retains
its advantages in this application. Deep learning, or a deep neural network, is a data-driven
approach that requires a substantial amount of training data to adequately estimate even
millions of parameters. It finds extensive use in tasks such as leaf classification [64,65]
and crop classification [66,67], but its application is limited in regression tasks such as LAI
estimation. This is due to the significantly greater difficulty in acquiring true values for
LAI compared to classification tasks and the lack of large, publicly available LAI datasets
for thorough parameter training of deep networks. Hence, for small-scale (field) crop
parameter estimation, mainstream machine learning methods and shallow neural networks
offer performance that meets requirements. Moreover, machine learning methods have
lower hardware demands, making them better suited for practical applications.

5. Conclusions

This study validates the necessity of band selection for potato LAI estimation by
comparing experiments involving searched and fixed bands. In comparison to Vegetation
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Indices (VIs) calculated from fixed bands based on empirical knowledge, the correlation
between LAI and optimized narrow-band VIs increased by 0.01 to 0.211. This provides
evidence for the essentiality of optimal band selection for potatoes.

Additionally, a series of experiments using single and combined data sources are
conducted to comprehensively analyze the accuracy, significance, and cost involved. Three
data sources provide different types of features, structural features, and general and detailed
spectral features. Among these features, VIs calculated from HSI outperformed others, and
its highest R2 reached 0.766 (by the RFR), and features of RGB achieved better accuracy
than that of LiDAR. The content of spectral information in the data correlates with the
accuracy of LAI estimation. In the ablation experiments, VIs of HSI dominated the feature
space, while adding features from RGB and LiDAR barely improved the model accuracy.
The experiments of statistical features have demonstrated that there is a data redundancy
in hyperspectral data when used for LAI estimation tasks. Removing this redundant
information not only reduces computational complexity but also improves estimation
accuracy to some extent.

HSI achieved the highest accuracy, but at the same time, the acquisition and processing
cost is the highest. In practical applications, it is essential to consider multiple factors, such
as budget constraints and accuracy requirements, to determine the sensor to use. Different
situations and projects may call for various data sources, and it is crucial to strike a balance
between the available resources and the desired level of information.
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