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Abstract: Hyperspectral images (HSIs) are characterized by hundreds of spectral bands. The goal
of HSI is to associate the pixel with a corresponding category label by analyzing subtle differences
in the spectrum. Due to their excellent local context modeling capabilities, Convolutional Neural
Network (CNN)-based methods are often adopted to complete the classification task. To verify
whether the patch-data-based CNN methods depend on the homogeneity of patch data during the
training process in HSI classification, we designed a random shuffling strategy to disrupt the data
homogeneity of the patch data, which is randomly assigning the pixels from the original dataset
to other positions to form a new dataset. Based on this random shuffling strategy, we propose a
sub-branch to extract features on the reconstructed dataset and fuse the loss rates (RFL). The loss rate
calculated by RFL in the new patch data is cross combined with the loss value calculated by another
sub-branch in the original patch data. Moreover, we construct a new hyperspectral classification
network based on the Siamese and Knowledge Distillation Network (SKDN) that can improve the
classification accuracy on randomly shuffled data. In addition, RFL is introduced into the original
model for hyperspectral classification tasks in the original dataset. The experimental results show
that the improved model is also better than the original model, which indicates that RFL is effective
and feasible. Experiments on four real-world datasets show that, as the proportion of randomly
shuffling data increases, the latest patch-data-based CNN methods cannot extract more abundant
local contextual information for HSI classification, while the proposed sub-branch RFL can alleviate
this problem and improve the network’s recognition ability.

Keywords: patch-data-based CNN method; local contextual information; random shuffling strategy;
network SKDN consists of two sub-branches; HSI classification

1. Introduction

Compared to traditional two-dimensional RGB images, hyperspectral images (HSIs)
have many continuous spectral bands. Therefore, they also contain more information that
allows us to better perform tasks, such as object detection, change detection, and geological
exploration. Land cover classification is one of the most important issues within these fields,
as it aims to apply specific semantic labels to the pixels of the entire HSI on the basis of the
unique spatial-spectral features of the HSI. In recent years, there has been increasing interest
in Deep Learning (DL) methods for solving the problem of HSI classification. Depending
on the shape of the training data, we can divide these methods into the following two
categories: the single-pixel-based methods and the patch-data-based methods.
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Existing DL models often ignore the inherent relationship between pixels in patch
data because they are designed for Euclidean data. In recent years, Graph Convolutional
Networks (GCNs) have received increasing attention as a representative of the single-pixel-
based methods due to their ability to perform convolutions on arbitrarily structured graphs.
By encoding HSI into a graph, the correlation between adjacent land cover can be explicitly
exploited, and the spatial context structure of HSI can be better modeled by GCNs [1].
Shahraki et al. [2] proposed a model combining 1-D Convolutional Neural Networks and
GCNs for HSI classification. However, due to the large number of pixels in HSIs, using
each pixel as a node of a graph has been shown to incur huge computational costs and
limit its applicability. To solve this issue, Hong et al. [3] developed a new model named
mini-GCN, which can be used to train large GCNs in a mini-batch process. Liu et al. [1]
proposed a heterogeneous model called CEGCN, in which CNN and GCN sub-networks
generate complementary feature information at pixel and super-pixel levels. To explore
Non-Euclidean structures and reduce high computational costs, Bai et al. [4] developed a
graph attention model with an adaptive graph structure mining approach (GAT-AGSM).
Liu et al. [5] designed a multi-level network based on U-Net operating on a superpixel
structured graph, named MSSGU, to learn multi-level features on multi-level graphs and
overcome the limitation of specific superpixel segmentation in modeling.

Generally, the methods mentioned above mainly belong to single-pixel-based methods.
Recently, researchers still pay more attention to the patch-data-based methods, which can
extract more discriminative information and deeper features in model training. In particular,
Convolutional Neural Network (CNN) is very popular among patch-data-based methods.
Since the feature information contained in a single pixel is limited, CNN cannot extract
local context information from the data. To solve this problem, researchers changed the
shape of the input data. Specifically, the pixel is placed in the center of the patch data.
The pixels around the classified pixel are also included in the patch data. This allows the
model to extract more local contextual information from the patch data to enhance the
classification accuracy in the central pixel.

In the early days of 2016, researchers mainly focused on HSI classification based on
1D-CNNs and 2D-CNNs [6]. Chen et al. [7] proposed a model that uses Stacked Autoen-
coders (SAE) for high-level information extraction and 1D-CNN for low-level information
extraction. In addition to methods based on 1D-CNNs, 2D-CNN-based methods are often
introduced into the HSI network to extract spatial feature information. Shen et al. [8] pro-
posed a model called ENL-FCN to incorporate the long-range context information, which
is constructed by a deep fully convolutional network and an efficient non-local module.
Since residual blocks have been extensively adopted in the HSI network, Zhong et al. [9]
developed a model to improve the accuracy of HIS classification, which is named the
Spectral-Spatial Residual Network (SSRN), and greatly enhanced the feature utilization rate
by using front-layer feature information to complement back-layer features. Furthermore,
Paoletti et al. [10] proposed a model named DPRN that also adopted the residual module.
Inspired by the 3D convolution, 3D convolution blocks have been widely applied to HSI
networks, which utilize spectral-spatial information to achieve more satisfactory classifi-
cation results. In [11], Zhong et al. developed 3D Deep-Residual Networks (3D-ResNets)
to reduce the influence of model size. To mine deeper spectral-spatial feature information
from HSIs, Zhang et al. [12] also used 3D-CNNs to construct a 3D-DenseNet model.

In recent years, combining 2D and 3D convolutions and optimizing the structure
of CNN-based models have gradually become a hotspot. Combining the advantage of
2D-CNN and 3D-CNN, some researchers designed a dual-branche structure to enhance
the classification accuracy of HSI. For instance, Zheng et al. [13] proposed a mixed CNN
with covariance pooling, named MCNN-CP, where covariance pooling is used to mine
second-order information from the spectral-spatial feature. Roy et al. [14] developed a
model that is a 3D convolution block combined with a 2D convolution block, which is called
a hybrid spectral CNN (HybridSN). By introducing an efficient residual structure, the net-
work parameters can be optimized, and a lightweight design can reduce the computational
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complexity of the model. Wu et al. [15] designed a re-parametrized network, abbreviated
as RepSSRN, which reparametrizes the Spectral-Spatial Residual Network (SSRN). Inspired
by the Dense Convolutional Network, Wang et al. [16] proposed a fast dense spectral-
spatial convolution (FDSSC) algorithm. In another work [17], a network named CMR-CNN
adopted the 3D residual blocks followed by the 2D residual blocks together to capture
the spatial-spectral feature information of the HSI. To reduce the network parameters and
computational complexity, Meng et al. [18] proposed a lightweight spectral-spatial convo-
lution HSI classification module (LS2CM), and Li et al. [19] designed a lightweight network
architecture (LiteDenseNet). The computational complexity and network parameters in
their work are much lower than counter-intuitive deep learning methods. Although these
methods mentioned above are effective in improving the classification performance of HSI,
it is difficult to overcome the issue caused by the limited training samples and increasing
network layers. So, much work has been done to introduce the attention mechanism and
transformer models into the HSI network. Sun et al. [20] constructed a model called the
spectral-spatial attention network (SSAN) to acquire important spectral-spatial information
in the attention regions of patch data. Li et al. [21] proposed a model called DBDA to
capture a variety of spectral-spatial information, which is a dual-branch network with two
attention mechanisms. He et al. [22] designed a model called the Spatial-Spectral Trans-
former (SST), which extracted spatial features via the VGGNet network and established
the relationship between adjacent spectra by using the dense transformer blocks. Similarly,
Sun et al. [23] designed a network that adopts a Gaussian weighted feature tokenizer to
capture high-level semantic features, which is called SSFTT. By improving the traditional
transformer model, Hong et al. [24] designed a novel method that is widely used in HSI
classification tasks, which is called SpectralFormer (SF). Although these networks are ex-
cellent at capturing spectral signatures, these models cannot capture the local contextual
information of patch data well, and they make insufficient use of the spatial features in HSI.

Besides the above limitations, the patch-data-based methods also tend to rely on the
local neighborhood information of the patch data in the training process, and sometimes,
overfitting is caused by improper setting of the training proportion. To verify whether
the patch-data-based CNN methods depend on the homogeneity of patch data during
the training process and evaluate the ability of the HSI method to extract spatial location
information, we rethink the HSI classification process from the data perspective in the
patch-data-based method and design a novel strategy to reconstruct the original dataset.
Based on this strategy, we also propose a new model based on the Siamese and Knowledge
Distillation Network (SKDN) to complete the classification task. The most important
contributions of this work can be summarized in the following way.

1. We use the proposed strategy of randomly shuffling data to explore the influence of
patch data homogeneity features in HSI classification networks. Specifically, this strat-
egy involves randomly assigning the pixels in the original dataset to other locations
to construct a new dataset. Therefore, the new patch data after the random strategy
contains richer information about species categories;

2. We propose a sub-branch to extract features from the reconstructed dataset and fuse
the loss values (RFL), which uses a designed loss function in RFL to compute and fuse
loss values from two sub-branches. The novelty of this loss function is that the loss
rate computed by RFL in the new data is cross combined with the loss rate calculated
in the original data from another sub-branch to further optimize the network. Thus,
the proposed network can not only enhance the recognition ability of the model, but
also increase the classification accuracy on randomly shuffled data, which is based on
the Siamese and Knowledge Distillation Network (SKDN) and is constructed from
two sub-branches;

3. We also introduce the proposed sub-branch RFL into the original network to further
explore the effectiveness of the RFL, and we let the original model and its improved
model achieve HSI classification on the original dataset. The experiments show that
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the classification performance of the improved model is better than that of the original
model, so it can also prove that the proposed sub-branch is effective and feasible;

4. Experiments conducted on several typical datasets show that, as the proportion of
randomly shuffled data increases, the latest patch-data-based CNN methods are
unable to extract more abundant local contextual information for HSI classification,
while the proposed sub-branch can alleviate this problem.

The rest of this paper consists of the following sections: Section 2 presents the method-
ology, Section 3 presents and analyzes the experiments, Section 4 discusses the usefulness
of the proposed methods, and Section 5 is the work’s conclusion.

2. Methodology

More details of the developed random shuffling strategy and the new network SKDN
constructed by the proposed sub-branch will be introduced and discussed carefully in
this section.

2.1. Randomly Shuffling the Pixels

It is well known that most pixels in the patch data belong to the same category in
the CNN-based networks in HSI classification. CNNs have shown that they can capture
spectral-spatial feature information and local contextual information in training patch data.
They largely rely on the data homogeneity of the patch data in the model’s training, leading
to overfitting if the value of the training ratio is not chosen correctly. Here, we designed
a random shuffling strategy to disrupt the data homogeneity of the patch data, which is
randomly assigning the pixels from the original dataset to other positions to form a new
dataset. The random shuffling of the pixel scheme can be seen in Figure 1. It consists of
reconstructing the dataset by randomly shuffling the position of pixels. The false color
image of the rebuilt dataset based on Indian Pines with various random shuffling ratios
is displayed in Figure 2. We found that as the proportion of random shuffling increased,
so did the category differences in each pixel cube. This random shuffling strategy can
increase the diversity of extracted features from the new dataset. Specifically, for each new
neighboring cube that contains many types of categories, CNNs can learn more category
information about different ground objects and extract more local context information
during feature extraction. We also present hereafter the advantage of the proposed random
shuffling strategy over the traditional training dataset in HSI classification. In general, the
3D-conv operations are adopted to acquire more spectral-spatial features in HSI, while the
2D-con operations pay more attention to acquiring more spatial features. If most of the
training samples in the neighboring cube belong to the same category, the model can easily
lead to ignoring some category information about other categories, resulting in a large
reliance on the data homogeneity of the patch data in the training process. By randomly
rearranging the pixel positions, the patch data of HSI can be reconstructed. This not only
serves to test the robustness of the network, but also helps the CNN-based model extract
more local context information and category information in the patch data. This strategy
also increases the training difficulty of the CNN-based network in the training process.
Therefore, in comparison to the traditional method of training patch data, the proposed
strategy enables us to rethink the task of HSI classification from the perspective of patch
data with feature extraction.

2.2. Hyperspectral Image Classification Network SKDN

By giving the traditional Siamese network a classification structure, it can have the
ability to classify and additionally calculates a cross-entropy loss for each individual
sample. Inspired by this method, we construct our network for HSI classification, with the
difference that we only compute the cross-entropy loss in our structure. The Knowledge
Distillation (KD) network is designed to transfer the extracted knowledge from a larger
model into a smaller network for knowledge preserving and computationally inexpensive
deep models [25]. Based on this theory, we design two branches to construct our model,
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where one branch extracts features from the original dataset as a teacher network, and the
other branch extracts features from the reconstructed dataset as a student network. The
difference is that we design a loss function to merge the loss rates of the two branches.
Although the neighborhood of the central pixel in the reconstructed dataset contains a
variety of species, it also makes it more difficult for the model to classifying central pixels
of patch data. Therefore, we propose a network SKDN based on the input form of the
Siamese network and the distillation mode of the KD network to improve the classification
ability. The structure of the network SKDN is illustrated in Figure 3. It consists of two
sub-branches, which are used to extract deep features and local context information in
the patch data from the original dataset and the reconstructed dataset, respectively. The
weights are not shared between the backbones used to extract features in the two branches.
Finally, the proposed new loss function is used to fuse the loss rates of the two branches in
order to improve the classification effect of the model.

Figure 1. The use of random shuffling strategy to reconstruct the HSI dataset. H, W, and B, respec-
tively, represent the length of HSI, the width of HSI, and the spectral number of HSI. It is randomly
assigning the pixels from the original dataset to other positions to form a new dataset. We can that see
the False Color Image of the new dataset is different from the False Color Image of the original dataset.
The Planar Effect Picture shows the strategy applied to a sample 3 × 3 image. Note that the position
of the spectrum corresponding to the shuffled pixel also changes as its pixel position changes.

Figure 2. The False Color Image of the reconstructed dataset based on Indian Pines with different
random shuffling ratios.

Figure 3. The architecture of the developed network SKDN, which consists of two sub-branches. Sub-
branch 1 extracts the information and computes the loss value as the knowledge of the original dataset.
Indeed, the sub-branch RFL extracts the feature and computes the loss value of the reconstructed
dataset, then fuses the knowledge in the new loss function Loss.
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Differentiated input strategy. Based on the random shuffling strategy, we also design
a different input strategy that feeds patch data from different datasets into the dual branches
of our network SKDN, providing more local context information to the model, while most
existing methods use the original dataset. To be specific, we are feeding two sets as the input
patch data for two branches in SKDN: the data input of one branch from the original patch
data, and the other one from the reconstructed patch data. So, the input data in the network
SKDN are different from the traditional Siamese networks, which often feed with different
size input data from the same dataset for its model training. Since the neighborhood of
the central pixel in the reconstructed dataset contains a variety of species, these patch data
have richer species categories than the original, which means that they can provide more
local context information to the model’s training to strengthening the model’s recognition
ability. We also transfer the knowledge in the feature extraction backbones to improve the
adaptability of the two sub-branches with different input data.

Weighted Cross-Entropy Loss. The sub-branch RFL of network SKDN includes two
loss functions. The computational process of the loss function is given by

L = α × Lori + β × Lrec

Lori (ŷn, yn) = Lrec(ŷn, yn) = − 1
N

N−1

∑
n=0

yn log(ŷn)
(1)

We use two weighted parameters (α and β) to fuse the two loss values learned from
the dual branch to balance the differential information due to different inputs. Here, we
also set the initial values of α and β to 1 and 0.5, respectively. yn is the label of the input
patch-data, and ŷn is the predicted value of the network output result. The Lrec represents
the loss value calculated on the RFL, where the computational process is performed on the
reconstructed dataset. The Lori represents the loss value calculated on sub-branch 1, where
the computational process is performed on the original dataset. Note that the input patch
data that are sent to the two sub-branches are different, so the two labels yn in Lori and Lrec
are also different. Furthermore, we still adopt a common Adam optimizer to optimize the
network with L.

3. Experiments

To test the feasibility of the strategy, four real-world datasets from HSI were selected
for the experiment in this paper. They are Indian Pines, Pavia University, Salinas, and
Kennedy Space Center. We can see more details of these public datasets in Table 1.

Table 1. Numbers of samples and land cover classes in four public datasets.

Indian Pines Pavia University Salinas Kennedy Space Center

ID Class Name Samples ID Class Name Samples ID Class Name Samples ID Class Name Samples

1 Alfalfa 46 1 Asphalt 6631 1 Brocoli_green_weeds_1 2009 1 Scurb 761
2 Corn-notill 1428 2 Meadows 18,649 2 Brocoli_green_weeds_2 23,726 2 Willow swamp 243
3 Corn-mintill 830 3 Gravel 2099 3 Fallow 1976 3 CP hammock 256
4 Corn 237 4 Trees 3064 4 Fallow_rough_plow 1394 4 Slash pine 252
5 Grass-pasture 483 5 Painted metal

sheets 1345 5 Fallow_smooth 2678 5 Oak/Broadleaf 161

6 Grass-trees 730 6 Bare Soil 5029 6 Stubble 3959 6 Hardwood 229

7 Grass-pasture-
mowed 28 7 Bitumen 1330 7 Celery 3579 7 Swamp 105

8 Hay-
windrowed 478 8 Self-Blocking

Bricks 3682 8 Grapes_untrained 11,271 8 Graminiod
marsh 431

9 Oats 20 9 Shadows 947 9 Soil_vinyard_develop 6203 9 Spartina marsh 520
10 Soybean-notill 972 10 Background 164,624 10 Corn_senesced_green_weeds 3278 10 Catiail marsh 404
11 Soybean-mintill 2455 11 Lettuce_romaine_4wk 1068 11 Salt marsh 419
12 Soybean-clean 593 12 Lettuce_romaine_5wk 1927 12 Mud flats 503
13 Wheat 205 13 Lettuce_romaine_6wk 916 13 Water 927
14 Woods 1265 14 Lettuce_romaine_7wk 1070 14 Background 56,975
15 Buildings-Grass-

Trees-Drives 386 15 Vinyard_untrained 7268

16 Stone-Steel-
Towers 93 16 Vinyard_vertical_trellis 1807

17 Background 10,776 17 Background 56,975

Total Samples 21,025 Total Samples 207,400 Total Samples 111,104 Total Samples 314,368
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Indian Pines (IP) is taken by the AVIRIS sensors. The size of this HSI dataset is
145 × 145, including 200 spectral bands and 24 noisy bands that cannot be reflected by
water. It has 10,249 pixels that can be divided into 16 land categories for HSI classification.
The False Color image and Ground Truth map are shown in Figure 4.

Pavia University (PU) is taken by the ROSIS sensors. The size of this image data is
615 × 345, which includes 9 categories. This PU dataset only leaves 103 bands and removes
12 bands. The False Color image and Ground Truth map are shown in Figure 5.

Salinas (SA) is taken by the AVIRIS sensors. It remains 204 bands after removing the
noisy bands in HSI. The dataset size of SA is 512 × 217, which holds 54,129 pixels that can
be divided into 16 land categories with true labels. The False Color image and Ground
Truth map are shown in Figure 6.

Kennedy Space Center (KSC) is taken by the AVIRIS sensors. The size of KSC data
is 512 × 614, which contains 13 land categories with true labels in total. This dataset only
leaves 176 bands and removes 48 bands that cannot be reflected by water. The False Color
image and Ground Truth map are shown in Figure 7.

Figure 4. Indian Pines (IP) dataset. (a) False Color image. (b) Ground Truth map.

Figure 5. Pavia University (PU) dataset. (a) False Color image. (b) Ground Truth map.
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Figure 6. Salinas (SA) dataset. (a) False Color image. (b) Ground Truth map.

Figure 7. Kennedy Space Center (KSC) dataset. (a) False Color image. (b) Ground Truth map.

In addition to reducing the spectral bands of the PU by PCA to 90, the spectral bands
of the KSC by PCA to 120, and the spectral bands of the IP and SA dataset by PCA to 110,
we also set some other parameters. During the training process, we set the learning rate,
training epochs, and patch size to 0.001, 200, and 13, respectively. Note that due to the
reconstruction of the HSI dataset during training, we still chose the usual training ratio in
these four datasets, which is set to 0.05, 0.1, 0.005, and 0.2, respectively. In the reconstructed
datasets experiments, we additionally select some training samples from the original
dataset to compute the knowledge loss that is used in the SKDN training. In the original
datasets experiments, we additionally choose some training samples from the reconstructed
dataset to compute the knowledge loss. In addition, three well-known numerical indicators,
namely overall accuracy (OA), average accuracy (AA), and kappa coefficient (kappa), are
used to evaluate the performance of different classification methods. OA is the ratio of
the number of correctly classified samples to the total number of test samples, AA is the
average accuracy across the accuracy of all classes, and Kappa is an available measure of
agreement between ground truth and classification maps. All experiments were performed
using four patch-data-based CNN methods in HSI classification, which are DPRN [10],
CEGCN [1], SSTFF [23] and MRViT [26]. All results of these experiments in four real-world
datasets are shown in Tables 2–11 and Figures 8–11.
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Table 2. Classification results’ OA from the improved methods and the original methods on four
reconstructed datasets.

Dataset Random Ratio Training Ratio DPRN SKDN(DPRN) SSTFF SKDN(SSTFF) MRViT SKDN(MRViT)

IP
0% 5% 95.17 95.32 96.39 96.46 98.08 98.12
20% 5% 65.4 76.85 68.94 74.05 73.72 79.22
50% 5% 32.61 45.49 37.61 40.46 43.34 50.43

PU
0% 10% 95.02 99.91 99.12 99.77 99.08 99.51
20% 10% 81.88 87.25 80.23 80.78 81.6 85.19
50% 10% 64.51 71.87 53.59 54.78 62.11 66.79

SA
0% 0.50% 95.58 95.92 96.39 96.9 96.27 96.73
20% 0.50% 55.73 73.63 70.89 76.38 74.5 78.51
50% 0.50% 24.96 36.66 32.57 45.48 40.4 51.12

KSC
0% 20% 97.01 97.82 98.08 98.1 98.17 98.21
20% 20% 57.73 83.41 70.37 76.17 81.75 82.38
50% 20% 26.69 55.36 43.05 47.5 50.26 50.91

Table 3. Classification results’ AA from the improved methods and the original methods on four
reconstructed datasets.

Dataset Random Ratio Training Ratio DPRN SKDN(DPRN) SSTFF SKDN(SSTFF) MRViT SKDN(MRViT)

IP
0% 5% 92.00 93.01 92.68 93.56 93.39 95.26
20% 5% 54.49 67.26 61.98 70.21 64.55 74.24
50% 5% 17.63 31.85 30.41 31.98 32.11 44.69

PU
0% 10% 90.3 95.66 98.44 98.72 98.65 99.03
20% 10% 73.21 84.16 76.22 76.84 77.02 84.52
50% 10% 47.09 61.27 41.8 45.83 47.78 60.17

SA
0% 0.50% 95.32 95.44 96.12 96.63 96.09 96.72
20% 0.50% 54.21 74.12 71.64 74.65 72.92 75.91
50% 0.50% 23.24 33.81 28.74 42.07 37.27 48.36

KSC
0% 20% 96.5 97.23 97.65 98.03 97.37 97.85
20% 20% 48.61 81.76 69.3 69.65 79.43 80.05
50% 20% 18.28 51.7 38.36 43.93 45.43 50.37

Table 4. Classification results’ kappa from the improved methods and the original methods on four
reconstructed datasets.

Dataset Random Ratio Training Ratio DPRN SKDN(DPRN) SSTFF SKDN(SSTFF) MRViT SKDN(MRViT)

IP
0% 5% 95.82 95.91 95.88 96.22 97.37 97.81

20% 5% 60.44 73.60 64.44 70.41 69.42 74.81
50% 5% 21.72 36.87 28.60 30.01 34.88 43.01

PU
0% 10% 93.47 95.61 99.53 99.60 98.42 98.91

20% 10% 75.34 83.05 73.77 74.51 75.51 77.87
50% 10% 50.22 61.93 36.76 38.54 48.53 58.02

SA
0% 0.50% 95.31 95.42 96.23 96.43 96.36 95.82

20% 0.50% 50.34 70.75 67.80 73.70 71.51 75.45
50% 0.50% 17.47 29.97 24.37 38.68 32.51 43.92

KSC
0% 20% 96.57 97.01 97.53 97.97 97.62 98.27

20% 20% 53.11 81.47 67.02 67.83 74.66 78.27
50% 20% 20.39 50.18 35.92 41.46 44.45 46.29

Table 5. The experimental results’ OA from the improved models and the original models on four
real-world datasets.

Dataset Random Ratio Training Ratio DPRN SKDN(DPRN) SSTFF SKDN(SSTFF) MRViT SKDN(MRViT)

IP
0% 5% 95.17 95.32 96.39 96.46 98.08 98.12

20% 5% 92.61 95.04 83.3 94.65 91.74 97.24
50% 5% 74.45 82.21 52.49 94.09 76.76 96.48

PU
0% 10% 95.02 99.91 99.12 99.77 99.08 99.51

20% 10% 95.27 99.42 95.51 99.61 96.16 98.98
50% 10% 92.25 96.37 85.66 98.61 92.37 97.15

SA
0% 0.50% 95.58 95.92 96.39 96.9 96.27 96.73

20% 0.50% 90.12 92.89 89.66 96.01 91.12 96.24
50% 0.50% 84.07 89.01 60.33 95.93 77.15 94.07

KSC
0% 20% 97.01 97.82 98.08 98.1 98.17 98.21

20% 20% 95.13 99.44 34.71 65.79 91.49 94.23
50% 20% 71.28 77.14 17.66 57.25 77.01 85.61
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Table 6. The experimental results’ AA from the improved models and the original models on four
real-world datasets.

Dataset Random Ratio Training Ratio DPRN SKDN(DPRN) SSTFF SKDN(SSTFF) MRViT SKDN(MRViT)

IP
0% 5% 92.81 93.04 92.86 93.73 96.48 97.66

20% 5% 88.62 89.15 84.19 88.39 92.64 94.97
50% 5% 69.44 76.84 83.65 84.79 80.73 85.89

PU
0% 10% 98.79 99.53 99.06 99.24 98.67 99.44

20% 10% 98.26 99.31 94.62 99.09 96.1 98.59
50% 10% 94.62 95.04 87.44 97.85 93.34 96.18

SA
0% 0.50% 92.12 94.79 95.69 96.55 95.51 96.79

20% 0.50% 90.93 92.84 89.33 96.39 90.75 97.21
50% 0.50% 83.71 88.79 60.12 94.51 72.46 95.68

KSC
0% 20% 95.01 96.57 92.18 93.59 92.04 92.96

20% 20% 93.22 96.16 57.34 59.16 90.76 90.91
50% 20% 73.78 76.3 41.45 45.26 90.18 91.45

Table 7. The experimental results’ kappa from the improved models and the original models on four
real-world datasets.

Dataset Random Ratio Training Ratio DPRN SKDN(DPRN) SSTFF SKDN(SSTFF) MRViT SKDN(MRViT)

IP
0% 5% 93.68 94.10 94.09 94.71 96.33 97.21

20% 5% 93.17 94.35 93.19 94.65 94.44 96.85
50% 5% 74.29 79.96 92.23 93.26 93.89 95.97

PU
0% 10% 96.73 98.77 97.01 99.53 97.74 99.03

20% 10% 97.16 98.23 96.78 99.48 96.83 98.65
50% 10% 94.74 95.15 89.95 98.15 90.41 96.21

SA
0% 0.50% 93.27 95.11 94.22 96.24 94.33 96.08

20% 0.50% 92.5 92.09 93.18 95.56 92.09 95.81
50% 0.50% 85.93 87.77 70.57 95.01 90.93 93.41

KSC
0% 20% 96.07 97.35 85.66 89.73 95.76 97.73

20% 20% 84.51 97.24 60.14 61.55 89.18 93.57
50% 20% 70.37 74.41 50.49 51.57 83.62 87.94

Table 8. The experimental results from different single-pixel-based models on Indian Pines.

Methods DPRN CEGCN SSTFF MRViT SKDN(MRViT)
Random Shuffle Training Ratio OA OA OA OA OA

0% 5% 68.84 97.61 62.55 65.19 74.51
20% 5% 64.49 73.81 63.61 67.86 72.86
50% 5% 67.80 34.24 64.94 66.36 74.83
100% 5% 68.75 19.24 64.93 65.37 73.17

20% 20% 87.74 75.6 80.87 83.62 86.31
50% 20% 87.43 47.47 79.96 83.52 85.79
100% 20% 87.14 19.45 79.84 84.68 86.47

20% 50% 90.55 74.56 90.68 93.14 95.97
50% 50% 90.67 48.4 90.35 92.45 94.75
100% 50% 90.18 24.31 87.01 92.31 94.39

Table 9. The experimental results from different single-pixel-based models on Pavia University.

Methods DPRN CEGCN SSTFF MRViT SKDN(MRViT)
Random Shuffle Training Ratio OA OA OA OA OA

0% 10% 94.12 96.73 90.66 84.06 84.79
20% 10% 93.82 83.5 91.82 84.76 88.77
50% 10% 92.01 64.29 92.22 85.62 88.14
100% 10% 93.2 50.89 91.39 85.97 87.39

20% 30% 95.0 83.78 95.71 92.1 93.66
50% 30% 94.72 65.16 95.37 92.34 93.17
100% 30% 94.5 55.33 95.05 92.06 94.09

20% 50% 95.85 81.98 96.57 96.28 96.75
50% 50% 94.38 60.95 96.9 96.31 95.73
100% 50% 94.16 56.45 96.64 96.18 96.71
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Table 10. The experimental results from different single-pixel-based models on Salinas.

Methods DPRN CEGCN SSTFF MRViT SKDN(MRViT)
Random Shuffle Training Ratio OA OA OA OA OA

0% 0.50% 84.77 99.13 85.84 76.31 77.87
20% 0.50% 85.93 80.13 86.51 78.76 82.79
50% 0.50% 84.86 53.05 84.52 75.58 83.52
100% 0.50% 84.07 18.98 84.56 76.16 82.71

50% 5% 88.95 78.58 92.76 90.47 92.77
20% 5% 89.12 87.72 92.74 90.99 93.18
100% 5% 88.44 64.71 92.81 90.86 92.27

20% 20% 93.73 91.94 95.74 94.29 95.57
50% 20% 95.12 89.96 95.03 94.14 95.01
100% 20% 94.79 83.12 95.56 94.15 94.35

20% 50% 95.16 92.55 97.14 97.23 97.59
50% 50% 94.71 90.65 97.59 97.45 97.74
100% 50% 94.84 88.65 97.69 97.22 97.48

Table 11. The experimental results from different single-pixel-based models on Kennedy Space Center.

Methods DPRN CEGCN SSTFF MRViT SKDN(MRViT)
Random Shuffle Training Ratio OA OA OA OA OA

0% 20% 93.13 95.86 32.71 88.76 89.59
20% 20% 90.52 77.88 11.77 79.25 81.88
50% 20% 85.96 52.99 15.5 75.88 80.41
100% 20% 87.79 13.93 16.68 80.2 79.74

20% 40% 91.43 78.86 15.36 87.4 90.82
50% 40% 90.29 54.74 15.2 82.22 90.38
100% 40% 90.14 18.24 8.75 84.57 90.43

20% 60% 93.66 78.65 8.64 93.98 94.01
50% 60% 92.88 56.89 14.89 93.55 93.71
100% 60% 92.17 20.94 15.23 92.82 93.52

Figure 8. The first row is the prediction map of Indian Pines (IP) with a random shuffling ratio of
0, the second row is the experimental results of IP with a random shuffling proportion of 0.2, and
the third row is the experimental results of IP with a random shuffling ratio of 0.5. (a) Ground Truth
map; (b) DPRN; (c) SKDN(DPRN); (d) SSFTT; (e) SKDN(SSTFF); (f) MRViT; (g) SKDN(MRViT).
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Figure 9. The first row is the prediction map of Pavia University (PU) with a random shuffling ratio
of 0, the second row is the experimental results of PU with a random shuffling proportion of 0.2, and
the third row is the experimental results of PU with a random shuffling ratio of 0.5. (a) Ground Truth
map; (b) DPRN; (c) SKDN(DPRN); (d) SSFTT; (e) SKDN(SSTFF); (f) MRViT; (g) SKDN(MRViT).

Figure 10. The first row is the prediction map of Salinas (SA) with a random shuffling ratio of 0, the
second row is the experimental results of SA with a random shuffling proportion of 0.2, and the third
row is the experimental results of SA with a random shuffling ratio of 0.5. (a) Ground Truth map;
(b) DPRN; (c) SKDN(DPRN); (d) SSFTT; (e) SKDN(SSTFF); (f) MRViT; (g) SKDN(MRViT).
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Figure 11. The first row is the prediction map of KSC with a random shuffling ratio of 0, the second
row is the experimental results of KSC with a random shuffling proportion of 0.2, and the third
row is the experimental results of KSC with a random shuffling ratio of 0.5. (a) Ground Truth map;
(b) DPRN; (c) SKDN(DPRN); (d) SSFTT; (e) SKDN(SSTFF); (f) MRViT; (g) SKDN(MRViT).

3.1. The Experimental Results of the SKDN on Reconstructed Data Based Four
Real-World Datasets

Since our random shuffling strategy disrupts the data homogeneity of the original
patch data, we introduce the designed sub-branch into all original networks to form it im-
proved network SKDN, and we complete these experiments on four reconstructed datasets.
Note that we additionally chose some training samples from the original datasets for the
improved model (SKDN)’s training, where the proportions of these original datasets in
the model’s training are the same as the ratio in reconstructed datasets. In these experi-
ments, we set the initial values of α and β to 0.5 in the weighted cross-entropy loss function
when the random shuffling ratio was 0%. Tables 2–4 report the experimental results of the
networks on these four datasets, and the visual results of these networks can be seen in
Figure 8 through Figure 11.

(1) The analysis of the experiments on the reconstructed dataset based on Indian
Pines: the second row in Table 2 lists the quantitative results of the different methods, and
Figure 8 shows the prediction maps corresponding to these methods for the reconstructed
IP dataset. Compared to the network DPRN, the SKDN(DPRN) model improves the OA
by 11.45% and achieves a better visual result (Figure 8c) when the random ratio is 20%. It
is 12.88% higher than DPRN when the random mixture ratio is 50%. This shows that the
result of the improved model is better than that of the original model, which proves the
effectiveness of RFL in the network. Obviously, SKDN(SSTFF) also has a better classification
performance compared to SSTFF. The value of OA is 5.11% higher than that of SSTFF when
the random shuffling ratio is 20%. It is 2.85% higher than that of SSTFF when the ratio
of the random mixture is 50%. From Figure 8f, it is easy to see that the improved model
can extract more discriminative local context information and category information in the
patch data. The corresponding values of the SKDN(MRViT) model in Table 2 also show
that the improved network performs better than MRViT. The value of OA is 5.5% higher
than MRViT when the random mixture proportion is 20%. It is 7.09% higher than MRViT
when the proportion of the random mixture is 50%. This also proves that the designed
sub-branch RFL is more effective in the reconstructed dataset.

(2) The analysis of the experiments on the reconstructed Pavia University dataset:
the third row in Table 2 illustrates the quantitative results of the different methods, and
Figure 8 shows the prediction maps corresponding to these methods on for reconstructed
PU dataset. It is clear that our improved-method SKDN(DPRN) performs better than
the original method DPRN. The value of the OA is 5.37% higher than that of DPRN
when the random mixture proportion is 20%. It is 7.36% higher than that of DPRN when
the proportion of random mixture is 50%. By analyzing these visual maps, it is easy to
find that SKDN(DPRN) in Figure 9c has a lower prediction error range than DPRN in
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Figure 9b. In contrast to SSTFF, the improved SKDN(SSTFF) model in Figure 9e also has
fewer misclassifications. This can be confirmed by the improved OA value (0.55% and
1.19%) in Table 2. Figure 9g also shows that the improved SKDN(MRViT) method has better
performance, which is also confirmed by its OA value (85.19% and 66.79%) in Table 2. This
is direct evidence that the sub-branching used to construct the SKDN is effective.

(3) The analysis of the experiments on the reconstructed Salinas dataset: the fourth
row in Table 2 shows the classification results of the different methods. The corresponding
prediction graphs for the reconstructed SA dataset are shown in Figure 10. Compared
with the first network, the improved-network SKDN(DPRN) improves the OA by 17.9%
when the random shuffling ratio is 20% and achieves a better classification result with
fewer misclassified regions in the second row in Figure 10c. It is 11.7% higher than DPRN
when the proportion of random shuffling is 50%. These results show that RFL is useful for
the model. It is clear that the experimental results of SKDN(SSTFF) are superior to those
of SSTFF, which can also be seen in Figure 10e and is confirmed by the better OA value
(5.49% and 12.91%) in Table 2. In Figure 10f,g, the experimental results of SKDN(MRViT)
are superior to those of MRViT with fewer training samples. The SKDN(MRViT) model
improves OA by 4.01% when the random ratio is 20%. It is 10.72% higher than MRViT
when the proportion of random shuffling is 50%. These results can prove that RFL can
extract more discriminative local context information in the new dataset.

(4) The analysis of the experiments on the reconstructed dataset Kennedy Space
Center: the fifth row in Table 2 shows the quantitative results of different methods, and
Figure 11 is the prediction maps corresponding to these methods on the reconstructed KSC
dataset. It is noticeable that the OA value in the experimental results of the improved model
is better than that of the original model. In the following, the results of these methods
are only briefly analyzed. Compared with the network DPRN, the model SKDN(DPRN)
improves OA by 25.68% and achieves a better result, as shown in Figure 11c, where the pro-
portion of random shuffling is 20%. It is 28.67% higher than the DPRN when the proportion
of random mixture is 50%. Moreover, the classification capability of SKDN(SSTFF) is better
than that of SSTFF, which is also evidenced by the better OA value (5.8% and 4.45%). Com-
pared to the MRViT, SKDN(MRViT) also achieves better classification performance (82.38%
and 50.91%) in Table 2. SKDN(MRViT) has less misclassification than MRViT in its domain,
which can be seen in Figure 11g. All the results of these experiments proved that our model
SKDN can indeed extract more local context information and category information from
random shuffling patch data for HSI classification. Our proposed sub-branch RFL, which
fuses the loss rates of two sub-branches in its loss function, can effectively improve the
classification accuracy in random shuffling data. All results of these experiments have
proven that our model SKDN can really extract more local context information and cate-
gory information from random shuffling patch data for HSI classification. Our proposed
sub-branch RFL, which fuses the loss rates of two sub-branches in its loss function, can
effectively improve the classification accuracy in random shuffling data.

3.2. The Experimental Results of the SKDN on Four Real-World Datasets

To further validate the usefulness of the proposed sub-branch RFL, we introduce RFL
into the original network to form its improved network SKDN and let the improved model
and the original model achieve the HSI classification task on the four original datasets.
Note that we additionally chose some training samples from the reconstructed datasets
for the improved model (SKDN) training, where the proportions of these reconstructed
datasets in model training are the same as the ratio in the original datasets. Table 5 lists the
quantitative results of the original methods and the improved methods on four original
datasets. We also set the initial values of α and β to 0.5 in the weighted cross-entropy loss
function when the random shuffling ratio was 0%. Hereinafter, we just briefly analyze the
results of these methods on four original datasets.

The second row in Table 5 lists the experimental results of the original networks
and the improved models for the IP dataset. The classification result of SKDN(DPRN) is
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2.43% higher than the result of DPRN for OA when the proportion of random mixture
is 20%; the value of the OA also improves by 7.76% when the random shuffling ratio is
50%. Compared with the network SSTFF, the improved model SKDN(SSTFF) has a better
classification performance, which can be verified by its improved OA value (11.35% and
41.6%) in Table 5. We also find that the improved network SKDN(MRViT) (97.24% and
96.48%) performs better than MRViT. This proves that the proposed RFL is effective in the
original dataset.

The third row in Table 5 shows the experimental results of the original networks and
the improved models for the PU dataset. Compared with the original method DPRN, the
improved-method SKDN(DPRN) improves OA by 4.15% when the random shuffling ratio
is 20%. It is 4.12% higher than DPRN when the proportion of random shuffling is 50%.
We also can see that the improved-method SKDN(SSTFF) also performs better than SSTFF,
which can also be verified by its OA value (99.61% and 98.61%). Compared to the MRViT,
SKDN(MRViT) also achieves a better classification performance, which can be verified by
its improved OA value (2.82% and 4.78%). These results demonstrate that the RFL is useful
in our model.

The fourth row in Table 5 shows the experimental results of the original networks and
the improved networks for the SA dataset. Compared with DPRN, the improved method
SKDN(DPRN) improves OA by 2.77% when the random shuffling ratio is 20%. It is 4.94%
higher than DPRN when the proportion of random shuffling is 50%. It is shown that the
improved-method SKDN(SSTFF) also performs better than SSTFF, which can be verified by
its improved OA value (6.35% and 35.6%). Compared to the MRViT, SKDN(MRViT) also
achieves a better classification performance, which can also be seen in its OA value (96.24%
and 94.07%) in Table 5. These results also prove that the RFL can capture the discriminative
feature in the original dataset.

The fifth row in Table 5 lists the experimental results of the original networks and the
improved networks for the KSC dataset. Compared with DPRN, the OA of SKDN(DPRN)
improves by 4.31% and 5.86% when the random shuffling ratios are 20% and 50%, respec-
tively. Moreover, the OA of SKDN(SSTFF) is 31.08% higher than that of SSTFF when the
proportion of random shuffling is 20%. It is 39.59% higher than SSTFF when the random
shuffling ratio is 50%. Compared to the MRViT, FSKDN(MRViT) also achieves a better clas-
sification performance, which can be verified by its improved OA value (2.74% and 8.6%).
All results of these experiments show that the classification capacity of the improved model
SKDN is superior to that of the original model, which in turn proves that the proposed RFL
sub-branch is effective and feasible.

3.3. The Experimental Results of Single Pixel-Based Methods on Reconstructed Data Based on Four
Real-World Datasets

We set the value of the patch-size parameter to 1 in the patch-data-based CNN meth-
ods in the HSI classification so that they become the single-pixel-based methods in this
experiment. Tables 8–11 show the results of each network with different random shuf-
fling ratios and training ratios in the HSI classification. We see that the accuracy of these
models improves slightly when the training fraction is increased and the random mixture
ratio is kept constant. However, when the same training fraction is kept and the random
mixture ratio is increased, the classification results of the CNN-based method and the
Transformer-based method, such as the DPRN and the SSTFF, vary only within a certain
value interval, and the OA value does not change significantly, but the classification results
of the GCN-based network show a downward trend. Using the experiments of the recon-
structed dataset based on IP as an analysis case and setting the proportion of each method
to 5% in the model’s training, we find that the results of the DPRN are in the range of 64%
to 69% when the proportion of random shuffling increases, the results of the SSTFF are
in the range of 62% to 65%, the results of the MRViT are in the range of 65% to 68%, and
the results of the SKDN(MRViT) are in the range of 72% to 75%. However, the results of
the CEGCN decreased from 97% to 19%. These experiments show that no matter how the
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proportion of random shuffling increases, the classification accuracy results of the single
pixel-based models for HSI classification do not change significantly. This may indicate that
the single pixel-based methods do not use the local context relationship between pixels for
the classification of HSIs, which also proves that the strategy of reconstructing the dataset
has no major effect on the experimental classification results of the single pixel-based
networks for the classification of HSIs.

4. Discussion

Several conclusions can be drawn regarding the role of the random shuffle strategy
and the sub-branch RFL. First, the classification results of these experiments on the re-
constructed datasets and original datasets prove that our model SKDN can extract more
local context information and category information from random shuffling patch data for
HSI classification. Furthermore, these experiments reveal that the patch-data-based CNN
methods really depend on the data homogeneity of patch-data in the training process. This
can also be verified by the classification results of these original models that present a
downward trend as the proportion of random shuffling increases. What is more, the RFL is
introduced into the original model to construct the SKDN, and the new loss function in the
SKDN can fuse loss values from two sub-branches that enhance the recognition ability of
the original method. Although the combination of the random shuffling strategy and the
RFL cannot achieve a significant effect in the single pixel-based method’s training process,
it also enriches the related research on the single pixel-based methods in HSI classification.
The work in this paper provides certain reference values for subsequent research into the
patch-data-based CNN methods.

5. Conclusions

To resolve the issue of whether the patch-data-based CNN methods really depend
on the data homogeneity of the patch-data in HSI, we propose a strategy of randomly
shuffling pixel data to validate the influence of the characteristics of the patch-data in
HSI classification networks. Specifically, it is to randomly assign the pixels in the original
dataset to other locations. To ensure that the classification networks of HSI can learn
more local contextual information and category information regarding the patch data, we
also propose a sub-branch to fuse the loss rates. In detail, the loss rate calculated by this
sub-branch in the new patch data is cross combined with the loss rate calculated by another
branch in the original patch data to construct a new hyperspectral classification network
named SKDN. Extensive experiments on these four datasets indicate that as the proportion
of randomly shuffled data increases, the patch-data-based CNN methods are no longer
able to extract more discriminative local context information for classifying pixels in HSI.
However, the network SKDN constructed by our proposed sub-branch can effectively
address this problem, which can improve the classification accuracy of randomly shuffled
data. In addition, we also introduce the proposed sub-branch into the original network and
let the improved model and the original model achieve HSI classification on the original
dataset to explore the effectiveness of the sub-branch RFL. The results of all experiments
show that the classification performance of the improved model is better than that of the
original model, so they also prove that the proposed sub-branch is effective and feasible.
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