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Abstract: Turbulence-degraded image frames are distorted by both turbulent deformations and
space–time varying blurs. Restoration of the atmospheric turbulence-degraded image is of great
importance in the state of affairs, such as remoting sensing, surveillance, traffic control, and astronomy.
While traditional supervised learning uses lots of simulated distorted images for training, it has poor
generalization ability for real degraded images. To address this problem, a novel blind restoration
network that only inputs a single turbulence-degraded image is presented, which is mainly used to
reconstruct the real atmospheric turbulence distorted images. In addition, the proposed method does
not require pre-training, and only needs to input a single real turbulent degradation image to output
a high-quality result. Meanwhile, to improve the self-supervised restoration effect, Regularization
by Denoising (RED) is introduced to the network, and the final output is obtained by averaging the
prediction of multiple iterations in the trained model. Experiments are carried out with real-world
turbulence-degraded data by implementing the proposed method and four reported methods, and
we use four non-reference indicators for evaluation, among which Average Gradient, NIQE, and
BRISQUE have achieved state-of-the-art effects compared with other methods. As a result, our
method is effective in alleviating distortions and blur, restoring image details, and enhancing visual
quality. Furthermore, the proposed approach has a certain degree of generalization, and has an
excellent restoration effect for motion-blurred images.

Keywords: blind restoration; atmospheric turbulence; single image; self-supervised learning

1. Introduction

Space detection research, long-range video surveillance, and drone imaging systems
are often affected by the atmosphere of the Earth [1,2]. This is mainly due to the continuous
heating and cooling of the atmosphere during day and night; the atmosphere refractive
index changes randomly, which makes the Earth’s atmosphere constantly move irregularly.
Generally, this phenomenon is called atmospheric turbulence. Atmospheric turbulence
will seriously affect the imaging resolution and imaging quality of long-range imaging
systems [3]. Therefore, eliminating the influence of atmospheric turbulence from images is
crucial for remote imaging systems.

In the mid-1960s, inverse convolution was first used in the restoration of turbulence-
degraded images. Subsequently, Labeyrie proposed a speckle interferometry method,
which superimposed the power spectrum containing a large number of short-exposure
images; however, it does not seem possible to use it for discriminating faint stars against the
sky background [4]. Dainty and Ayers proposed a blind convolution restoration method
based on a single frame, which is called the iterative blind deconvolution (IBD) algorithm;
it should be stressed that the uniqueness and convergence properties of the deconvolution
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algorithm are uncertain and that the effect of various amounts of noise existing in the
convolution data is unknown at present [5]. Non-iterative algorithms mainly include
the lucky imaging algorithm and the additive system of photographic exposure (APEX)
algorithm [6,7]. However, both the iterative and non-iterative algorithms are sensitive to
the system noise contained in the image, and the turbulence degradation model is difficult
to express with an accurate mathematical analytical expression, which further increases the
difficulty by using model-based or related prior conditions to remove the turbulence effect
from an image.

In recent years, machine learning has shown outstanding performance on various
image processing tasks, especially in Convolutional Neural Networks (CNN) regarding
image feature extraction [8–11]. Accordingly, researchers have increasingly begun to apply
machine learning to restore images degraded by atmospheric turbulence. Currently, the
existing machine learning method is mainly a supervised learning framework, which is
simply a formalization of the idea of learning from examples, and this type of learning
relies on quantities of data to train the model. However, it is difficult to obtain plenty
of real blurred–sharp image pairs for the training network. Therefore, the training set is
generally constructed using synthetic blurred–sharp image pairs, including in studies by
Gao et al. [12,13] and Chen et al. [14]. Although the existing networks have obtained good
results for simulated degraded images, the restoration results of real turbulence-distorted
images are unknown. For instance, Bai et al. [15] presented the Fully Convolutional
Networks (FCN) and the Conditional Generative Adversarial Network (CGAN) model,
respectively, for the blind restoration of turbulence-distorted images, which had an ex-
cellent output in simulated degraded images. However, the experiment was not carried
out for natural turbulence-distorted images. Subsequently, in 2020, a deep autoencoder
combined with the U-Net network model was proposed by Gao et al. [13] to remove the
turbulence effect; they conducted restoration experiments on real degraded images but did
not introduce evaluation indicators of the output results.

In general, it is a demanding task to resume high-level turbulence corrupted images
as the image degradations get more severe and obtaining a correct reconstruction. In this
article, instead of requiring a massive training sample size in deep networks, we adopt a
self-supervised training strategy to model the turbulence from a relatively small dataset.
Specifically, an effective model was proposed to attempt to solve the problem, which only
inputs a single real turbulence-degraded image for training and testing. The whole network
consists of two parts, one of which is to generate the latent clear image using the Deep Image
Prior (DIP) network [16], and the other is to estimate the fuzzy kernel of the distorted
image by three layers of the Convolutional Neural Network (CNN). Additionally, an
effective regularization is introduced into the whole network framework in order to ensure
a better restoration effect. In fact, the process of the proposed restoration approach can
be explained as a kind of “zero-shot” self-supervised learning of the generative networks.
Presently, “zero-shot” self-supervised learning has been widely applied in multiple task
domains [17–19].

Here, we summarize the novelties of this paper as follows:

(1) We proposed an effective self-supervised model to attempt to solve the problem; our
proposed method can minimize finer geometrical distortions while requiring only a
single turbulent image to get the restored image;

(2) Effective regularization by denoising (RED) is introduced into the whole network
framework in order to ensure a better restoration effect;

(3) We conducted extensive experiments by incorporating the proposed approach, which
demonstrate that our method can surpass previous state-of-art methods both quanti-
tatively and qualitatively (for more information, see Sections 4.1–4.4).

The rest of this article is organized as follows. Section 2 mainly introduces the meaning
of self-supervised learning, the network architecture, and the training process. Section 3
describes the follow-up comparison method, the data source, and the index of the com-
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parative experiment. Section 4 presents the results and discussions. Finally, this work is
concluded in Section 5.

2. Proposed Method
2.1. Self-Supervised Learning

Self-supervised learning was firstly introduced in robotics, where training data is
automatically labeled by leveraging the relationship between different input sensor signals.
Recently, self-supervised learning has received extensive attention from growing machine
learning researchers [20–23]. Yann LeCun also spoke highly of self-supervised learning on
AAAI 2020. Specifically, the approach is essentially special unsupervised learning with the
supervised form. To complete the related specific task requirements, the label information
usually comes from the data itself, and various auxiliary tasks are used to improve the
quality of the representation learning. In terms of representation learning, self-supervised
learning has great potential to replace fully supervised learning. The objective function of
which can be expressed as follows:

ζ(θ) = E
T1,

x∼D
T2 ∼T

`( fθ(x1), fθ(x2)) (1)

where given the training data distribution D and the augmentation distribution T, the model
parameter θ is trained to maximize/minimize Equation (1), where f (θ) is the encoder that
contains a backbone a projector, x1 = T1(x), x2 = T2(x), and ` is the similarity/distance
function [24]. In contrast to the artificial label provided as the label of each data in super-
vised learning, self-supervised learning generates corresponding pseudo labels for training
according to specific task requirements. Therefore, the method for automatically obtaining
pseudo-labels is very important. Self-supervised representation learning methods can
be divided into three types for different types of pseudo-labels: (I) Generative [25,26];
(II) Contrastive [27,28]; and (III) Generative–Contrastive (adversarial) [29,30].

Since the restoration task corresponding to this article is mainly the first task type, it is
considered to have good meaning to be able to restore the characteristics of the original data
through the learned elements in the data recovery scheme. Currently, the usual method of
this type is mainly the Autoencoder, and the architecture of Autoencoder is as follows:

It can be seen from Figure 1 that the Autoencoder mainly includes an encoder and
a decoder [31], and its structure is usually symmetrical. Overall, the purpose of the
Autoencoder is to reconstruct the input data in the output layer. The ideal situation is that
the output signal, y, is the same as the input signal, x. Thus, the encoding and decoding
process of Autoencoder can be described as the following expressions:

h1 = σe(W1x + b1) (2)

y = σd(W2h1 + b2) (3)

where Equation (2) denotes the encoding process, Equation (3) is the decoding process,
and W1 and b1 represent the weight and bias of the encoder, respectively. Similarly, W2
and b2 are the weight and bias of the decoder, respectively. σe represents the non-linear
transformation in the encoding process, with the more commonly used ones being sigmoid,
tanh, and Relu, and σd denotes the nonlinear transformation or affine transformation in the
decoding process. Consequently, the loss function of the Autoencoder is to minimize the
error between y and x, which is expressed as follows:

J(W, b) = ∑ (L(x, y)2) = ∑‖y− x‖2
2 (4)

In Equation (4), W represents weight and b denotes bias. In addition, L is the loss
function calculated by mean square error.
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2.2. Proposed Network Architecture

Atmospheric turbulence distortion of an image is a complex physical process. It produces
geometric distortion, space and time-variant defocus blur, and motion blur. According to
the literature (Zhu and Milanfar) [32], the imaging process can be formulated as follows:

yj = Hj ∗Mj ∗ x + nj (5)

where x denotes the ideal image, the “∗” is namely convolution operation, and Mj and Hj
represent the geometric deformation matrix and blurring matrix, respectively. nj denotes
additive noise and yj is the j-th observed frame. When we ignore the impact of noise, the
formula above can be simplified to:

yj = Kj ∗ x (6)

Kj = Hj ∗Mj (7)

where Kj denotes the turbulence-distorted operator. In that case, the proposed framework
is shown in Figure 2. Specifically, it contains two parts: Fx and FK. The function of Fx is
mainly to generate the latent clear image when inputting two-dimensional random noise
(rx). Fx is composed of a four-layer symmetrical encoder–decoder network, and each layer
of encoding and decoding modules is linked by the skip connection, which can effectively
reduce the problems of gradient disappearance and network degradation. Simultaneously,
the function of FK is to generate a turbulence-distorted operator by inputting a real degraded
image (yj), which is mainly a fully convolutional network (seen in Figure 3) that can restore
the complicated 2D degraded kernel. Moreover, each layer of network parameters of Fx
are shown in Figure 4. In most cases, the turbulence-degraded image can be equivalent to
the convolution generation of the turbulence-degraded operator and the potentially clear
image [32,33]. Therefore, by substituting x and Kj with Fx and FK, the deconvolution can be
written as follows:

min
Fx,FK

ζ(Fx(rx)⊗ FK(yj), yj) = min
Fx,FK

∥∥Fx(rx)⊗ FK(yj)− yj
∥∥2,

s.t. 0 ≤ (Fx(rx))i ≤ 1, ∀i
(

FK(yj)
)

m ≥ 0, ∑m
(

FK(yj)
)

m = 1, ∀m
(8)

where (·)i and (·)m represent the i-th and m-th elements, respectively.
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Figure 4 shows the specific composition of the Fx network. The network used the
same encoder–decoder architecture. Therefore, the network composition for one layer
of the encoder–decoder is listed, which is roughly similar to the composition of the DIP
network [16]. The down-sampling is implemented using stride = 2, and the up-sampling is
implemented by using 2× bilinear interpolation.
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2.3. Regularization by Denoising (RED)

In essence, the image restoration process is a classical ill-posed problem, especially
for the unconstrained self-supervised learning solution used in this research. Therefore,
we added a denoising regular term after the existing objective function to produce a better
restored image. The denoising regularization term was first proposed by Romano et al. [34].
It uses existing denoisers to regularize the inverse problem and relies on the Alternating
Direction Multiplier Method (ADMM) optimization technology. Meanwhile, it has been
proven effective in image denoising, over-segmentation, deblurring, etc. The objective
function after adding denoising regularization is:

ϑ1 = min
x

1
2

∥∥∥∥∥yj −
∧
k ⊗ x

∥∥∥∥∥
2

2

+ λρ(x), ρ(x) =
1
2

xT(x− f (x)) (9)

Equation (9) is the objective function used in this study, where ρ(x) represents de-
noising regularization. Here, ADMM and the Augmented Lagrangian penalty term are
introduced. The specific expression is shown in the following formula:

ϑ2 = min
x,Fx

1
2

∥∥∥∥yj −
∧
k ⊗ Fx(rx)

∥∥∥∥2

2
+

λ

2
xT(x− f (x)) +

µ

2
‖x− Fx(rx)− µ‖2

2 (10)

where u is a set of Lagrangian multiplier vectors of equality constraints. The ADMM
algorithm mainly updates the above three parameters: u, x, and Fx, and when fixing x and
u, Fx is updated by solving the following expression:

ϑ3 = min
Fx

1
2

∥∥∥∥∧k ⊗ Fx(rx)− yj

∥∥∥∥2

2
+

µ

2
‖x− Fx(rx)− u‖2

2 (11)

When fixing Fx and u, x is updated by solving the following form:

ϑ4 = min
x

λ

2
xT(x− f (x)) +

µ

2
‖x− Fx(rx)− u‖2

2 (12)

According to the Augmented Lagrangian (AL) method [35], the update of parameter
u can be realized by following Equation (13).

uk+1 = uk − x + Fx(rx) (13)

2.4. Implementation Details

The designed network is implemented in the PyTorch1.5 deep learning framework [36]
and is trained on the ubuntu 18.04 system using a single NVIDIA GTX 1080Ti GPU. As
shown in Figure 2, the input of the Fx network is a two-dimensional random noise, and is
sampled from the uniform distribution. On the other hand, the input of the FK network is a
single distorted image frame. Furthermore, the network does not also rely on external data
for the pre-training and only uses the designed objective function for continuous iterative
calculation. Since the model weight is randomly initialized, choosing a larger learning
rate will cause the model to oscillate; the initial learning rate is set to 0.001. Meanwhile,
the loss function is set at two-stage loss to ensure a superior output restoration effect.
The first stage loss function is set to smooth L1 loss [37], and using the pixel-by-pixel
comparison, the contour of the image to be restored can be quickly obtained. When the
iteration reaches a certain number of times, the loss function does not decrease anymore,
and the SSIM loss is used as the second stage loss function to restore the image detail
information [38]. Our observation system (Figure 5), listed in Table 1, mainly includes
a Richey–Chretien telescope (RC12), a German equatorial telescope mount (CGX-L), an
optical camera (ASI071MC Pro), and a high-performance computer (PC). Subsequently, the
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iterative process of the turbulence-distorted moon image taken by our system is shown in
Figure 6a, and the output result of each stage in Figure 6b.
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3. Comparative Experiment Preparation
3.1. Existing Restoration Methods

The proposed method is compared with the following state-of-the-art methods, in-
cluding physics-based approaches (CLEAR [39], SGL [40], IBD [41]), and a learning-based
method (DNCNN [42]). Specifically, the CLEAR algorithm uses a region-level fusion al-
gorithm based on a binary tree-based wavelet transform to solve the turbulence distorted
problem. A Sobolev Gradient method was applied by the SGL algorithm to sharpen indi-
vidual frames and mitigate the temporal distortions with the Laplace operator [43]. The IBD
algorithm directly estimates the blur kernel of the degraded image and latent clear image
according to prior conditions. DNCNN is based on supervised learning [42], which was
proven to play an important role in restoring turbulence-distorted images by researchers
from the University of Bristol [44]. The outputs of all compared methods are generated
using the authors’ codes, with the related parameters unchanged.

Obviously, DNCNN can be used to recover high-quality images when it is trained
on a large synthetic turbulence dataset. Therefore, we use the power spectrum inversion
method combined with sub-harmonics to simulate turbulence-degraded images of different
intensities as the training set. The random phase screen ϕ(m, z) of atmospheric turbulence
is obtained by using Fourier transform, and the equation can be expressed as follows [45]:

ϕ(m, z) = ∑
κm

∑
κz

r(κm, κz)
√

φϕ(κm, κz)ei(κmm+κzz)4 κm4 κz (14)

where κm and κz are the spatial frequencies in the m and z directions, respectively. r(κm, κz)
is a complex Gaussian random number. Therefore, this power spectral density function
φϕ(κm, κz) can be written as follows:

φϕ(κm, κz) = 0.023r−5/3
0 κ−11/3 (15)

r0 represents the atmospheric coherence length, which is a characteristic scale reflecting
the intensity of the atmospheric turbulence. According to the parameter settings in Table 2,
the random phase screens with different turbulence intensities are finally obtained.

Table 2. Optical parameters used in the simulation experiment.

Parameters Simulation Value

Aperture D = 1 m
Inner scale of Turbulence l0 = 0.01 m
Outer scale of Turbulence L0 = 50 m
Number of phase screens n = 1

Picture Size P = 256 × 256

Original images are from the Hubble official website (URL: https://esahubble.org/
images/ (accessed on 27 July 2023)), and examples of simulated degraded images are as
follows (D/r0 represents different turbulence intensity).

As shown in Figure 7, the Point Spread Function (PSF), the phase screen, and the
simulated turbulence-degraded images obtained with different intensities are denoted,
respectively. There are 1800 images, including training data (1500) and validation data
(300), and all image sizes are 256 × 256. We use the training set to pre-train the DNCNN
network. The hyperparameter settings of the network adopt the default settings in the
original paper. When the number of iterations reaches approximately 150 epochs, the
loss function curve has stabilized and no longer continues to converge downwards; the
DNCNN model reaches the minimum convergence standard at this time.

https://esahubble.org/images/
https://esahubble.org/images/
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3.2. Experimental Datasets

It is necessary to obtain real degraded images under different conditions for exper-
imental analysis to test the proposed networks’ robustness and adaptability. Therefore,
extensive experiments with the proposed algorithm and four comparison methods are
conducted in Hirsch’s dataset [46], the Open Turbulent Image Set (OTIS) [47], and the
YouTube dataset, respectively. These datasets are introduced as follows:

Hirsch’s dataset: Hirsch’s dataset was used for testing the Efficient Filter Flow (EFF)
framework. The dataset was taken by using the Canon EOS 5D Mark II camera, equipped
with a 200 mm zoom lens. By capturing a static scene of the hot air discharged from the
vents of the building, the image sequence is a video stream of 100 frames (the exposure
time of each frame is 1/250 s) degraded due to spatial changes and blurring. The image
sequences mainly include chimneys, buildings, water tanks, etc.

OTIS: OTIS was put forward by Jérôme Gilles et al. to make the comparison between
algorithms. All image sequences are real turbulence-distorted images acquired in the
hot summer. The dataset includes 4628 static sequences and 567 dynamic sequences.
The turbulence impact is also divided into three levels: strong, medium, and weak. All
sequences are captured with GoPro Hero 4 Black cameras, and the camera equipment is
modified with a Ribcage Air chassis permitting to adapt to different lens types.

YouTube dataset: Since there is no publicly available astronomical object turbulence
distorted image dataset, we obtained astronomical object videos from YouTube. These video
frames include the moon’s surface and Jupiter taken by foreign astronomy enthusiasts. This
data captured comes from different devices, which will put more tests on the restoration
effect for the proposed algorithm.

3.3. Evaluation Metrics

This study is aimed at the restoration of real turbulence distorted images. Therefore,
no-reference metrics are used for objective evaluation. The selected no-reference metrics
include: Entropy, Average Gradient, Natural Image Quality Evaluator (NIQE) [48], and
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [49]. Simultaneously, the
specific explanations are as follows:
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Entropy:

Typically, it indicates the average amount of information contained in the image.
In particular, the greater the information entropy of an image, the better the image quality.
The definition of which is as follows:

H(x) = −
n

∑
i=1

p(xi) log p(xi) (16)

where p(xi) is the probability that a random event x is xi.

Average Gradient:

Average Gradient puts more emphasis on the layering of the image and whether the
image details are rich, which is expressed as follows:

G =
1

m× n

m

∑
i=1

n

∑
j=1


(

∂ fi,j
∂xi

)2
+
(

∂ fi,j
∂yj

)
2

2
1/2

(17)

where m and n represent the width and height of the image, respectively, and i and j denotes
the position of the image pixel. Generally, the larger the Average Gradient value, the more
the detailed the image, and the clearer the image.

4. Results and Discussion
4.1. Near-Ground Turbulence-Distorted Image Results

The real near-ground turbulence-distorted image contains two parts, which are ran-
domly selected from Hirsch’s dataset [46] and OTIS [47]. As shown in Figure 8, the first two
rows of degraded images are from Hirsch’s dataset, and the last two rows are from the OTIS.
(b), (c), (d), and (e) are the restored results by the abovementioned algorithms, and (f) is the
network proposed output. Meanwhile, we use no-reference evaluation metrics to evaluate
the effect of image restoration. Table 3 presents the average values of the results by several
algorithms. Entropy estimates the complexity of the image texture; the Average Gradient
refers to the obvious difference in grayscale near the border of the image or on both sides of
the shadow line, and reflects the rate of density change in the multi-dimensional direction
of the image to characterize the relative clarity; NIQE is based on the construction of a
‘quality aware’ collection of statistical features based on a simple and successful space
domain Natural Scene Statistic (NSS) model, and these features are derived from a corpus
of natural, undistorted images [48]; BRISQUE does not compute distortion-specific features,
such as ringing, blur, or blocking, but instead uses scene statistics of locally normalized
luminance coefficients to quantify possible losses of “naturalness” in the image due to the
presence of distortions, thereby leading to a holistic measure of quality [49]. The specific
content is shown in Figure 8 and Table 3.

Table 3. Objective assessment of the above restoration methods a (average values).

Entropy ↑ Average Gradient ↑ NIQE ↓ BRISQUE ↓
Degraded image 6.3879 4.0198 7.8462 43.2354

CLEAR [39] 6.9210 6.3797 7.6126 39.2766
SGL [40] 6.4044 4.1000 7.8020 43.2147
IBD [41] 6.4785 9.4909 7.6866 36.3150

DNCNN [44] 6.2785 6.6840 9.5055 54.4397
Ours 6.6310 7.3636 7.2665 26.7663

a Note: “↑” indicates that the bigger scores represent better perceptual quality of the images, “↓” indicates
the opposite result; the blue indicates that the restoration effect is worse than inputting, and the black bold is
our result.
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Figure 8. Restored results of real near-ground turbulence-degraded images. (a) Degraded image;
(b) CLEAR algorithm; (c) SGL algorithm; (d) IBD algorithm; (e) DNCNN algorithm; (f) Ours.

For the above recovery results, it can seem that different degrees of artifacts will appear
for all restoration results. Significantly, the output result of the IBD algorithm may appear
as deformation (see the last row in Figure 8d), and the CLEAR and DNCNN algorithms
will change the background of the testing images. Additionally, it can be clearly found
that the various image quality indicators of the DNCNN algorithm are worse than the
indicators of the inputting degraded image. The results have been marked blue, which
illustrates that the DNCNN pre-trained with simulated data may aggravate inputting
image degradation. Related reasons will be analyzed in subsequent ablation experiments.
Regardless of Hirsch’s dataset or OTIS, the proposed approach has shown an excellent
restoration effect, especially using the BRISQUE indicator evaluation.

4.2. Turbulence-Degraded Astronomical Object Results

In this section, test images include the surface of the moon and Jupiter from YouTube.
Moreover, we add a sunspot image taken by the National Astronomical Observatory in
order to enrich the content of the test data. Accordingly, the abovementioned images
restoration effects and no-reference metrics are shown in the following figure.

The comprehensive experimental results of different algorithms are shown in Figure 9
and Table 4. Specifically, the SGL algorithm has almost no improvement on the input
degraded image, which may be because the default input of the SGL is video sequences.
The restoration effect is ineffective for a single turbulence distorted image since it lacks
more feature information. The IBD algorithm seems to have a good restoration effect from
a subjective point of view. Still, the objective evaluation index did not produce such a
result, which may be due to the IBD algorithm having enhanced the restoration image.
The DNCNN algorithm changes the main characteristics of the image, which is especially
obvious in the last row in Figure 9e. Instead, the proposed model fully combines the
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advantages of regularization and machine learning, so it achieves a relatively excellent
restoration effect.
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Figure 9. Restored results of a turbulence-degraded astronomical object. (a) Degraded image;
(b) CLEAR algorithm; (c) SGL algorithm; (d) IBD algorithm; (e) DNCNN algorithm; (f) Ours.

Table 4. Objective assessment of the above restoration methods (average values).

Entropy ↑ Average Gradient ↑ NIQE ↓ BRISQUE ↓
Degraded image 5.6721 2.2932 13.0931 75.3416

CLEAR [39] 6.1625 3.7979 9.6429 65.5977
SGL [40] 5.7096 2.3351 12.9204 74.5430
IBD [41] 5.7557 4.3436 11.7078 60.3506

DNCNN [44] 5.3265 3.7903 9.5722 64.6245
Ours 6.0848 5.6994 7.2775 38.4464

4.3. Motion-Blurred Image Results

As stated in the first half of the article, the approach proposed can output excellent
results without pre-training. Therefore, the proposed model is still applicable for a single
motion-blurred image. To verify the restoration effect on motion-blurred images, we
randomly choose motion-blurred images from the GoPro dataset and the Internet to verify
our idea [50]. The specific restoration effect and objective evaluation are displayed in
Figure 10 and Table 5:
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Figure 10. Restored results of motion-blurred images. Blurry images in the first and second rows are
from the GoPro dataset; in the last row, a real motion-blurred image is from the Internet. (a) Degraded
image; (b) CLEAR algorithm; (c) SGL algorithm; (d) IBD algorithm; (e) DNCNN algorithm; (f) ours.

Table 5. Objective assessment of the above restoration methods (average values).

Entropy ↑ Average Gradient ↑ NIQE ↓ BRISQUE ↓
Degraded image 7.4162 5.7856 8.3108 38.1237

CLEAR [39] 7.7159 8.6312 9.2206 50.9466
SGL [40] 7.4340 5.9001 8.2771 37.9105
IBD [41] 7.4823 11.6794 7.9546 30.4864

DNCNN [44] 7.3751 10.7315 9.9631 44.5030
Ours 7.4809 11.7686 5.3532 17.8105

The above comprehensive experimental results show that: (1) in the car scene, the
restoration results of the four comparative algorithms cannot effectively see the license plate
information and the vehicle brand, and there are varying degrees of artifacts;
(2) the output results of the CLEAR algorithm seem to increase the blur effect of the
image, which may be because the physical model of the CLEAR algorithm does not match
with the motion blur; (3) the supervised learning (DNCNN) has poor generalization ability
for motion-blurred images (blue marker); and (4) from the comprehensive analysis of the
visual effects of multiple indicators and restored images, the proposed approach is the best
of all comparison methods.

4.4. Ablation Study

As previously mentioned, it is not difficult to see that the self-supervised model
proposed has a better restoration effect on the real degraded images than the DNCNN
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network by analyzing the above experiments (Tables 3–5). The reason may be that the
pre-trained simulated data is inconsistent with the data in the natural state. Therefore,
ablation experiments are conducted to prove whether the analysis is true. There are
150 turbulence-degraded images randomly selected from the untrained simulation data,
including 50 appearances with D/r0 = 5, D/r0 = 10, and D/r0 = 15, respectively. Examples
of testing images are illustrated in Figure 11; there are the Jupiter image, the Nebula1 image,
the Galaxy image, the Nebula2 image, and the Mars image:
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Figure 11. Examples of testing simulated images. (a) Jupiter; (b) Nebula1; (c) Galaxy; (d) Nebula2;
(e) Mars.

The simulated degraded images of different intensities are sent to DNCNN and the
proposed network for testing. The test indicators are the Peak Signal to Noise Ratio (PSNR)
and Structural Similarity (SSIM). The specific diagrams are as follows.

Figure 12 shows that when the image input is consistent with the training dataset, the
turbulence intensity is relatively weak (D/r0 = 5), or when the turbulence intensities are
medium and strong (D/r0 = 10, D/r0 = 15), the DNCNN network achieves better results
than the proposed algorithm. Therefore, it can be explained that when the data distribution
of the pre-trained set and the test set are consistent, the output result of DNCNN is better.
When the data distribution is inconsistent, the restoration results by DNCNN are shown
in Tables 3–5. The output is often not as expected, and the network even aggravates the
degradation of the inputting. Therefore, the ablation experiment demonstrates that the
DNCNN architectures have trouble with generalization outside of the training data (as
do most supervised neural networks). Instead, the proposed approach (ours) does not
need to rely on external data to drive, and it may be more adaptable and robust to real
degraded images.
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5. Conclusions

A large sample size of training data is typically necessary for solving tasks using deep
learning approaches, but unfortunately, there is limited turbulence-distorted data available.
In this study, firstly, we presented a blind restoration method for a single turbulence
distorted image based on self-supervised learning. The designed framework is mainly
aimed at real turbulence-degraded images without labels. To our knowledge, this work
is also the first to apply self-supervised learning to the task of alleviating the turbulence
effect on images. Subsequently, we also curate a natural turbulent dataset from Hirsch’s
dataset, OTIS, and YouTube to show the generalist ability of the proposed model. Moreover,
we conducted ablation experiments to further verify the differences between supervised
learning and the proposed self-supervised learning method. Eventually, through the above
work carried out, we can draw the following conclusions.

The proposed model can recover the information of the image itself well under differ-
ent levels. Additionally, instead of using a single loss function, this approach proposed uses
the first stage of smooth L1 loss, and the second stage SSIM loss function is employed so
that the overall contour of the image can be restored firstly, and then the edges and details
can be recovered. Meanwhile, the brightness of the image does not change during this
processing. For the most critical part of the network, an effective self-supervised learning
mechanism is designed to fully extract the turbulence-distorted features implicit in the
image itself, which depends on repeated experiments and parameterized debugging. In
particular, quantitative evaluation of four image quality indicators shows that the proposed
method has a more superior performance than the competing methods, both in terms of
sharpness and visual consistency. Furthermore, unlike previous methods, our approach
neither uses any prior knowledge about atmospheric turbulence conditions nor requires the
fusion of multiple images to get a single restored result, which has great engineering value
in long-range video surveillance, defense systems, and drone imaging systems. However,
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the proposed algorithm still needs some improvements. For instance, there will be artifacts
in some restored results (see the Figure 8(f2) (the f2 refers to the second image in column f)
and Figure 9(f1) (the f1 means the first image in column f)), which will be optimized with
the following debugging.

In the future, we also intend to remove turbulence on video and consider combining
some atmospheric turbulence parameters (e.g., r0, C2

n) measured by our instruments to
the neural network model for mitigating the turbulence effect. Furthermore, since the
network needs multiple iterations in the process of outputting results, it is not suitable for
astronomical observation and video surveillance in the real state. We hope the proposed
model can be embedded in high-level vision tasks and considered a “real-time” task in the
following work. Meanwhile, in the following remote sensing observations, the parameters
of the proposed self-supervised learning network are optimized by acquiring a large
number of real turbulence-degradation images.
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