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Abstract: In the present complex electromagnetic environment, radar target detection is threatened
by different kinds of interferences, especially mainlobe deceptive interference, which occupies the
same energy distributions of targets spatially, meaning that targets and interferences cannot be
discriminated. To make matters worse, the number of suppressible interferences is limited by the
number of physical array elements, leading to the degradation of the suppression performance of
traditional radar. In this work, we propose a frequency-increment-based interference suppression
method for minimum redundancy frequency diverse array multiple-input multiple-output (MR-
FDA-MIMO) radar, which effectively solves the aforementioned two problems. The interference
suppression method consists of two steps: (i) in the sidelobe barrage interference suppression stage,
the interference-plus-noise covariance matrix is reconstructed to overcome the influence of the true
targets and mainlobe deceptive interference on the performance of the beamformer; (ii) in the main-
lobe deceptive interference suppression stage, a nonadaptive beamforming method is employed to
suppress mainlobe deceptive interference and overcome the impact of insufficient virtual samples
on interference suppression performance. Additionally, we design a frequency-increment-based
MR-FDA-MIMO radar, fully utilizing the advantages of the virtual array to enhance interference sup-
pression performance and increase the number of interferences. Numerical experiments undertaken
demonstrate the effectiveness of the algorithm under different scenarios.

Keywords: frequency diverse array; multiple-input multiple-output radar; minimum redundancy
array; nonadaptive beamforming; frequency increment

1. Introduction

The development of electronic countermeasures (ECM) technology has led to the
existence of various types of interference, with the most significant being mainlobe decep-
tive interference. Mainlobe deceptive interference significantly diminishes the accuracy
of true target detection and causes substantial distortion of the beam pattern [1,2]. False
targets possess the same power and angle as the true target, resulting in common mainlobe
deceptive interference that can easily confuse radar systems, making accurate identification
of the true target difficult. Jammers intercept radar waveforms and generate false targets
by modulating, delaying, and retransmitting them [3]. The presence of false targets poses
significant threats to the detection and tracking of true targets, highlighting the urgent need
for the development of deceptive interference suppression technology.

The field of electronic warfare has witnessed the emergence of numerous anti-interference
technologies, such as adaptive beamforming and space-time adaptive processing (STAP).
Among these, the minimum variance distortionless response (MVDR) method [4] is par-
ticularly effective for suppressing interference through beamforming. However, the focus
of most of these methods is on suppressing sidelobe interference. Furthermore, various
techniques have been proposed for the suppression of mainlobe interference [5–8]. These

Remote Sens. 2023, 15, 4070. https://doi.org/10.3390/rs15164070 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15164070
https://doi.org/10.3390/rs15164070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1865-6214
https://orcid.org/0000-0002-9398-1308
https://doi.org/10.3390/rs15164070
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15164070?type=check_update&version=1


Remote Sens. 2023, 15, 4070 2 of 18

techniques utilize the discrepancies between true targets and interference in various do-
mains, including frequency, time, and polarization, in order to distinguish and suppress
mainlobe interference. Furthermore, a method to counter mainlobe interference through
proposed feature projection has been developed [8]. This technique utilizes the eigen-beams
of interference to determine the extent of mainlobe interferences and implements robust
countermeasures against multiple mainlobe interferences. In [9], a mainlobe interference
suppression technique based on network radar was proposed. Similarly, a compound
interference countermeasure technique based on networked radar was proposed; this tech-
nique operates at the physical layer of data [10]. A method based on robust blind source
separation has been developed for mitigating mainlobe interference, taking into account
the unknown number of interference sources [11]. However, despite the effectiveness of
these techniques in mitigating mainlobe interference to some extent, the high fidelity of
false targets remains a major limitation. Consequently, there is a need for radar systems
with a greater number of degrees of freedom (DOFs).

Recent research has demonstrated that frequency diverse array (FDA) radar exhibits
additional DOFs in the range domain [12–16]. Subsequent studies have integrated FDA
with multiple-input multiple-output (MIMO) technology [17], facilitating the segregation
of transmit signals in the receive dimension, thereby effectively acquiring range domain
information and yielding additional DOFs [18–25]. FDA-MIMO radar exhibits degrees of
freedom in the distance domain, offering advantages in both true target identification and
false target suppression [26–31]. In this context, the initial focus concerns data-dependent
beamforming, where a two-dimensional beamformer is designed specifically to mitigate
the effects of false targets in the mainlobe [28]. Furthermore, a data-independent, two-
dimensional beamformer has been specifically designed to improve robustness against
errors by amplifying the depth and width of the nulls [29]. Moreover, a polarization-
based technique has been developed in [30] for suppressing deceptive interference in
polarized FDA-MIMO radar. This technique optimizes frequency increments to enhance
both interference suppression performance and robustness. In addition, an optimization
model for a coherent FDA radar-based transmit-receive two-dimensional beamformer has
been developed [31]; this model demonstrates advantages in suppressing interference.
While the aforementioned method offers significant advantages in suppressing false targets
compared to traditional radar, the capacity to suppress false targets is constrained by the
system’s degrees of freedom, particularly by the number of transmit elements. In other
words, the number of suppressed interferences cannot exceed the number of transmit
elements. Consequently, in practical scenarios, an increase in the number of false targets
necessitates a corresponding increase in the number of elements, leading to substantial
resource consumption. Thus, addressing the challenge of surpassing the limitation on
the number of elements to effectively suppress a larger number of false targets remains a
significant problem.

In order to address the aforementioned issues, complex geometric arrays have been
designed [32–35] which overcome the DOFs limitation of radar elements and involve addi-
tion of virtual DOFs. Initially, these specialized sparse arrays were utilized for parameter
estimation purposes. In [35–40], a novel method for estimating angles is presented. In [38],
a target parameter estimation method using two-dimensional sparse arrays is presented.
Simulation results obtained demonstrate that a nested array with N elements is capable
of estimating O(N2) parameters. A sparse array radar system that combines FDA-MIMO
array radar and co-prime array has been developed. This system enhances localization
accuracy for multiple targets [39,40]. Furthermore, in [41], an introduced algorithm for
dimensionality reduction and robust space-time adaptive processing (STAP) is presented,
which is based on sparse array radar. This algorithm utilizes the orthogonal matching pur-
suit algorithm to recover the clutter subspace and subsequently applies the STAP method
for clutter suppression. Similarly, in [42], a channel selection strategy is proposed based
on the angle-Doppler domain to address the dimensionality reduction problem of clutter
rank in the STAP method. Furthermore, recognizing that the system’s degrees of freedom
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(DOFs) imposes limitations on suppression interference numbers, extensive research has
been conducted on beamformers based on sparse arrays [43–45]. In [43], simulation results
demonstrated that, when the number of elements was the same, beamformers based on
minimum redundancy array (MRA) exceeded the interference suppression performance
of uniform linear arrays (ULA) beamformers. In [44], a robust beamformer based on
sparse arrays is proposed, overcoming the limitation whereby interference suppression
is restricted by the number of physical units. Since general adaptive beamforming algo-
rithms designed for ULA are unable to fully harness the characteristics offered by sparse
arrays, a beamforming algorithm suitable for sparse co-prime arrays was introduced [45].
The previously mentioned beamforming methods mainly emphasize the suppression of
sidelobe interference, while neglecting the suppression of false targets. To address this
issue, in [46,47], a novel approach is proposed that combines FDA-MIMO radar with MRA
and uses a data-independent beamforming method for MR-FDA-MIMO radar. In MR-
FDA-MIMO radar, the number of suppressed mainlobe deceptive interferences exceeds the
system DOFs, indicating that it suppresses more interferences than the number of physical
transmit array elements. However, the current MR-FDA-MIMO model overlooks the design
considerations for virtual arrays with frequency increments, resulting in underutilization
of the extended virtual degrees of freedom. Therefore, to effectively suppress multiple
mainlobe deceptive interferences, incorporating the design based on virtual arrays with
frequency increments becomes essential.

This study presents a designed frequency increment scheme based on MR-FDA-MIMO
radar to effectively utilize the available virtual DOFs and mitigate performance degrada-
tion resulting from the overlap of true and false targets in interference suppression. The
proposed approach comprises two stages of beamforming—(a) a robust MVDR beam-
forming is employed in the receive domain to suppress sidelobe interference, and (b) a
non-adaptive beamformer is utilized in the equivalent transmit domain to suppress multi-
ple false targets—and design of a frequency increment based on the virtual array, effectively
exploiting the virtual DOFs.

The innovate features of the proposed method are summarized as follows:

(i) In the context of mitigating multiple mainlobe deceptive interferences in MR-FDA-
MIMO radar, a frequency increment based on a virtual array is developed, effectively
leveraging the virtual degrees of freedom of MR-FDA-MIMO radar, resulting in
improvements in both the number of suppressed interferences and interference per-
formance.

(ii) In the interference suppression stage, various beamforming methods are employed.
In the receive beamforming stage, because the sample covariance matrix includes
both target and mainlobe deceptive interference information, the interference-plus-
noise covariance matrix is reconstructed, and an MVDR beamformer is employed for
sidelobe interference suppression. In the transmit beamforming stage, a nonadaptive
beamformer is employed for mainlobe deceptive interference suppression, addressing
the challenge of inadequate virtual samples.

In this work, Section 2 introduces the signal model with deceptive interference and
barrage interference. In Section 3, a method for suppressing mainlobe and sidelobe interfer-
ences of the MR-FDA-MIMO radar is discussed, and the frequency increment redesigned
based on virtual arrays is considered. The simulation and performance analysis results are
presented in Section 4. Conclusions are drawn in Section 5.

2. MR-FDA-MIMO Radar Signal Model

Figure 1 shows the transmit array model of MR-FDA-MIMO radar, where the transmit
array is a sparse MRA array composed of M elements, and the receive array is a ULA
composed of N elements, with M and N being equal. Table 1 provides the MRA element
configuration [32]. Figure 1 shows the 7-element MRA array. The 7-element MRA can
estimate the correlation function of 0–17d spatial lags, covering the DOFs of 17d, where d
is the inter-element spacing, which is usually taken as half the wavelength. However, the
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7-element ULA can only estimate the correlation function of 0–6d spatial lags and can only
cover the DOFs of 6d. The DOFs of MRA is obviously larger than that of ULA under the
same array element.
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Table 1. Configuration of the MRA selected from [32].

Number of Array Element Array Element Locations

3 0 1 3
4 0 1 4 6
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8 0 1 2 11 15 18 21 23

Without loss of generality, the frequency of the m-th transmit array element is

fm = f0 + ∆ fTm m = 1, 2, . . . , M (1)

where f 0 is the basic frequency, ∆f is a small frequency increment, and Tm represents the
position of the MRA element.

The transmit signal by the m-th element can be modeled as

sm(t) =

√
E
M

ϕm(t)ej2π fmt, 0 ≤ t ≤ T (2)

where E is the transmit energy, T is the radar pulse duration, and ϕm(t) is the baseband
envelope, which is satisfied with the orthogonality condition.

Assuming a single point target at a far-field position (R0, θ0), the echo received by the
n-th(n = 1, 2, . . ., N) receive array element can be denoted as:

yn(t− τ) = ξ
M
∑

m−1
sm(t− τm,n) ≈ ξ

M
∑

m−1
ϕm(t− τ0)ej2π fm(t−τm,n)

= ξej2π f0(t−τ0)ej2π
dR
λ0

(n−1) sin (θ0)
M
∑

m−1
sm(t− τ0)ej2π∆ f Tm(t−τ0)ej2π d

λ0
Tm sin (θ0)

(3)
where ξ is the complex coefficient, dR = λ0/2 denotes the spacing between the receive
elements, λ0 = c/ f0 is the wavelength, and τm,n = 2R0−dR(n−1) sin(θ0)−dTm sin(θ0)

c is the
round-trip delay of the echo.

The receive echo processing flow of the MR-FDA-MIMO radar receiver is shown
in Figure 2 [48,49]. Therefore, the snapshot received can be expressed in a simple form
as [47–49]

xS = βSb(θ0)⊗ a(R0, θ0) (4)



Remote Sens. 2023, 15, 4070 5 of 18

where βS = ξej2π
2R0
λ0 . a(R0, θ0) ∈ CM×1 is the transmit steering vector composed of range

and angle, which can be modeled as

a(R0, θ0) =

[
1, ej2π d

λ0
T2 sin (θ0)e−j2π∆ f 2R0

c T2 , . . . , ej2π d
λ0

TM sin (θ0)e−j2π∆ f 2R0
c TM

]T
(5)

and b(θ0) ∈ CN×1 is the receive steering vector containing angle information, which can
be modeled as

b(θ0) =

[
1, ej2π

dR
λ0

sin (θ0), · · · , ej2π
dR
λ0

(N−1) sin (θ0)
]T

(6)
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Figure 2. Signal processing at the receiver.

Assuming there are F false targets, the angle of each false target is θj, and the range is
Rf. Due to the different time delays of the false targets, the Rf values of each false target
are different [28,50]. The false targets lag behind the true target by at least one maximum
unambiguous range (Figure 3) [28,50,51]. After matching filtering (Figure 2), the echo form
of the f -th false target is

x f = β f b
(
θj
)
⊗ a

(
R f , θj

)
(7)

where βf denotes the complex coefficient of the f -th (f = 1, 2, . . ., F) false target, and

R f = Rj +
cτf
2 , τf indicates the time delay.
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a
(

R f , θj

)
∈ CM×1 and b

(
θj
)
∈ CN×1 are the transmit and receive steering vectors,

respectively, which are given as

a
(

R f , θj

)
=

[
1, ej2π d

λ0
T2 sin (θj)e−j2π∆ f

2R f
c T2 , . . . , ej2π d

λ0
TM sin (θj)e−j2π∆ f

2R f
c TM

]T
(8)

b
(
θj
)
=

[
1, ej2π

dR
λ0

sin (θj), · · · , ej2π
dR
λ0

(N−1) sin (θj)
]T

(9)

The sidelobe barrage interference model is [52]

xJ =
K

∑
k=1

βkb(θk)⊗ nT (10)

where βk is a zero-mean complex Gaussian random variable, nT ∈ CM×1 is the noise-like
transmit steering vector of the barrage interference, and nT ∼ CN(0, IM).

b(θk) =

[
1, ej2π

dR
λ0

sin (θk), · · · , ej2π
dR
λ0

(N−1) sin (θk)
]T

∈ CN×1 is the receive steering vector

of the barrage interference containing the angle information.
The output signal is represented as [21,47].

x = xs +
F

∑
f=1

x f + xJ + xn (11)

where xn is assumed to be white Gaussian noise, σ2
n is the noise variance, and IMN denotes

an MN ×MN identity matrix.
Notice that we are considering mainlobe deceptive interference, also known as the

false target, so θj = θ0.

3. Based on the MR-FDA-MIMO Radar Interference Suppression Method

In this section, in order to take advantage of the transmit dimension virtual DOFs
of the MR-FDA-MIMO radar, the false target and sidelobe interference are suppressed,
respectively [46,47]. Firstly, the robust MVDR is used to suppress sidelobe interference
in the receive port; secondly, a difference co-array is used to process equivalent transmit
dimension data to obtain long virtual array data, and a nonadaptive method is used to
suppress the false target. Considering that the virtual DOFs is fully used to suppress
multiple false targets, the ∆f based on a long virtual array is redesigned; compared with
the ∆f based on a physical array, the number of false targets suppressed is increased.

3.1. Sidelobe Barrage Interference Suppression

The received dimension data are

X = res(x) ∈ CM×N

X = mat(X) ∈ CN×1 (12)

where res(·) and mat(·) represent the reconstruction operators. The transformation of
the multi-dimensional dataset is illustrated Figure 4. The data x is transformed into a
dimension of NM *L after undergoing matched filtering. Subsequently, the data undergoes
the res(·) reconstruction operation, resulting in a dimension of N*M*L (Figure 4a). To obtain
the receive dimensional data, further mat(·) reconstruction operation is conducted, leading
to a dimension of N*L for the data (Figure 4b). Applying sidelobe interference suppression
processing on the receive dimensions allows for obtaining the transmit dimensional data,
with a data dimension of M*L (Figure 4c).
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The covariance matrix is

R =
1
L∑L

l=1 X(l)XH
(l) (13)

where L is the number of snapshots, and X(l) is the l-th receive sample.
The obtained R includes not only sidelobe interference and noise, but also the targets.

Therefore, the covariance matrix is reconstructed to obtain robust MVDR weights [53].
First, the Capone spatial spectrum estimator is used [53].

P(θ) =
1

bH(θ)R−1b(θ)
(14)

The covariance matrix is [53]

Rj+n =
∫

Θ
P(θ)b(θ)bH(θ)dθ =

∫
Θ

b(θ)bH(θ)

bH(θ)R−1b(θ)
dθ (15)

Where b(θ) refers to the steering vector of the sidelobe barrage interference, and Θ
represents the angles of the potential sidelobe barrage interferences other than the target.

The robust receive MVDR beamforming weight is [4]

wRec =
R−1

j+nb(θ0)

b(θ0)
HR−1

j+nb(θ0)
(16)

The suppression of sidelobe interference can be expressed as

xt = (wRec ⊗ IM)H ·x

= βsa(R0, θ0) +
F
∑

f=1
β f a

(
R f , θ0

)
+ (wRec ⊗ IM)H ·xn

(17)

3.2. Mainlobe Deceptive Interference Suppression

The false target suppression is divided into three steps: (i) expanding the virtual
transmit DOFs; (ii) using a nonadaptive beamforming method to suppress false targets; (iii)
designing appropriate frequency increments to make full use of the virtual DOFs.
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3.2.1. Range Compensation

The transmit frequency of the targets is range-dependent, and this range dependence
can be compensated [48]. The compensated data are

x̃ = βs·a(θ0) +
F
∑
f=1

β f a(p, θ0) + xn (18)

where p is the number of false target ambiguities. It is assumed that the true target has zero
range ambiguity.

The transmit frequency of the targets is

f̃Ts =
d

λ0
sin θ0 (19)

f̃T f =
d

λ0
sin θ0 −

2∆ f
c

pRu (20)

where Ru = c/(2 fr) is the maximum unambiguous range, and fr is the pulse repetition
frequency(PRF). ∆f can be represented as [51,54]

∆ f = fr

(
z +

i
pM

)
, i = 1, 2, . . . , M− 1 (21)

where z represents an integer value, which is typically considered negligible, and p denotes
the number of delayed pulses associated with the false target.

Substituting Equation (21) into Equation (20), it can be concluded that, when the delay
pulse of the false target is p, the transmit frequency of the false target corresponds to the
frequency of the p-th null of the beampattern. When the delay pulse of the false target
ranges from 1 to (M − 1), it corresponds to the 1 to (M − 1)-th nulls of the beampattern,
and, thus, can effectively suppress the 1 to (M − 1)-th false targets in Figure 5.
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3.2.2. Virtual DOFs Expansion

Performing difference co-array processing on the equivalent transmit dimension data

Rt =

(
1
L

L

∑
l=1

x̃(l)x̃H(l)

)
=

Q

∑
q=1

σ2
q aqaH

q + σ2
nIM (22)

where Q is the number of targets.
The long virtual array data can be obtained by vectorizing the difference co-array data.

Therefore, the virtual array signal is

r = vec(Rt) = Bh + σ2
ni (23)

where B =
[
b(θ1), b(θ2), · · · , b

(
θQ
)]
∈ CM2×Q is the steering vector matrix,

b
(
θq
)
= a

(
f̃ q
T

)
⊗ a∗

(
f̃ q
T

)
is the virtual steering vector, h =

[
σ2

1 , σ2
2 , · · · , σ2

Q

]T
∈ <Q×1

contains the power of K targets, and i = vec(IM).
The vector z contains duplicate elements and is in disorder. Therefore, matrix G is used

to sort z in order and to remove duplicate elements [45]. The de-redundant re-arrangement
of rv can be written as

rv = Gr = Bvh + σ2
niv (24)

where G ∈ {0, 1}M2×(2TM+1), and Bv =
[
bv(θ1), bv(θ2), · · · , bv

(
θQ
)]

is the steering matrix

of the virtual ULA, where V = TM. bv
(
θq
)
= exp

{
j2π f̃ q

TDv
T
}

is the virtual ULA steering
vector, and Dv = {−Vd, (−V+ 1)d, · · · , 0, · · · , (V− 1)d,Vd} represents the element posi-
tion of the virtual ULA. iv= [0, · · · , 0, 1, 0, · · · , 0]T ∈ RDv×1 is a real-valued column vector
with a central position of one, with all other positions being zero.

Figure 6 illustrates the distribution of element locations for a 7-element MRA and a
virtual ULA. As illustrated, the physical elements form a sparse array, and a virtual ULA
with a greater number of elements than the physical array is obtained through difference
co-array processing.
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3.2.3. Mainlobe Deceptive Interference Suppression

Figure 7 shows the positions of the targets in the transmit beampattern at different
numbers of array elements when ∆ f = fr

(
z + i

pM

)
is used. From Figure 7a, it can be seen

that, when p = 4, for the case of M array elements, the false target with 4 delay pulses
coincides precisely with the 4-th null of the beampattern. However, for the case of 2V+ 1
array elements, the false target with 4 delay pulses does not coincide with the 4-th null
of the beampattern. When p = M, as shown in Figure 7b, the false target coincides with
the true target in the mainlobe of the beampattern regardless of whether the array has M
or 2V+ 1 elements. This is because the frequency increment in Equation (21) is designed
based on the physical array. When the delay pulse numbers of the false targets are an
integer multiple of M, the true and false targets coincide.
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(i) Based on virtual ULA design ∆f

To fully utilize the virtual DOFs to suppress multiple false targets, it is necessary to
redesign ∆f based on a virtual array. The transmit steering vectors are summed to obtain
an equivalent normalized transmit beampattern, which is

P
(

f̃T

)
= wH

T ã
(

f̃T

)
= 1

2V+1 ·
V
∑

m=−V
ej2πm f̃T

= 1
2V+1 ·

ej2π(−V) f̃T−ej2π(V+1) f̃T

1−ej2π f̃T
= 1

2V+1 ·
ej2π(−V) f̃T

(
1−ej2π(2V+1) f̃T

)
1−ej2π f̃T

= 1
2V+1 ·

ejπ f̃T
(

e−jπ(2V+1) f̃T−ejπ(2V+1) f̃T
)

ejπ f̃T
(

e−jπ f̃T−ejπ f̃T
) = 1

2V+1 · e
jπ f̃T

sin(π(2V+1) f̃T)
sin(π f̃T)

(25)

where wT = 1
2V+1 [1, . . . , 1]T ∈ R2V+1, aV

(
f̃T

)
= [e−j2πV f̃T , e−j2π(V−1) f̃T , . . . , ej2π(V−1) f̃T ,

ej2πV f̃T ] ∈ C2V+1 denotes the true target virtual transmit steering vector.
When the beampattern has a zero, the numerator of P

(
f̃T

)
becomes zero, that is,

(2V+ 1)π f̃T = kπ, k ∈ Z+, while the denominator remains non-zero, that is
π f̃T 6= kπ, k ∈ Z+. This will result in

f̃T =
k

2V+ 1
(26)
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For the first null with frequency f̃T = 1
2V+1 , if u = 1

2V+1 , the false target with one
delayed pulse will fall precisely on the first null. Therefore, the ∆ f for the false target with
one delayed pulse is

∆ f = fr

(
z +

1
2V+ 1

)
(27)

Therefore, when the false target has a delay of p pulses, the ∆ f is equal to

∆ f = fr

(
z +

i
p(2V+ 1)

)
, i ∈ DV (28)

(ii) Nonadaptive beamforming

The virtual ULA covariance matrix is Rv = rv ∗ rH
v , and it can be observed that, when

rv is a single snapshot, the rank of the Rv is deficient. In [55], a spatial smoothing method
is proposed to increase the number of samples, but it suffers from the drawback of losing
virtual DOFs. Therefore, a nonadaptive beamforming anti-interference method based on
virtual ULA is designed. It should be noted that this nonadaptive method does not require
samples during beamforming.

The nonadaptive weight vector is

w = G·vec
[
a
(

f̃Ts

)
⊗ a∗

(
f̃Ts

)]
=
[
e−j2π f̃TsV, · · · , 1, · · · , ej2π f̃TsV

]
(29)

The final output is
y = wHrv (30)

4. Results

This section provides numerical examples to demonstrate the effectiveness of the
proposed method. Θ ∈ ([−90◦,−5◦] ∪ [5◦, 90◦]). Note that, unless otherwise specified, ∆f
is set according to Equation (21).

It is assumed that the two false targets have delay pulse numbers of 1 and 3, respec-
tively. The parameters are shown in Table 2.

Table 2. Simulation Parameters.

Parameter Value Parameter Value

Transmit element number 7 Receive element number 7
Sample frequency 5 MHz Reference frequency 10 GHz

Pulse repetition frequency (PRF) 5 KHz Wavelength 0.03 m
Angle of the true target 0◦ SNR 20 dB

Angle of the false target 1 0◦ INR1 20 dB
Angle of the false target 2 0◦ INR2 20 dB

Angle of the sidelobe interference 1 30◦ INRn1 40 dB
Angle of the sidelobe interference 2 −30◦ INRn2 40 dB

The power spectra of the targets as well as the sidelobe interference in MR-FDA-
MIMO radar are shown in Figure 8. In Figure 8a, it can be observed that the true and
false targets have equal height due to their equal power levels. However, the power of the
sidelobe barrage interference is notably higher, resulting in a significantly elevated sidelobe
interference level compared to the targets. Figure 8b demonstrates the ability to distinguish
between the interference and the targets at the receive port, as well as between the true and
false targets at the transmit port.
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4.1. Sidelobe Barrage Interference Suppression

The beamforming results of various methods are presented in Figure 9, demonstrating
that both MVDR beamforming and the sample matrix inversion (SMI) [56] method exhibit
nulls in the sidelobe interference region. As depicted in the figure, the mainlobe of the SMI
beampattern experiences distortion and deformation attributed to the target components
present in the training data. In contrast, the robust MVDR beampattern preserves a robust
and well-defined shape.
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4.2. Mainlobe Deceptive Interference Suppression

This subsection analyzes scenarios that involve two or multiple false targets. The
simulation is utilized to evaluate the impact of selecting ∆f on the effectiveness of the
false target.
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The zones of mainlobe deceptive interference suppression are illustrated in Figure 10.
The y-axis represents the number of delayed pulses for the false target, and the x-axis
represents u×M (u× (2V+ 1)). Additionally, the color indicates the target power and
the effectiveness of the interference suppression. Yellow indicates high true target output
power, while blue denotes ineffective suppression of the false target. It is important to note
that the complete suppression of false targets becomes challenging when the number of false
targets exceeds the number of physical array elements. This is evident in Figure 10a where it
is observed that the effectiveness of the interference suppression is compromised. As can be
seen in Figure 10b, an increase in the number of virtual array elements results in enhanced
interference suppression. Notably, in line with theoretical considerations, false targets
with 1 ∼ 2×V delayed pulses are effectively suppressed when u(2×V+ 1), as they align
with 1 ∼ 2×V nulls present in the beampattern. Furthermore, when u(2×V+ 1) = 0 or
u(2×V+ 1) = 1, the false target aligns with the true target and becomes indistinguishable,
thus leading to an inability to suppress the false target.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

0 1 2 3 4 5 6 7
u M

0

10

20

30

40

50

60

70

de
la

y p
lu

se
s

0

2

4

6

8

10

12

14

 
0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

de
la

y 
pl

us
es

0

5

10

15

20

25

30

35

( )2 1u× +  
(a) (b) 

Figure 10. Suppression zone of false targets. (a) r
if f z
pM

 
Δ = + 

 
. (b) ( )2 1r

if f z
p

 
Δ = +  + 

. 

4.2.1. Two Mainlobe Deceptive Interferences Suppression 
Different Δf values corresponding to the beampatterns are shown in Figure 11. The 

original 7-element MVDR method is a beamformer that utilizes physical array elements. 
The virtual array nonadaptive method is a beamformer that utilizes a virtual array. As 
shown in Figure 11a, for the frequency increment defined by Equation (21), false targets 
with p (p = 1, 3) delay pulses are situated within the p-th null of the original 7-element 
MVDR beampattern. However, in the nonadaptive method utilizing the virtual array 
beampattern, the false targets with p delay pulses do not align with the p-th null, resulting 
in underutilization of the DOFs provided by the virtual array. Conversely, when employ-
ing the frequency increment designated by Equation (28), the false targets with p delay 
pulses align with the p-th null in the beampattern shown in Figure 11b. 

−10

Be
am

pa
tte

rn

−20

−30

−40

−50

−60

0

−0.5

 

−10

Be
am

pa
tte

rn

−20

−30

−40

−50

−60

0

−0.5

 
(a) (b) 

Figure 11. Beampattern with different fΔ . (a) r
if f z
pM

 
Δ = + 

 
. (b) ( )2 1r

if f z
p

 
Δ = +  +  . 

Figure 10. Suppression zone of false targets. (a) ∆ f = fr

(
z + i

pM

)
. (b) ∆ f = fr

(
z + i

p(2V+1)

)
.

4.2.1. Two Mainlobe Deceptive Interferences Suppression

Different ∆f values corresponding to the beampatterns are shown in Figure 11. The
original 7-element MVDR method is a beamformer that utilizes physical array elements.
The virtual array nonadaptive method is a beamformer that utilizes a virtual array. As
shown in Figure 11a, for the frequency increment defined by Equation (21), false targets
with p (p = 1, 3) delay pulses are situated within the p-th null of the original 7-element
MVDR beampattern. However, in the nonadaptive method utilizing the virtual array
beampattern, the false targets with p delay pulses do not align with the p-th null, resulting
in underutilization of the DOFs provided by the virtual array. Conversely, when employing
the frequency increment designated by Equation (28), the false targets with p delay pulses
align with the p-th null in the beampattern shown in Figure 11b.

The output SINR results under different ∆f values are shown in Figure 12. The
performance of the original 7-element MVDR method deteriorates at high SNR due to
the presence of the true targets in the samples. In contrast, the performance of the virtual
array nonadaptive method remains constant and approaches the ideal performance curve.
Upon careful examination of Figure 12a,b, it is evident that the original 7-element MVDR
method approximates the ideal performance curve at low SNR when ∆ f = fr

(
z + i

pM

)
.

However, when ∆ f = fr

(
z + i

p(2V+1)

)
, the original 7-element MVDR method exhibits a

decline in performance. By analyzing the beampattern in Figure 11b, it is observed, when
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∆ f = fr

(
z + i

p(2V+1)

)
and p = {1, 3}, that the first null is in close proximity to the mainlobe,

resulting in shifting.
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4.2.1. Two Mainlobe Deceptive Interferences Suppression 
Different Δf values corresponding to the beampatterns are shown in Figure 11. The 

original 7-element MVDR method is a beamformer that utilizes physical array elements. 
The virtual array nonadaptive method is a beamformer that utilizes a virtual array. As 
shown in Figure 11a, for the frequency increment defined by Equation (21), false targets 
with p (p = 1, 3) delay pulses are situated within the p-th null of the original 7-element 
MVDR beampattern. However, in the nonadaptive method utilizing the virtual array 
beampattern, the false targets with p delay pulses do not align with the p-th null, resulting 
in underutilization of the DOFs provided by the virtual array. Conversely, when employ-
ing the frequency increment designated by Equation (28), the false targets with p delay 
pulses align with the p-th null in the beampattern shown in Figure 11b. 
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4.2.2. Multiple Mainlobe Deceptive Interferences Suppression

Subsequently, the influence of varying ∆f values on the performance of interference
suppression in the presence of multiple false targets was examined.

The beampattern of multiple false targets is shown in Figure 13. As illustrated by
Figure 13a, in the case of ∆ f = fr

(
z + i

pM

)
and 14 false targets, the remaining false targets

overlap with each other, with some located inside the mainlobe, resulting in significant
distortion of the beampattern. Conversely, in the case of ∆ f = fr

(
z + i

p(2V+1)

)
, as depicted

in Figure 13b, a narrow and undistorted mainlobe is observed, improving the resolution.
Furthermore, all 14 false targets are visible in the power spectrum without overlapping the
true target. Each false target precisely aligns with its respective null in the beampattern.
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The performance of multi-interference suppression in the MR-FDA-MIMO radar
under different ∆f values is analyzed in Figure 14. Based on Figure 14a, it can be concluded
that neither the virtual array nonadaptive method nor the original 7-element MVDR
method is effective in suppressing multiple false targets. This limitation arises from the
performance of the original 7-element MVDR method being constrained by the number of
physical transmit elements, thereby preventing the suppression of an interference count that
exceeds the physical array size. The underperformance of the virtual array nonadaptive
method is attributed to the inappropriate design, resulting in false targets merging with
the mainlobe and overlapping the true target. Conversely, Figure 14b demonstrates that
the virtual array nonadaptive method successfully suppresses multiple false targets and
achieves performance close to the ideal performance curve. This is attributed to the effective
utilization of virtual DOFs by the designed ∆ f = fr

(
z + i

pM

)
configuration, surpassing

the limitations imposed by the number of physical transmit elements.
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5. Conclusions

In this work, we have developed a frequency increment ∆f for the MR-FDA-MIMO
radar system to effectively suppress multiple false targets. The MR-FDA-MIMO radar
system employs a ULA at the receive port and leverages the robust MVDR method to
effectively suppress sidelobe barrage interference. At the transmit port, a difference co-array
is implemented to expand the virtual DOFs, thereby enhancing the resolution capabilities.
By appropriately designing a suitable ∆f, it becomes possible to tackle the challenge of
exceeding the physical element limit for mainlobe deceptive interference. Nonadaptive
methods are employed to suppress multiple false targets regardless of the availability
of virtual sample data, thereby mitigating the issue of limited virtual sample numbers.
Additionally, leveraging system prior knowledge, a nonadaptive beamformer based on a
virtual array is designed in such a way that the nulls of the beampattern align with potential
mainlobe deceptive interference areas. The simulation results obtained demonstrate the
effectiveness of the ∆f design based on a virtual array in effectively suppressing multiple
mainlobe deceptive interference.
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