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Abstract: Marine heatwaves (MHWs) are extreme events characterized by abnormally high sea
surface temperatures, and they have significant impacts on marine ecosystems and human society.
The rapid and accurate forecasting of MHWs is crucial for preventing and responding to the impacts
they can lead to. However, the research on relevant forecasting methods is limited, and a dedicated
forecasting system specifically tailored for the South China Sea (SCS) region has yet to be reported.
This study proposes a novel forecasting system utilizing U-Net and ConvLSTM models to predict
MHWs in the SCS. Specifically, the U-Net model is used to forecast the intensity of MHWs, while
the ConvLSTM model is employed to predict the probability of their occurrence. The indication of
an MHW relies on both the intensity forecasted by the U-Net model exceeding threshold T and the
occurrence probability predicted by the ConvLSTM model surpassing threshold P. Incorporating
sensitivity analysis, optimal thresholds for T are determined as 0.9 ◦C, 0.8 ◦C, 1.0 ◦C, and 1.0 ◦C for 1-,
3-, 5-, and 7-day forecast lead times, respectively. Similarly, optimal thresholds for P are identified as
0.29, 0.30, 0.20, and 0.28. Employing these thresholds yields the highest forecast accuracy rates of 0.92,
0.89, 0.88, and 0.87 for the corresponding forecast lead times. This innovative approach gives better
predictions of MHWs in the SCS, providing invaluable reference information for marine management
authorities to make well-informed decisions and issue timely MHW warnings.

Keywords: South China Sea marine heatwave; marine heatwave forecast; marine heatwave; U-Net
network; ConvLSTM network

1. Introduction

Marine heatwaves (MHWs) are characterized as extended periods of exceptionally
high sea surface temperatures (SSTs) lasting for a minimum of five consecutive days [1–3].
The intensification and frequency of MHWs are gradually increasing due to global climate
warming. In the past two decades, the occurrence probability of impactful MHWs has esca-
lated more than 20-fold in terms of their duration, intensity, and cumulative intensity [4].

Research indicates that marine organisms and ecosystems are highly vulnerable
to MHWs, making them a potent disruptive force capable of reshaping entire ecosys-
tems [5–10]. For instance, MHWs can decrease chlorophyll concentrations in tropical and
mid-latitude regions while increasing them in high-latitude areas, thereby influencing
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marine primary productivity [11]. In the aftermath of MHWs in 2010/11, 36% of seagrass
meadows in Shark Bay experienced damage [12]. Unprecedented MHWs in the North Pa-
cific Ocean from 2014 to 2016 triggered significant changes in the Gulf of Alaska ecosystem,
resulting in a 71% decline in Pacific cod abundance compared to the previous period [13].
MHWs also have the potential to affect phytoplankton species composition, resulting in
increased mortality among higher trophic-level organisms, such as marine mammals and
seabirds [14]. In 2016, MHWs significantly impacted the surface picoplankton community
and facilitated the proliferation of potentially pathogenic bacteria in the Great Barrier
Reef [15]. Moreover, MHWs have been identified as a potential cause for large-scale coral
bleaching events in the South China Sea (SCS), particularly near Weizhou Island [16]. It is
evident that MHWs have emerged as severe oceanic disasters capable of reshaping marine
ecosystems.

The ocean is a complex system that encompasses numerous dynamic and thermo-
dynamic processes [17]. Thus, the occurrence and intensity of MHWs are influenced by
multiple driving factors [18]. For instance, subtropical extreme MHWs are frequently
initiated by persistent high-pressure systems and anomalously weak wind speeds [19].
Moreover, certain regions may experience the occurrence of MHWs induced by more
intricate local processes [20]. The SCS is one of the largest semi-enclosed marginal seas
globally, spanning approximately 3.5 million square kilometers. It is renowned for its
complex and diverse dynamical environment [21–28]. Recent research indicates that the
SCS is a hotspot for MHWs [29]. These MHWs have already inflicted significant impacts
on marine ecosystems, such as coral reefs [16], undermining the establishment of marine
pastures in this region [30].

MHWs in the SCS are predominantly concentrated in the Nansha Islands and the
Beibu Gulf region. The weakening of coastal upwelling is identified as a crucial factor that
triggers summer MHWs in the SCS [29]. Additionally, the occurrence of MHWs in the
SCS is strongly influenced by El Niño-Southern Oscillation events [31]. Moreover, on the
northern continental shelf of the SCS, the net heat flux at the sea surface is recognized as
another significant factor that initiates MHWs [32]. A study utilizing data from OISSTV2
and five selected models from CMIP6 revealed significantly increasing trends in various
MHW characteristics in the SCS, including duration, annual cumulative duration, mean
intensity, and maximum intensity [33].

Given the severe damage caused by MHWs to marine ecosystems, accurate prediction
of MHWs plays a crucial role in enabling marine stakeholders to mitigate the negative
impacts of these events [34,35]. Traditional numerical-modeling-based forecasting is an im-
portant approach for predicting MHWs as well as studying other disaster processes [36,37].
Jacox et al. [38] use an ensemble output from a global climate prediction system to examine
the relationship between the skill of MHW predictions and the underlying mechanisms
of MHW evolution in the California Current System from 2014 to 2016. They find that
the predictability of different types or aspects of MHWs varies depending on the driving
mechanisms involved. Benthuysen et al. [39] assess the Australian Community Climate
and Earth System Simulator Seasonal Version 1, a traditional forecasting tool, to evaluate
its ability to capture the severity, duration, and spatial extent of MHWs. They emphasize
the importance of assessing daily to weekly predictions of extreme ocean temperatures at
sub-seasonal time scales as a crucial step in developing operational forecast products for
extreme MHWs.

However, numerical model-based forecasts encounter several challenges, such as:
(1) Complex model architectures requiring extensive preparation of input data (wind speed,
longwave radiation, shortwave radiation, atmospheric pressure, sensible heat flux, latent
heat flux, oceanic flow fields, marine topography, etc.). (2) The effectiveness of model
predictions relies on the selection of various parameterization schemes, making them
difficult to optimize. (3) The computational demands of model calculations are substantial,
especially as model resolutions increase. This leads to extended computation times, which
can hinder the delivery of timely and efficient MHW forecasts. (4) Poor model portability
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is observed due to the reliance of numerical models on seafloor topography data specific to
the simulated area. Models designed for a particular region often struggle to be directly
applied to other regions.

Conversely, the development of artificial intelligence (AI) technology has introduced
new approaches to address these issues. Firstly, AI models yield forecasts without neces-
sitating intricate input data, simplifying the model execution process. Secondly, many
parameters in AI models training can be automatically optimized, reducing the need for
subjective expertise. Thirdly, one of the most notable advantages of AI models is their rapid
computational efficiency, which enables the timely provision of forecasts. Lastly, AI models
could operate independently of seafloor topography data, facilitating seamless model adap-
tation across diverse regions. In fact, AI technology has been employed in various studies
related to many marine phenomena [40–47], including wave height prediction [48–52],
chlorophyll concentration forecasting [53], intelligent urban green space detection [54],
cloud detection in high-brightness scenes [55], automatic modulation classification [56],
and the prediction of MHWs [57].

As stated by Giamalaki et al. [57], they are able to forecast MHWs in the Northeast Pa-
cific Ocean with a 7-day lead time utilizing a random forest model grounded in atmospheric
and oceanic conditions. Their developed model achieved an average accuracy of 76% in
predicting the presence or absence of MHWs. However, when it comes to predicting the
intensity of MHWs, the accuracy of the forecasts dropped to 38%. This indicates that while
the model performs reasonably well in identifying the occurrence of MHWs, it encounters
greater difficulties in accurately gauging their intensity. Additionally, their random forest
model incorporates various features beyond time (a specific day of the year) and spatial
information (longitude–latitude). These features encompass sea surface pressure, net heat
flux, SSTs, and wind speed anomalies. The inclusion of numerous input variables not only
complicates model training and extends the requisite training time but also undoubtedly
reduces efficiency in MHW forecasting. To tackle this challenge, this study aims to predict
MHWs using a minimal set of training variables, focusing solely on sea surface temperature
anomaly (SSTA) data.

In summary, past research has highlighted the potential of employing AI methods for
forecasting marine phenomena. Given the projected increase in the intensity, frequency, and
duration of MHWs in the future, coupled with their escalating impact on marine ecosys-
tems, particularly in the coral-rich SCS, there exists an urgent necessity for a dedicated
prediction system. To the best of the author’s knowledge, such a system has not yet been
established for this specific area. Thus, the establishment of a specialized MHW prediction
system for the SCS becomes imperative. In this study, we propose the division of MHW
prediction into intensity and probability forecasts, forming a comprehensive prediction
system. The core objective of this system is to provide essential predictions to marine
fisheries management authorities, facilitating the mitigation of MHW-related impacts. Fur-
thermore, this prediction system has the potential to make substantial contributions to the
preservation of marine biodiversity and the enhancement of local aquaculture endeavors.

The article is structured into the following sections. The Section 2 introduces the
utilized data and outlines methodologies employed in constructing the MHWs forecasting
system. The Section 3 is dedicated to evaluating the U-Net method’s efficacy in predict-
ing MHW intensity, focusing on specific cases across various days. Additionally, the
performance of MHW probability forecasting using the ConvLSTM method is assessed.
Subsequently, the article evaluates the comprehensive prediction performance of the pro-
posed forecasting system. The Section 4 discusses the challenges encountered during the
model training and proposes potential solutions. This section also highlights areas that
require improvement for future intelligent MHW forecasting. The conclusive insights are
presented in the Section 5 of the article.
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2. Materials and Methods
2.1. OISSTV2.1

This study utilizes the Optimum Interpolation Sea Surface Temperature version 2.1
(OISSTV2.1) dataset, derived from Advanced Very High-Resolution Radiometer infrared
satellite data provided by the National Oceanic and Atmospheric Administration (NOAA),
for the detection of MHWs [11,58–61]. The OISSTV2.1 dataset is an optimally interpolated
product that combines data from satellites, ships, buoys, and Argo floats. Biases between
satellite and in situ observations are corrected, and data gaps are filled using interpolation
methods to ensure accuracy [62]. The dataset has a spatial resolution of 0.25◦ and a daily
temporal resolution. The OISST product, including versions V2.0 and V2.1, has been widely
used in the analysis and research of MHWs in various ocean regions, such as the Tasman
Sea [63,64], the SCS [29], the tropical Indian Ocean [65], the marginal seas of China [20], the
Northwest Pacific Ocean [33], and global oceans [2,19,29,66–68].

It is evident that the OISSTV2.1 dataset is advantageous for this study due to its:
(1) Data Quality and Accuracy: NOAA-provided data with validated SSTs from diverse
sources ensure high accuracy. (2) Temporal Range and Global Coverage: Encompassing
September 1981 to the present, it offers global coverage, enabling comprehensive analysis.
(3) Data Consistency: Uniform temporal and spatial resolutions facilitate streamlined data
analysis. (4) Data Accessibility and Openness: Freely accessible through NOAA, reducing
data-related burdens and promoting replication of findings. To ensure that both the training
and validation datasets consist of complete annual data, the analysis in this study covers
the period from 1 January 1982, to 31 December 2021. The selected analysis region spans
from 105.125◦E to 124.125◦E longitude and 0.125◦N to 24.875◦N latitude, which covers
the entire SCS region. The detected MHW data from 1982 to 2019 are used to create the
training dataset for the model, while the data from 2020 to 2021 are utilized to construct the
validation dataset.

2.2. Definition of Marine Heatwave

In this study, we adhere to the same definition for MHWs and their intensity as
outlined by Hobday et al. [2]. Specifically, an MHW event is defined as a period of at
least five consecutive days during which the sea surface temperature (SST) surpasses a
specific threshold. The difference between satellite-observed SST and climatological mean
temperature is taken as the intensity of MHWs. Simply, the determination of MHWs
involves the following three steps.

Step 1: Select the time duration of the climatological baseline period. In this study, the
period from 1982 to 2021, spanning 40 years, is chosen as the climatological baseline period.

Step 2: Calculate the 90th percentile and mean value of SSTs at any grid point during
the climatological baseline period. For each day of the year, a window spanning 11 days,
including 5 days before and after the given day, is considered. Within this window, SST
data for each year are extracted and arranged in ascending order. The 90th percentile value
and the mean value of all data are calculated. Once the threshold and mean values for each
day throughout the year are obtained, a 31-day moving average is applied to each of them,
resulting in the final threshold and climatological mean values. This methodology ensures
an adequate sample size for accurate calculations, allowing the derived climate state and
threshold to effectively capture the multi-year average, upper limit characteristics, and
seasonal variations of SST in the region.

Step 3: Compare the satellite-observed data with the climatological baseline and define
an MHW event if the SST remains above the baseline for five consecutive days. Consecutive
events within a maximum interval of one day are considered part of the same event.

2.3. Construction of the South China Sea Marine Heatwave Forecasting System

The overall structure of the MHW forecasting system is shown in Figure 1, which
comprises three components: the intensity forecast module (Figure 1a), the probability
forecast module (Figure 1b), and the decision module (Figure 1c). The intensity forecast
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module is based on the U-Net architecture, a deep convolutional neural network structure
proposed by Ronneberger et al. [69]. It consists of two main components: a contracting
path and a symmetric expanding path. The role of the contracting path is to extract features
from the input and progressively reduce the size of the feature maps, a process known
as down-sampling. This contracting path effectively enlarges the model’s receptive field,
enabling the extraction of potential teleconnections. With each step, the number of channels
in the feature maps is doubled to enhance the feature capture across various scales. To align
with the original image, the expanding path utilizes up-sampling operations to restore
the feature maps. Additionally, this path incorporates skip connections to blend local and
global features, empowering the network to simultaneously utilize features from different
scales. This approach significantly bolsters forecast accuracy. The U-Net model is effective
for semantic segmentation, dividing images based on content. Our goal is to segment SSTA
images into MHW intensity regions. The U-Net captures patterns and classifies pixels well.
The U-Net’s deep architecture and skip connections handle complex intensity variations. It
aligns with our research for predicting MHW in the SCS.
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Figure 1. Schematic diagram of the algorithm flow for the marine heatwave forecasting system:
(a) illustrates the prediction of sea surface temperature anomalies using the U-Net; (b) depicts the
forecast of marine heatwave occurrence probability using the ConvLSTM; (c) demonstrates the final
determination and prediction of marine heatwaves based on the previous two forecasts.

The contracting path is constructed through iterative application of two sets of 3
by 3 convolutions, succeeded by a Leaky ReLU activation, followed by down-sampling
facilitated by a 2 by 2 max pooling with a stride of 2. In the symmetric expanding path, each
stage encompasses an up-sampling of the feature map, followed by a 2 by 2 convolution
and two consecutive 3 by 3 convolutions, each accompanied by a Leaky ReLU activation.
The output layer incorporates a 1 × 1 convolution followed by a linear operation. Within
the intensity forecast module, the single-step forecast mode is adopted. This mode employs
sea surface temperature anomaly (SSTA) data as both input and output data. The SSTA
indicates the disparity between observed SST and the threshold temperature, which is
calculated based on climatological data spanning from 1982 to 2021 (the detailed calcu-
lation method is referenced in Section 2.2). To define the input tensor, we designate it as
SSTAt0−ti, with dimensions of i × 100 × 80. The output tensor is defined as SSTAti+step,
with dimensions of 100 by 80. Here, “i” represents the duration of input data, and “step”
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denotes the lead time. The numbers 100 and 80 represent the number of grids in latitude
and longitude directions, respectively.

The probability forecast module relies on the ConvLSTM, an advanced model that
extends LSTM capabilities to retain spatial information while processing sequential data.
In our research, we aim to predict the probability of MHW occurrences by forecasting
the likelihood of MHW events within a specific time frame using SSTA sequences. The
ConvLSTM’s spatial-temporal modeling capacity suits this probability prediction task well,
as it effectively captures spatial features from SSTA images while retaining the chronological
sequence information. The ConvLSTM algorithm was initially introduced by Shi et al. [70]
and is applied to precipitation forecasting, showcasing its superior ability to capture
spatiotemporal correlations. Subsequently, Zhou et al. [51] and Han et al. [52], respectively
applied the ConvLSTM model to forecast two-dimensional wave heights in the South and
East China Seas, as well as effective wave heights in the SCS region, respectively. These
applications validated the ConvLSTM algorithm’s effectiveness in predicting time-series-
related phenomena.

In the ConvLSTM architecture, both the input and output data are represented as 3D
tensors, incorporating the dimensions of time, width (longitude), and height (latitude).
This design empowers ConvLSTM to directly handle data with spatiotemporal variations.
The pivotal innovation of ConvLSTM is the substitution of traditional LSTM’s fully con-
nected layer operations with convolutional operations. The architecture comprises three
ConvLSTM layers, with the concluding layer being a Conv2D layer. To amplify the model’s
forecasting performance and tackle gradient vanishing challenges, Batch Normalization is
integrated between the ConvLSTM layers. Each layer incorporates 30 filters and employs a
kernel size of 3 by 3. The activation function applied in each layer is Leaky ReLU, intro-
ducing non-linearity into the model. Similar to the intensity forecast module, the input
data for this module are also based on SSTA. However, we adopt a labeled dataset that
distinguishes locations where MHWs occur (labeled as 1) from those where MHWs do not
occur (labeled as 0).

In both above two modules, this study uses the past 7 days of data as input. Sensitivity
experiments reveal that the model achieves optimal forecasting performance with a 7-day
input data, striking a balance between retaining sufficient historical information and
minimizing computational overhead. The system is designed to predict the intensity
and probability of MHW occurrence for 1-, 3-, 5-, and 7-day in the future. The objective
function in the U-Net and ConvLSTM is mean square error (MSE), which measures the
difference between the predicted and actual probability values. Before calculating the MSE
at each step, the predicted value on land needs to be set to 0, which could avoid the missing
value affecting the weight update.

It is worth noting that both the U-Net and ConvLSTM models are trained using the
early stopping mechanism to prevent overfitting, with a patience value set to 30. The
model combines the results of the intensity forecast and probability forecast (Figure 1c).
It determines the occurrence of an MHW only when both the intensity and probability
forecasts meet the set threshold values. Moreover, to optimize GPU memory usage, the
model adopts a single-step prediction strategy instead of using a sequence-to-sequence
prediction form.

2.4. Evaluation Parameters for Marine Heatwave Forecasting

The subsequent parameters are utilized to assess the forecasting performance of the
model on MHWs.

(1) Forecast bias (FB):

FB(i, j) =
1
N

N

∑
k=1

Tp,k(i, j)− Tm,k(i, j) (1)

Here, N signifies the overall count of predictions generated by the model using the
validation set (722 times for a lead time of 7 days). Furthermore, i and j denote the grid
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point indices for the longitude and latitude of the SCS, respectively. Tp,k(i, j) represents the
forecasted SSTA at spatial point (i, j) in the kth forecast instance. Tm,k(i, j) represents the
observed SSTA derived from OISSTV2.1 at the corresponding position. FB measures the
difference between the forecasted MHWs intensity and the observed values.

(2) Mean absolute forecast bias (MAFB):

MAFB(i, j) =
1
N

N

∑
k=1

∣∣∣Tp,k(i, j)− Tm,k(i, j)
∣∣∣ (2)

The symbols and expressions employed here mirror those in Equation (1). The MAFB
provides a direct measure of the difference between the forecasted results and the observed
values. By negating the impact of positive and negative biases, this measure renders the
evaluation outcomes more objective and conducive to comparison.

(3) Root Mean Square Error (RMSE):

RMSE(i, j) =

√√√√ 1
N

N

∑
k=1

[
Tp,k(i, j)− Tm,k(i, j)

]2
(3)

RMSE calculates the square root of the average squared forecast biases. It amplifies
larger biases, making it effective in detecting significant prediction discrepancies.

(4) Correlation Coefficient (R):

R =

N
∑

k=1
(Tm,k − Tm)(Tp,k − Tp)√

N
∑

k=1
(Tm,k − Tm)

2 ×
N
∑

k=1
(Tp,k − Tp)

2
(4)

In the formula, the numerator represents covariance between model predictions and
observations, while the denominator represents the product of standard deviations of
model predictions and observations. Tm and Tp represent their respective average values.
The correlation coefficient gauges the linear relationship between the forecasted MHWs
intensity and the observed values.

(5) True Positive Rate (TPR):

TPR, also known as sensitivity, evaluates the rate of accurately predicted MHW
occurrences relative to the total number of actual occurrences. The formula for calculating
TPR is as follows:

TPR =
TP

TP + FN
(5)

In the equation, TP denotes the count of predictions accurately identified as MHW
occurrences, while FN represents the count of false negatives, instances in which the model
predicted no MHW occurrence despite it actually occurring.

(6) True Negative Rate (TNR):

TNR, also recognized as specificity, represents the proportion of correctly predicted
non-MHW occurrences out of all actual non-MHW samples. It is calculated using the
formula:

TNR =
TN

TN + FP
(6)

TN represents the count of correctly predicted non-MHW occurrences, while FP repre-
sents the count of instances in which the model incorrectly forecasted MHW occurrence
despite its absence.

(7) Forecast Accuracy Rate (FAR)
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FAR represents the rate of accurately predicted samples to the total number of samples
within a classification model. The formula for calculating FAR is as follows:

FAR =
TP + TN

TP + TN + FP + FN
(7)

The symbols and expressions employed are consistent with those in Equations (5)
and (6).

3. Results
3.1. Individual Case of Marine Heatwave Intensity Forecast

Figure 2 portrays the spatial distribution of observed SSTA in the SCS on 15 April
2021 (Figure 2a,d,g,j), model forecasts (Figure 2b,e,h,k), and the deviation between the two
(forecast minus observed, Figure 2c,f,i,l). Each row illustrates the outcomes for varying lead
times: 1 day (Figure 2a–c), 3 days (Figure 2d–f), 5 days (Figure 2g–i), and 7 days (Figure 2j–l)
in advance. The model’s predicted MHWs intensity generally exhibits commendable spatial
consistency with the observed values derived from OISSTV2.1. Both reveal substantial
positive anomalies in the northern region of the SCS, particularly concentrated within the
shallow waters of the continental slope (within 200 m) and along the western side of the
Luzon Strait. In the central SCS region, a marked decline in MHW intensity is evident,
with a noticeable low-value region between Vietnam and Hainan Island (Figure 2a,d,g,j).
Evidently, the MHW intensity forecasting model constructed using the U-Net network
adeptly captures these spatial patterns (Figure 2b,e,h,k).
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intensity is evident, with a noticeable low-value region between Vietnam and Hainan Is-
land (Figure 2a,d,g,j). Evidently, the MHW intensity forecasting model constructed using 
the U-Net network adeptly captures these spatial patterns (Figure 2b,e,h,k). 

 

Figure 2. Spatial distribution of sea Surface temperature anomalies in the South China Sea on
15 April 2021. The top row (a,d,g,j) depicts the outcomes computed using OISSTV2.1. The middle
row (b,e,h,k) displays the projections made by the U-Net network with forecast lead times of 1, 3, 5,
and 7 days. The bottom row (c,f,i,l) illustrates the deviation between the model predictions and the
observed values. The green curve represents the 200 m isobath in the South China Sea. The figure
employs abbreviations to denote specific geographical locations: B.G. for Beibu Gulf, H.I. for Hainan
Island, T.I. for Taiwan Island, L.S. for Luzon Strait, L.I. for Luzon Island, M.I. for Mindoro Island, P.I.
for Palawan Island, S.S. for Sulu Sea, and K.I. for Kalimantan Island.

The distribution maps depicting the differences between observations and forecasts
(Figure 2c,f,i,l) distinctly indicate that as the lead time lengthens, ranging from 1-day
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ahead to 7-day ahead, the model’s predictive accuracy gradually decreases. This trend
is particularly evident on the western side of the Luzon Strait. In the initial 1-day lead
time forecast, the model tends to overestimate intensity, but as the lead time extends, it
progressively underestimates intensity. In the southern region of the SCS and along its
western marginal seas, the model’s forecasts generally exhibit higher values compared to
the observations. This overestimation is notably more pronounced in the southern region
of Vietnam.

With the exception of the 1-day lead time forecast, the outcomes for 3-, 5-, and 7-day
lead times consistently exhibit a noticeable north–south dipole pattern. In the northern
expanse of the SCS, the forecasted MHW intensities are relatively weaker, while in the
southern waters of the SCS, they tend to be stronger. The model demonstrates a propensity
to underestimate the intensity of strong MHWs in the northern region and overestimate the
intensity of weak MHWs in the southern region. In summary, the model inclines towards
tempering the intensity of MHWs, making strong events weaker and weak occurrences
stronger. This phenomenon of underestimating MHW intensity in forecasts, as mentioned,
corresponds with observations in the study conducted by Giamalaki et al. [57]. The
underlying reason for this bias might be attributed to the limited occurrence of high-
intensity MHWs in the training samples, leading to a deficiency in adequate training data.

3.2. Determining Thresholds for Marine Heatwave

There are three approaches that can be utilized to determine the occurrence of MHWs.
The first approach involves leveraging predictions from the U-Net model by selecting a
specific temperature anomaly threshold. This method relies on the U-Net model’s SSTA
predictions to indirectly anticipate the occurrence of MHWs. As depicted in Figure 3a, the
highest FAR can be attained by configuring temperature thresholds of 1.0 ◦C, 1.0 ◦C, 1.0 ◦C,
and 1.1 ◦C for lead times of 1, 3, 5, and 7 days. The FARs associated with these thresholds
are 0.91, 0.89, 0.88, and 0.86, respectively.
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rates are attained. 

 

Figure 3. Distribution curves of forecast accuracy rates obtained using temperature anomaly thresh-
olds (a) and probability thresholds (b) methods, presented separately. The curves are color-coded as
black, blue, green, and red, respectively, corresponding to the results of 1-, 3-, 5-, and 7-day forecasts.
The asterisks depicted in the figure represent the points where the maximum forecast accuracy rates
are attained.

The second approach involves using the probability outcomes from the ConvLSTM
forecasting model to determine the occurrence of MHWs. By selecting a suitable probability
threshold, instances where the predicted probability exceeds this threshold are classified
as MHW occurrences. This method solely depends on the probability forecast results,
disregarding the results from the U-Net model. As shown in Figure 3b, the highest accuracy
can be achieved by configuring probability thresholds of 0.32, 0.32, 0.30, and 0.31 for lead
times of 1, 3, 5, and 7 days, respectively. Correspondingly, the corresponding FARs are 0.89,
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0.85, 0.83, and 0.81. It is worth noting that using this approach only provides information
about the occurrence of an MHW, without yielding any insight into its intensity.

The third approach employed in this study amalgamates the results of the previous
two methods. It requires that the SSTA predicted by the U-Net surpasses a designated
temperature anomaly threshold (T), and the predicted probability value by the ConvLSTM
exceeds another set probability threshold (P). Only when both conditions are fulfilled,
the occurrence of MHWs is affirmed. The analysis underscores that the MHW forecast
accuracy achieved through this combined approach surpasses that of utilizing the two
previous methods in isolation. For 1-, 3-, 5-, and 7-day lead times, the highest FARs are
0.92, 0.89, 0.88, and 0.87, respectively. The corresponding temperature anomaly thresholds
(probability thresholds) for these levels of accuracies are 0.9 ◦C (0.29), 0.8 ◦C (0.30), 1.0 ◦C
(0.20), and 1.0 ◦C (0.28). Notably, the synergy of both methods in the combined approach
yields elevated forecast accuracy rates compared to employing either method in isolation.

Additionally, it is noteworthy that both Figure 3a,b exhibit a tendency where the FAR
stabilizes as the threshold value increases up to a certain point. This phenomenon can be
attributed to the data imbalance among different data types within the model’s training
dataset [57]. Specifically, the training dataset displays an imbalance in the occurrence of
MHWs, with occurrences accounting for only a quarter of the grid points in comparison to
non-occurrence instances. This signifies that approximately 80% of the grid points fall into
the non-occurrence category of MHWs. This matter warrants further investigation, and
forthcoming studies will delve into a more comprehensive analysis of this phenomenon.

3.3. Analysis of the Forecast Performance of the Marine Heatwave Prediction System

We comprehensively evaluated the overall forecasting performance of the model in
predicting MHWs across the entire validation dataset spanning from 2020 to 2021. Figure 4
presents the spatial distribution of the time-averaged FBs for different lead times. It is
important to emphasize that this assessment is grounded in the ultimate output of the
forecast system, which amalgamates both the intensity forecast and the probability forecast.
To ensure meaningful comparison across various lead times, adjustments have been made
to the color bar range, given the relatively smaller magnitude of the average forecast bias
for a 1-day lead time.

In general, a discernible trend is observed wherein the intensity FB of MHWs tends to
diminish near the 200 m isobath within the northern region of the SCS, a trend that becomes
more pronounced with extended lead times (Figure 4). In terms of spatial distribution, the
magnitude of the FB notably amplifies within the shallow waters that are characterized
by depths within 200 m, in contrast to the more expansive central open ocean areas of
the SCS. This discrepancy could be attributed to the higher frequency of MHWs in the
shallow waters and the diverse physical mechanisms influencing MHWs in these specific
areas [38]. The adjacency of land to these shallow waters could potentially introduce
disturbances during model training, contributing to the observed variations. For example,
when training the U-Net model on SSTA data, the absence of data on land grid points
(which is substituted with data to zero) introduces discrepancies in the model’s accuracy.
The extreme FB values for 1-, 3-, 5-, and 7-day lead times are −0.39 ◦C, −0.49 ◦C, −0.55 ◦C,
and −0.60 ◦C, respectively, situated near the 200 m isobath to the right of Hainan Island in
the northern region of the SCS.



Remote Sens. 2023, 15, 4068 11 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

example, when training the U-Net model on SSTA data, the absence of data on land grid 
points (which is substituted with data to zero) introduces discrepancies in the model’s 
accuracy. The extreme FB values for 1-, 3-, 5-, and 7-day lead times are −0.39 °C, −0.49 °C, 
−0.55 °C, and −0.60 °C, respectively, situated near the 200 m isobath to the right of Hainan 
Island in the northern region of the SCS. 

 
Figure 4. Spatial distribution of forecast biases in MHWs intensity. Panels (a–d) correspond to the 
forecast biases for lead times of 1, 3, 5, and 7 days, respectively. The green curve represents the 200 
m isobath within the South China Sea. In the figure, the abbreviations represent specific geograph-
ical locations: B.G. for Beibu Gulf, H.I. for Hainan Island, T.I. for Taiwan Island, L.S. for Luzon Strait, 
L.I. for Luzon Island, M.I. for Mindoro Island, P.I. for Palawan Island, S.S. for Sulu Sea, and K.I. for 
Kalimantan Island. 

The MAFB offers a direct measurement of the discrepancy between the forecasted 
MHWs and the observed values, disregarding positive or negative biases. Figure 5a–d il-
lustrate the spatial distribution of MAFB for the model’s MHW intensity forecasts, span-
ning 1-, 3-, 5-, and 7-day lead times. With increasing lead times, MAFB values gradually 
rise (transitioning from Figure 5a–d), but the consistent spatial distribution trend remains. 
A notable pattern emerges in the figures, characterized by a northeast-southwest direc-
tional distribution of MAFB values. Notably elevated values are discernible along the 

Figure 4. Spatial distribution of forecast biases in MHWs intensity. Panels (a–d) correspond to the
forecast biases for lead times of 1, 3, 5, and 7 days, respectively. The green curve represents the 200 m
isobath within the South China Sea. In the figure, the abbreviations represent specific geographical
locations: B.G. for Beibu Gulf, H.I. for Hainan Island, T.I. for Taiwan Island, L.S. for Luzon Strait,
L.I. for Luzon Island, M.I. for Mindoro Island, P.I. for Palawan Island, S.S. for Sulu Sea, and K.I. for
Kalimantan Island.

The MAFB offers a direct measurement of the discrepancy between the forecasted
MHWs and the observed values, disregarding positive or negative biases. Figure 5a–d illus-
trate the spatial distribution of MAFB for the model’s MHW intensity forecasts, spanning
1-, 3-, 5-, and 7-day lead times. With increasing lead times, MAFB values gradually rise
(transitioning from Figure 5a–d), but the consistent spatial distribution trend remains. A
notable pattern emerges in the figures, characterized by a northeast-southwest directional
distribution of MAFB values. Notably elevated values are discernible along the northern
slope region of the SCS. The area extending between the Luzon Strait and Vietnam, par-
ticularly at depths exceeding 200 m, exhibits intermediate MAFB values. Conversely, the
southeastern SCS demonstrates the lowest MAFB values. As the forecast lead time extends,
the MAFB within the SCS correspondingly grows. Specifically, the mean MAFB for 1-, 3-, 5-,
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and 7-day lead times are 0.10 ± 0.08 ◦C, 0.14 ± 0.11 ◦C, 0.17 ± 0.13 ◦C, and 0.18 ± 0.14 ◦C,
respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

northern slope region of the SCS. The area extending between the Luzon Strait and Vi-
etnam, particularly at depths exceeding 200 m, exhibits intermediate MAFB values. Con-
versely, the southeastern SCS demonstrates the lowest MAFB values. As the forecast lead 
time extends, the MAFB within the SCS correspondingly grows. Specifically, the mean 
MAFB for 1-, 3-, 5-, and 7-day lead times are 0.10 ± 0.08 °C, 0.14 ± 0.11 °C, 0.17 ± 0.13 °C, 
and 0.18 ± 0.14 °C, respectively. 

 
Figure 5. Spatial distribution of the mean absolute forecast bias for the model-predicted MHWs in-
tensity. Panels (a–d) represent the forecast results for 1-, 3-, 5-, and 7-day lead times, respectively. 
The green curve represents the 200 m isobath in the South China Sea. In the figure, the abbreviations 
correspond to specific geographical locations: B.G. for Beibu Gulf, H.I. for Hainan Island, T.I. for 
Taiwan Island, L.S. for Luzon Strait, L.I. for Luzon Island, M.I. for Mindoro Island, P.I. for Palawan 
Island, S.S. for Sulu Sea, and K.I. for Kalimantan Island. 

The RMSE serves as a commonly used metric that quantifies the overall disparity 
between predicted values and their corresponding observed values, thereby providing an 
assessment of prediction performance. In our study, RMSE offers insights into spatial var-
iations in prediction accuracy. Specifically, it exhibits higher values in the shallow waters 
of the northwestern shelf and the Luzon Strait, while lower values are observed in other 
regions (Figure 6). Analogous to the descriptions of FB and MAFB, RMSE also exhibits the 
characteristic of increasing values with longer forecast lead times. For instance, in the shal-
low waters of the northwestern SCS, RMSE reaches its maximum values of 0.87 °C, 0.89 
°C, 1.08 °C, and 1.23 °C for 1-, 3-, 5-, and 7-day forecast lead times, respectively. The spatial 
averaged RMSE for each forecast lead time are 0.27 ± 0.18 °C, 0.33 ± 0.22 °C, 0.37 ± 0.24 °C, 

Figure 5. Spatial distribution of the mean absolute forecast bias for the model-predicted MHWs
intensity. Panels (a–d) represent the forecast results for 1-, 3-, 5-, and 7-day lead times, respectively.
The green curve represents the 200 m isobath in the South China Sea. In the figure, the abbreviations
correspond to specific geographical locations: B.G. for Beibu Gulf, H.I. for Hainan Island, T.I. for
Taiwan Island, L.S. for Luzon Strait, L.I. for Luzon Island, M.I. for Mindoro Island, P.I. for Palawan
Island, S.S. for Sulu Sea, and K.I. for Kalimantan Island.

The RMSE serves as a commonly used metric that quantifies the overall disparity
between predicted values and their corresponding observed values, thereby providing
an assessment of prediction performance. In our study, RMSE offers insights into spatial
variations in prediction accuracy. Specifically, it exhibits higher values in the shallow waters
of the northwestern shelf and the Luzon Strait, while lower values are observed in other
regions (Figure 6). Analogous to the descriptions of FB and MAFB, RMSE also exhibits
the characteristic of increasing values with longer forecast lead times. For instance, in the
shallow waters of the northwestern SCS, RMSE reaches its maximum values of 0.87 ◦C,
0.89 ◦C, 1.08 ◦C, and 1.23 ◦C for 1-, 3-, 5-, and 7-day forecast lead times, respectively. The
spatial averaged RMSE for each forecast lead time are 0.27 ± 0.18 ◦C, 0.33 ± 0.22 ◦C,
0.37 ± 0.24 ◦C, and 0.40 ± 0.27 ◦C, respectively. These results outcomes provide valuable
insights into the model’s performance across different forecast lead times and spatial
locations in the SCS.
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Figure 6. Spatial distribution of the root means square error in the model’s forecast of MHWs. Panels
(a–d) represent the forecast results for 1-, 3-, 5-, and 7-day lead times, respectively. The green curve
represents the 200 m isobath in the South China Sea. In the figure, the abbreviations denote specific
geographical locations: B.G. for Beibu Gulf, H.I. for Hainan Island, T.I. for Taiwan Island, L.S. for
Luzon Strait, L.I. for Luzon Island, M.I. for Mindoro Island, P.I. for Palawan Island, S.S. for Sulu Sea,
and K.I. for Kalimantan Island.

In the SCS, there is generally a strong positive correlation between the model-predicted
MHW intensity and the observed MHW intensity (Figure 7). However, it is important to
note that the spatial distribution pattern of these correlation coefficients differs from that
of FB, MAFB, and RMSE. Unlike the latter metrics, the 200 m isobath does not serve as a
clear boundary for categorizing the correlation coefficient into strong and weak categories.
Instead, the Luzon Strait area shows notably lower correlation coefficients compared to
other regions in the SCS. This difference may be attributed to various factors, including the
intrusion of the Kuroshio near the Luzon Strait. Such processes may give rise to different
mechanisms for MHW occurrences in that specific area compared to other regions. Further
exploration and analysis of this specific issue will be conducted in future research as it
extends beyond the scope of the current study. Regions with relatively high correlation
coefficients are distributed in the central open waters of the SCS. The spatial average
correlation coefficients for 1-, 3-, 5-, and 7-day forecast lead times across the entire SCS
region are 0.73 ± 0.13, 0.56 ± 0.17, 0.43 ± 0.20, and 0.34 ± 0.20, respectively.
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Figure 7. Spatial distribution of the correlation coefficient between the model-predicted and the
observed MHWs intensity. Panels (a–d) correspond to the forecast results for 1-, 3-, 5-, and 7-day
lead times, respectively. The green curve represents the 200 m isobath in the South China Sea. In the
figure, the abbreviations denote specific geographical locations: B.G. for Beibu Gulf, H.I. for Hainan
Island, T.I. for Taiwan Island, L.S. for Luzon Strait, L.I. for Luzon Island, M.I. for Mindoro Island, P.I.
for Palawan Island, S.S. for Sulu Sea, and K.I. for Kalimantan Island.

Figure 8 depicts the spatial distribution of TPR in Figure 8a,d,g,j, TNR in Figure 8b,e,h,k,
and FAR in Figure 8c,f,i,l for 1-day (Figure 8a–c), 3-day (Figure 8d–f), 5-day (Figure 8g–i),
and 7-day (Figure 8j–l) forecast lead times. The TPRs exhibit a notable decline in areas
shallower than 200 m, particularly in the southern region of the SCS, when compared to
the open waters. As the forecast lead time increases, a clear downward trend in TPRs is
observed. The spatial average of TPRs across the entire SCS for l 1-, 3-, 5-, and 7-day lead
times are 0.64 ± 0.25, 0.53 ± 0.25, 0.32 ± 0.22, and 0.22 ± 0.19, respectively. This indicates
forecasting performance requires improvement for lead times of 5 days or longer.

Conversely, the corresponding TNRs exhibit considerable elevation (Figure 8b,d,f,h),
with spatial average values of 0.96 ± 0.05, 0.95 ± 0.05, 0.96 ± 0.04, and 0.97 ± 0.04 for 1-, 3-,
5-, and 7-day forecast lead times, respectively. TNRs are noticeably reduced in the northern
shallow water region of the SCS and on the western side of the Luzon Strait in comparison
to other areas. Particularly within the Beibu Gulf region, a clear central area of low TNR
values is observed.

The FAR serves as a composite metric that takes both TPR and TNR into account,
offering an encompassing evaluation of performance within a probability forecast model.
Figure 8c,f,i,l illustrate that the spatial distribution pattern of FAR generally aligns with
that of TNR, with distinctly lower FARs observed in the Beibu Gulf and the western region
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of the Luzon Strait. Across the entirety of the SCS, the average FARs for 1-, 3-, 5-, and 7-day
forecast lead times are 0.94 ± 0.05, 0.91 ± 0.07, 0.90 ± 0.08, and 0.89 ± 0.09, respectively.
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Figure 8. Spatial distribution of the true positive rate, true negative rate and forecast accuracy rate in
the South China Sea marine heatwave prediction system. The top row (a,d,g,j), middle row (b,e,h,k),
and bottom row (c,f,i,l) depict the spatial distribution of true positive rate, true negative rate, and
forecast accuracy rate for forecasts made 1 day in advance (a–c), 3 days in advance (d–f), 5 days in
advance (g–i), and 7 days in advance (j–l), respectively. The green curve represents the 200 m isobath
in the South China Sea. In the figure, the abbreviations denote specific geographical locations: B.G.
for Beibu Gulf, H.I. for Hainan Island, T.I. for Taiwan Island, L.S. for Luzon Strait, L.I. for Luzon
Island, M.I. for Mindoro Island, P.I. for Palawan Island, S.S. for Sulu Sea, and K.I. for Kalimantan
Island.

Figure 9 depicts the probability density distributions of four evaluation parameters at
different forecast lead times. The correlation coefficients for forecasts with 1-, 3-, 5-, and
7-day lead times display skewness (kurtosis) values of −1.58 (6.77), −0.67 (2.88), −0.38
(2.12), and −0.21 (2.03), respectively (Figure 9a). Negative skewness indicates a left-skewed
distribution, implying that there is a higher frequency of data points below the mean in the
correlation coefficient data compared to those above it. Kurtosis reflects the concentration
of data around the mean, as well as the thickness and heaviness of the tails. A positive
kurtosis indicates a relatively sharp distribution, with values deviating further from 3,
which is the kurtosis value of a standard normal distribution, indicating a greater departure
from the standard normal distribution.

The probability density distribution of RMSE also exhibits similar characteristics, with
an increasing mean value as the forecast lead time extends (Figure 9b). The skewness
(kurtosis) values of the RMSE for 1-, 3-, 5-, and 7-day lead time forecasts are 0.83 (4.51), 0.35
(3.13), 0.38 (3.22), and 0.48 (3.67), respectively. The positive skewness of the RMSE indicates
that the distribution of data points is skewed to the right, suggesting that there are more
data points with larger values compared to the mean.

Figure 9c presents the skewness (kurtosis) values of the forecast bias for 1-, 3-, 5-,
and 7-day lead time forecasts as −0.26 (4.49), −0.85 (3.72), −0.85 (3.12), and −0.53 (2.49),
respectively. The noticeable left-skewness in the data indicates a tendency for the forecast
results to underestimate the intensity of MHWs. Furthermore, Figure 9d displays the
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probability density distribution of the MAFB, showing an increasing trend in the peak
value with longer forecast lead times. The skewness (kurtosis) values of MAFB for 1-, 3-, 5-,
and 7-day forecasts are 0.79 (3.99), 0.33 (2.56), 0.39 (2.65), and 0.42 (2.84), respectively. The
identification of these values is valuable for subsequent systematic bias correction of the
model forecasts.
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4. Discussion

Based on the above analysis, it is evident that the forecast performance of MHWs is
significantly influenced by various factors, including threshold selection, spatial location,
forecast lead time, and others. For instance, this study does not differentiate the occurrence
time of MHWs, meaning that the selection of temperature anomaly thresholds does not
account for seasonal variations. In reality, MHWs in the SCS do exhibit seasonal variations.
During the winter and spring seasons, the intensity of MHWs typically exceeds 1 ◦C, while
in the summer and autumn seasons, it is usually around 0.5 ◦C [71]. Therefore, considering
these seasonal variations could be advantageous for further refining and enhancing the
accuracy of MHW forecasts in the SCS.

Moreover, the probability density distribution of the forecast bias in Figure 9c high-
lights a consistent trend where the model consistently underestimates the intensity of
MHWs, indicating a systematic bias towards lower forecasted intensities. Addressing this
bias through systematic corrections could prove advantageous in future model develop-
ment, leading to enhanced accuracy in MHW predictions. Additionally, another critical
factor that demands consideration is the data type imbalance within the model training
datasets. A notable discrepancy exists between the abundance of non-MHW data and
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the relatively fewer instances of MHW data, potentially introducing disruptions to the
model’s learning process. Specifically, within the confines of the model training dataset, a
substantial proportion of grid points represent occurrences devoid of MHWs, while only
about a fifth corresponds to locations where MHWs manifest. This prevailing imbalance
tends to skew the model’s inclinations toward more frequently classifying forecasted grid
points as non-MHW occurrences while allocating fewer grid points to represent actual
MHW events [50].

The study underscores a robust correlation between the model’s forecasting perfor-
mance for MHWs and the geographic location of the region. Notably, within the northern
slope region of the SCS within 200 m, the model tends to exhibit elevated values in forecast
bias, mean absolute forecast bias, and root mean square error. In contrast, these metrics
demonstrate relatively smaller magnitudes in the central part of the SCS. One possible
reason explanation for this divergence could be attributed to the edge effects encountered
during model training. The constrained availability of oceanic points in the proximity of
the slope region might compromise the model’s training efficacy, consequently influencing
the accuracy of the forecasts within that particular area.

Moreover, it is noteworthy that a majority of studies have conventionally embraced
the definition proposed by Hobday et al. [2] for MHWs. This definition characterizes an
MHW as an event at a specific point in space, overlooking the contextual surroundings.
This “micro-scale” vantage point in the MHW definition imparts a drawback of generating
a fragmented spatial distribution of MHWs. Consequently, certain MHW instances appear
isolated, inadvertently intensifying the challenge of model assimilation. In essence, what
researchers are interested in is a broader perspective of the “macro-scale” MHWs. This
concept alludes to the aggregation of individual “micro-scale” MHWs, thereby forming
interconnected spatial domains of contiguous MHW activity [72]. This distinction is pivotal
in refining our understanding of MHW dynamics.

Indeed, the influence of a solitary “micro-scale” MHW occurrence at an individual
spatial point is relatively minimal and might even be inconsequential. The true impact
only materializes when these isolated “micro-scale” MHWs expand to cover a certain
spatial scope, at which point their ecological and other consequences become significant.
Consequently, in forthcoming research endeavors, it might prove imperative to embrace a
“macro-scale” definition of MHWs that operates within a comprehensive spatio-temporal
framework [73]. This paradigm shift can streamline the intricacies of forecasting and
ultimately enhance predictive prediction by acknowledging the interconnected nature of
MHWs across a broader spatial expanse.

5. Conclusions

In the face of increasing global warming, the escalating detrimental consequences of
MHWs on marine ecosystems, along with their growing frequency and intensity, present
difficult challenges. The imperative for timely and effective MHW prediction has risen to
the forefront for marine management entities. To address this issue, this study develops
an artificial intelligence forecasting system tailored for predicting MHWs in the SCS. The
system is comprised of three integral components:

(1) SSTA (intensity) prediction through the U-Net network: This initial facet is designed
to predict SSTA values, which act as pivotal indicators of MHWs. It uses the U-Net
network architecture to achieve accurate and dependable predictions.

(2) MHW occurrence probability prediction based on ConvLSTM network: The second
facet employs the ConvLSTM model to forecast the probability of MHW occurrence,
incorporating the temporal correlations intrinsic to the SCS.

(3) Holistic MHW determination through SSTA and occurrence probability thresholds:
The goal centers on a comprehensive determination of MHWs, achieved by applying
predefined thresholds for both SSTA and the probability of occurrence.

Through the seamless integration of these three components, the forecasting system
aims to provide precise and timely MHWs predictions in the SCS. This equips marine
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management authorities with the tools to proactively address and alleviate the impacts
associated with these events.

The model’s training dataset is meticulously constructed from MHW data obtained
from the OISSTV2.1 dataset, spanning the time frame of 1982–2019. This data compilation
forms the basis for model learning. To rigorously evaluate the model’s forecasting ability,
the detection outcomes for 2020 and 2021 are used as the validation set. The findings of the
sensitivity testing underscore a crucial insight: the best forecasting performance is obtained
when both the SSTA threshold method and the occurrence probability threshold method
are combined. In particular, when setting the temperature threshold values at 0.9 ◦C, 0.8 ◦C,
1.0 ◦C, and 1.0 ◦C, coupled with probability threshold values of 0.29, 0.30, 0.20, and 0.28
for 1-, 3-, 5-, and 7-day forecast lead times, respectively, the forecast accuracy reaches is
highest. Consequently, the corresponding maximum forecast accuracy rates are 0.92, 0.89,
0.88, and 0.87.

Given the paramount importance of the SCS in activities such as nearshore aquaculture,
marine ranching, fishing, and coral reef conservation, the establishment of an MHW
forecasting system carries important practical implications. The innovative forecasting
system proposed in this study stands as a pivotal solution to provide timely MHW alert
information to pertinent management authorities. It plays a pivotal role in shaping disaster
prevention and mitigation policies, which are of paramount significance in addressing the
escalating risks posed by MHWs. The distinctive aspect of this forecasting system lies in
its direct utilization of SSTA data, avoiding the incorporation of meteorological variables.
This quality endows it with heightened transferability, positioning it as a reference model
for the construction of MHW prediction systems in diverse regions. The research brings to
the fore critical issues, such as the imbalance in MHW data and the potential influence of
coastal land points during model training. These findings provide invaluable insights that
pave the way for the development of more finely tuned artificial intelligence-based MHW
prediction systems in subsequent endeavors. Furthermore, a forward-looking dimension
emerges by acknowledging that MHWs are influenced by a confluence of oceanic dynamics
and thermodynamics. Integrating these underlying physical constraints into AI models,
thereby constructing interpretable forecasting networks, constitutes a promising avenue
for future research endeavors.
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