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Abstract: Object detection in remote sensing has developed rapidly and has been applied in many
fields, but it is known to be vulnerable to adversarial attacks. Improving the robustness of models
has become a key issue for reliable application deployment. This paper proposes a robust object
detector for remote sensing images (RSIs) to mitigate the performance degradation caused by adver-
sarial attacks. For remote sensing objects, multi-dimensional convolution is utilized to extract both
specific features and consistency features from clean images and adversarial images dynamically
and efficiently. This enhances the feature extraction ability and thus enriches the context information
used for detection. Furthermore, regularization loss is proposed from the perspective of image
distribution. This can separate consistent features from the mixed distributions for reconstruction to
assure detection accuracy. Experimental results obtained using different datasets (HRSC, UCAS-AOD,
and DIOR) demonstrate that the proposed method effectively improves the robustness of detectors
against adversarial attacks.

Keywords: robust detector; adversarial example; object detection; adversarial training; remote

sensing image

1. Introduction

Object detection in RSIs has broad applications in urban and agricultural fields. In
recent years, there has been significant progress in convolutional-neural-network-based
(CNN-based) detectors. Compared with traditional methods, CNN-based detectors have
better feature extraction ability, faster speeds, and higher accuracy [1,2]. Adversarial
attacks introduce small and imperceptible texture perturbations to clean images through
gradient descending or adversarial generation and then generate adversarial examples.
CNNs are vulnerable to attacks because they make final predictions by promoting semantic
understanding according to the corresponding texture and color of the input images.
However, adversarial attacks disrupt the texture information and destroy the semantic
understanding of the network, eventually leading to incorrect predictions [3]. Therefore, it
is important to improve the robustness of CNN-based detectors and mitigate performance
degradation caused by adversarial attacks, especially to ensure the reliable deployment of
security sensitive applications.

Early works on adversarial attacks [4,5] focus on the classifier and invalidate the
classification model. These works mainly generate the most effective adversarial example
while making minimal changes to the original image by adding disturbances to the input.
Thus, these changes mislead the network and greatly reduce the accuracy of the classifier.
Specifically, gradient-based methods compute the minimum necessary perturbation by
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maximizing the prediction error of the network to produce adversarial examples. Transfer-
based attacks exploit the use of training data to generate adversarial alternatives. As an
extension of the classification task, object detection [6-8] outputs the classification label
and the location at the same time. In this way, the detection process is more complex
and difficult to attack. Some works [9,10] significantly reduce the accuracy of models by
generating adversarial patches, exposing the weak robustness of object detection under
adversarial attacks.

Compared with natural images, RSIs have a larger size, higher spatial resolution, and
more detailed spectral information. A small noise perturbation can successfully attack the
model and change the output [11]. Specifically, adversarial attacks in the digital world
generate adversarial patches to cover important parts [12], which can also be applied in
the physical world to evade or deceive object detectors. Defense methods under attack
have often been ignored, especially in military scenarios. Attackers apply adversarial
perturbation to the target (such as an aircraft or ship); then, the adversarial examples can
directly deceive the CNN-based model, introducing high-level risks to the object detection
system.

Current defense methods used in object detection to achieve robustness improvement
can be generally classified into two classes. One type includes methods developed for
model vulnerability [13], which find the potential adversarial patch area and recover it for
detection. Unfortunately, these models pose considerable challenges to the authenticity
and accuracy of data recovery, which are inapplicable to remote sensing scenarios. The
other type of widely used methods are those that obtain robust models through training.
Through adversarial training [14], the MTD model learns both clean and adversarial images,
pays more attention to the robust features in adversarial samples, and ignores the non-
robust features. However, adversarial training always leads to a robustness bottleneck [15].
Specifically, to resist adversarial attacks, the detector has to sacrifice the performance on
clean images to detect adversarial images. This is mainly because of the introduction of
adversarial features. The opposing training effects between the clean image and adversarial
image make it harder to distinguish clean and adversarial features, resulting in a decrease in
performance during detection. As shown in Figure 1, we use a classical single-shot multibox
detector (SSD) [6], a robust detector using multi-task domains (MTD) [14], a robust detector
with class-wised adversarial training (CWAT) [16], and our proposed detector to test the
performance before and after the adversarial attack Projected Gradient Descent (PGD) [17].
The results show that the accuracy is improved after the attack to some extent, but the
performance on clean images is degraded inevitably for current robust detectors.

83.20% SSD 3.79%
71.13%(=12.07%) MTD 13.20%(+9.5%)
73.45%(=9.75%) CWAT 14.93%(+11.14%)
83.19%(—0.01%) Ours 15.40%(+11.61%)

Ship(clean image) Ship(adversarial image)

Figure 1. Performance comparison of the standard SSD [6], robust detector MTD [14], CWAT [16],
and our model after a classification attack by PGD [17].



Remote Sens. 2023, 15, 3997

30f19

This paper provides effective solutions to the above issues. Firstly, a multi-dimensional
convolution kernel is proposed to learn the robust features of the clean image and the
corresponding adversarial image efficiently and dynamically. It can obtain rich context
information from RSIs and significantly improve the feature extraction ability of the de-
tector. Furthermore, a regularization loss was designed to constrain the consistent feature
reconstruction process from the perspective of the internal distribution of the image. It
reduces the interference of adversarial attacks and further increases the robustness of the
object detector. The key contributions of this paper are summarized as follows:

1. A multi-dimensional adversarial convolution (MAConv) kernel is proposed to extract
features adaptively and dynamically. It effectively extracts both shared features and
specific features from clean images and adversarial images under attacks and thus
enhances the ability of feature extraction.

2. From the perspective of image distribution, a consistency regularization loss is pro-
posed to extract consistent features from the mixture distribution under attacks. By
reconstructing clean features for detection, our method successfully improves the
robustness of the object detector.

3. We performed extensive experiments under different adversarial attacks on three
public datasets, HRSC, UCAS-AOD, and DIOR. The experimental results show supe-
rior performance in both single-class and multi-class object detection compared with
current robust object detectors.

2. Related Works
2.1. Attacks for Object Detection

Object detectors are vulnerable to adversarial attacks, which can lead to wrong predic-
tions. The current adversarial attack methods mainly fall into two types, white-box and
black-box attacks. Specifically, white-box attacks assume knowledge of the structure and
parameters of the model. Typical attacks, including FGSM [4] and PGD [17], use one-step
and multi-step gradient descent at each pixel to create adversarial examples. On the other
hand, black-box methods only need to know the output of the attacked model [18-20]. With
regard to object detection tasks, Lu et al. [21] attacked the object-level features by introduc-
ing perturbations to whole images. Li et al. [22] used adversarial perturbations to interfere
with the region proposal network in the network. Zhang et al. [23] performed feature-level
attacks on each neuron in the middle layer of the network to provide adversarial examples.
Czaja et al. [24] simulated physical attacks in digital space and conducted experiments on
remote sensing classification tasks for the first time. Adhikari et al. [25] apply patch-based
adversarial attacks to unmanned aerial surveillance, camouflaging the aircraft with a small
adversarial patch to prevent automatic detection. Li et al. [26] discuss adversarial examples
and propose model vulnerability and attack selectivity in RSIs. Xu et al. [27] showed that
there are also adversarial examples in the hyperspectral domain. Du et al. [28] applied
adversarial patches on cars and suggest new experiments and metrics to prove the effective-
ness of physical adversarial attacks on detectors in aerial images. Xu et al. [29] conducted
black-box attacks by finding common vulnerabilities by attacking shallow features in the
proxy model. Zhang et al. [30] propose a scale factor to provide a generic adversarial patch
and act on different scales of targets in RSIs. Yolo series algorithms were used to verify this
method in practical applications.

2.2. Adversarial Training and Robustness Detector

Adversarial training is a mainstream and effective strategy to make robust models.
Hendrycks et al. [31] first propose ways to reinforce perturbation robustness for image
classifiers. Zhang [14] generalize adversarial training from classification to detection, and
analyze the relationship between different tasks’ losses to improve robustness.

Tsipras et al. [32] indicated that there is a trade-off between the accuracy and robustness
of adversarial models, due to the intrinsic differences between the feature representations
learned by robust detectors and standard detectors in adversarial training. Maini [33]
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developed a generalization of standard PGD-based methods to incorporate different per-
turbations without complex architectures. Rice et al. [34] found that early stopping benefits
robust performance in adversarial training. Chen et al. [16] designed class-aware adversar-
ial training leveraging a class weighted loss to strengthen the model’s robustness. Pang
et al. [35] investigated the impact of implementation details, which are usually ignored in
adversarial training. They concluded that these settings should also be fine-tuned carefully
during robustness research. Tack et al. [36] propose auxiliary consistency regularization to
force the predictive distributions after attacking to increase the accuracy. Gowal et al. [37]
artificially expanded the scale of the original training set and introduce generative models.
Dong et al. [15] focused on extracting robust features from both clean and adversarial
samples to enhance detector robustness.

3. Proposed Methods
3.1. Network Framework

The model robustness bottleneck mainly lies in the conflicts of learning clean and
adversarial images, which makes it difficult to identify robust and non-robust features.
For the purpose of further improving the robustness of object detectors, we propose a
robust object detector for RSIs. Consistent with the current mainstream robust detectors,
we also used the standard SSD as the base model. In the feature extraction stage, the
model learns the objective difference between clean images and adversarial images through
our proposed multi-dimensional dynamic convolution. It is specifically applied to the
layers before the conv4_3 layer of the SSD backbone to effectively improve the feature
extraction ability while controlling the network scale, as shown in Figure 2. To further
ensure that robust features can be extracted effectively from the adversarial images and
that they are consistent with the clean image, influenced by VAE [38] and RobustDet [15], a
decoder structure is utilized to reconstruct clean images from the features extracted by the
front-end network. Meanwhile, a consistency regularization loss is designed to constrain
the reconstructed image to the similar predictions with the original clean image. Therefore,
the model can learn robust features and improve the robustness performance effectively.

Xelean 5

a1l alllns

Consistency <« Decoder
Regularization Loss

classification
subnets
— >
localization
subnets

convolutional layers

detection result

MA Conv

el oL el oe.

kemel @, @ a
Figure 2. Network architecture of the proposed robust detector.

3.2. Multi-Dimensional Adversarial Convolution Feature Extraction

Compared with natural images, objects are captured from a top-down view in RSIs,
which account for a smaller proportion of the whole image. The background is also
more cluttered, which puts forward higher requirements for feature extraction. When the
image is disturbed by adversarial attacks, features in the adversarial image change, thus
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making it difficult to distinguish robust features using regular kernel learning. Unlike
regular convolutional layers, which use the same convolution kernel for all inputs, dynamic
convolution [39,40] can learn a linear combination of multiple kernels weighted with the
attention conditioned on the input. Specifically, dynamic convolution operations can be

n
described as y = (X 7y - ki) * x, where n is the number of dynamic convolutions; x,y
i=1

denote the input and output features; k is the convolution kernel; and 7ty; denotes the
convolution weight calculated by the attention function, which is the dividual attention
vector assigned to each kernel k;. These dynamic convolutions only focus the weights on
the convolution kernel dimension but make no difference to other dimensions.

Inspired by [41], our model proposes multi-dimensional adversarial convolution
(MAConv), which can distinguish more dimensions to refine clean and adversarial images,
as illustrated in Figure 3. By adapting parameters and kernels to different images, our
model learns specific features efficiently. In order to balance the computational burden and
the effectiveness of feature extraction, we apply MAConv in layers before the conv4_3 layer
of the VGG16 backbone. Mathematically, convolutional weights are computed in parallel
for all four dimensions:

n
Y= () 7 O 70y © 7o O 705 O ki) % x €
i=1

where 71y, 7,4, 70,4, 75 denote the weights of different dimensions, including convolution
kernels, the input channel dimension, the output channel dimension, and the spatial di-
mension, respectively. Accordingly, 7ry; denotes the weight for n dynamic convolutions; 7t,,;
is applied to the input channel dimension of each convolutional filter; 77,; is applied to the
output channel dimension of each filter; 7t,; is applied to the k X k spatial locations of each
kernel; and ® denotes the multiplication operation along the corresponding dimensions
of the filter. In this way, the attention weight acting on full dimensions can significantly
enhance the feature extraction ability of convolution. Thus, the model can obtain rich
context information in RSIs.

spatial dimension input channel dimension

7, :dim = (kxkx1) 7, :dim=(Ix1xc,)

L output channel dimension

7, :dim=(I1x1x1)xc,,

N I i

kernel dimension
7, rdim=(Ix1x1)xn

Figure 3. Illustration of weight calculations for different dimensions.

To calculate the weights, the input x is first passed through channel-wise average
pooling (AP) and transformed into a feature vector of length c;,, followed by a fully
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connected (FC) layer for further dimensionality reduction. Then, a rectified linear unit
(ReLU) is connected, which can be denoted as follows:

B = ReLU(FC(AP(x))) ©)

Later, four branches are added in parallel to calculate the weights in four different
dimensions. In each branch, the FC and Sigmoid layers are utilized to perform dimension
transformation and output the weights in different sizes, whichare1 x 1 x 1 xn,1 X 1 X cj,,
1x1x1x cout, and k x k x 1, corresponding to the convolution kernels, the input channel
dimension, the output channel dimension, and the spatial dimension, respectively, which
can be expressed as:

IT =Sigmoid(FC(B;)) 3)

where IT = {71y;, 7,i, 70;, 7s; }. Finally, we can obtain the output of the MAConv:

y=(CkoT)*x @

MAConv adaptively extracts features from multiple dimensions, which is suitable for
RSIs with complex feature distribution and can effectively learn robust features. Compared
with the regular convolution layer, it dynamically combines full dimensions to perform
convolution operations to the input and adapts different kernels and weights for each
dimension. Through various weight computing, both shared features and the specific
features in clean and adversarial images can be accurately extracted. Thus, the model has
the ability to address the robustness bottleneck of the detection task under adversarial
attacks.

3.3. Consistency Regularization Loss for Reconstruction

For the classical assumption of machine learning, models can correctly classify data
that are independent and well-distributed within the training set. From the perspective of
distribution, detection models often make identical predictions for images in consistent
distribution. Xie et al. [42] and Zhu et al. [43] also showed that under adversarial attacks,
the distribution of the generated adversarial images will change and mislead the target
model.

To visualize how clean and adversarial images are distributed, we project their high-
dimensional representations into a 2D space via t-SNE. In Figure 4, the orange represents
clean images of the typical ship targets from the HRSC dataset, and the green describes
the adversarial examples derived from the class attack. It can be seen that the attack re-
sults in misalignment in the domain compared with the original images. Such adversarial
interference also causes inherent changes in the original data and misleads the detector
into obtaining the wrong results. Clean and adversarial images have different inference
distributions within different domains, which leads to the inconsistency of gradient up-
dating direction in adversarial training. Such conflict results in a performance bottleneck
in the robust model. Figure 5 depicts the estimated probability distribution of clean and
adversarial images severally and in a mixture.
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Figure 4. Distribution of clean and adversarial images from the HRSC dataset using t-SNE.

—— clean+adv

Probability

Figure 5. Estimated probability statistics of clean and adversarial images.

In order to solve the problem of separating effective consistency features from mixed
distributions and reduce the negative impact of adversarial perturbations on the detection
results, the decoder structure is utilized to reconstruct the consistency features from both
clean and adversarial images after the feature extraction stages. The reconstruction process
is constrained in the perspective of image distribution, and the reconstructed features are
used for subsequent detection.

Inspired by VAE [38] and RobustDet [15], we used a decoder structure to reconstruct
the consistent features of clean and adversarial images after feature extraction. As the
reconstruction process essentially involves two distributions, the important step is to
disentangle consistent features from this mixture distribution. To further constrain the
process, we controlled the model by the intrinsic image distribution and ensured the
reconstruction distributed in the adjacent areas of the corresponding clean image. Thus,
the reconstructions can obtain the correct results like the original image.
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Specifically, our model utilizes temperature scaling [44], an extension of the parametric
calibration method to measure the image distribution. Formally, the temperature-scaled
distribution is described as:

f(x;7) = Softmax(z(x)/T) (5)

where z(x) denotes the logit vector produced before the softmax layer for input x, and
T is the temperature hyperparameter and is set to 1.0. To regularize the distributions of
clean images and reconstructed images to make them consistent, Jensen—-Shannon (JS)
divergence [45] was employed to measure the distance of different distributions and we
used a generalized weighted form to keep it geometrically symmetric. The consistency
regularization loss is:

L = ]S(f(xclean?T)H](?(xrecons?’f)) = %KL(Jf(xcleun}T)H%(f(xclean}'f) "‘f(xrecons;'f)))

KL (ereconss )1 (F Ceeteans ©) + F Coreconss 7)) ©

where xj.;, denotes the clean image; Xycons denotes the reconstructed image; and KL(-)
represents the basic distribution distance of the Kullback-Leibler (KL) divergence [46].

3.4. Qverall Adversarial Loss Function

The loss of object detection task Lqe; includes classification loss L and location loss
Ljoc, which is:
Ldet(x/ L b;@) = Lcls(x/ 1;9) + Lloc(x/ b,‘@) @)

where x represents the training sample, | is the label of object class, and b is the bounding
box. 6 denotes the model parameters. For object detection, the adversarial attack includes
classification attack A.;s and localization attack A;,., which can be described as:

Ags = argmaxLg (X, 1;0), Aje = argmaxLiy. (X, b;0) (8)
xeSs X€ES

where ¥ is the corresponding adversarial sample of x. Specifically, it satisfies the condition
that ||¥ — x|, < ¢ where ¢ is an adversarial perturbation. S is the adversarial sample
space. During the adversarial training process of the robust object detector, both clean and
adversarial samples are mixed together. The overall aim of the adversarial training is:

argminLge; (X, 1, 0;0) + Laet(x,1,0;6) 9)
%

In this paper, for the reconstructed features from the decoder, a reconstruction loss is
also utilized for constraint, which can be defined as follows:

Lrecons = ||xrecons - xHZ (10)

where || - ||* indicates the L2-norm. Finally, the total training objective loss L, com-
bines the classification loss, the localization loss, the reconstruction loss Lyecons, and the
reconstruction consistency loss L., which is described as:

Ltotal = Ldet + )Ll Lrecons + AZLcr (11)

where A1 and A; are the hyperparameters and are set to 0.16 and 5, respectively. Algorithm
1 illustrates the details of the overall training algorithm.
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Algorithm 1 Overall Adversarial Training

Input: Dataset D, epochs P, batch size B, and adversarial perturbation ¢
Output: Model parameters 6
forepoch € {1,2,...,P} do
fori € {1,2,...,B} do
Sample clean image x; with label I and bounding box b

end for

end for
Return 6

Generate adversarial sample X;: || — x|, < €
Select X;, which leads to the max adversarial training loss:
2
Lyecons erecons _AxiH
Ler <= JS(f (x5 T f (Xrecons; T))
argminLge;s + A1 Lyecons + A2Ler
0

4. Experiments and Analysis
4.1. Datasets

In this work, three RSI datasets with multi-resolution, including one-class, two-class,
and multi-class datasets, were employed to validate the detection robustness and to eval-
uate the effectiveness of our proposed method. The details of the three datasets are
introduced as follows:

The HRSC [47] dataset contains images of two scenarios, including offshore ships and
nearshore ships. The data are all obtained from Google Earth and contain 2976 targets in all.
The image resolution ranges from 0.4 to 2 m, and the size covers 300 x 300 to 1500 x 900.
The dataset is split into training, validation, and test sets, which contain 436 images,
181 images, and 444 images, respectively.

UCAS-AQOD [48] has 1510 aerial images with two categories of 14,596 instances. The
size of the images is about 659 x 1280 pixels, and the object categories are vehicle and
plane. We randomly selected 1110 images for training and 400 for testing.

DIOR [49] is a large-scale, publicly available benchmark for object detection in remote
sensing scenarios. It contains 23,463 images and 192,472 instances in total. The image size is
800 x 800. The dataset covers 20 object classes: airplane, airport, baseball field, basketball
court, bridge, chimney, dam, expressway service area, expressway toll station, golf course,
ground track field, harbor, overpass, ship, stadium, storage tank, tennis court, train station,
vehicle, and windmill. Our experiments selected 11,725 images as the training dataset and
11,738 as the test dataset.

4.2. Implementation Details

Our experiments were realized in Pytorch and run with NVIDIA V100 GPUs. Experi-
ments on three typical datasets of RSIs were conducted to evaluate the universality of our
method. In order to show the applicability of the model, we also conducted an experiment
on the general dataset PASCAL VOC [50]. For robustness evaluation, all of the settings
in this paper are consistent with current robust detectors such as MTD [14], CWAT [16],
and RobustDet [15]. Specifically, our proposed method is embedded in the one-stage
detector SSD [6] with VGG16 as the backbone. We used three common attack algorithms for
comparison including PGD [17], CWA [16], and DAG [9]. The visualizations of the attacks
on different datasets are shown in Figure 6. Due to the complex background of remote
sensing images, the changes of the images cannot be easily found by naked eyes. Here, the
texture changes can be seen obviously on the ‘sea’ part in the HRSC examples. The PGD-20
attacker is set with a budget ¢ = 8 to generate adversarial examples. For the DAG attack,
we conducted 150 steps for an effective attack. We employed stochastic gradient descent
(SGD) with a learning rate of 10~°. The Pascal VOC mean average precision (mAP) with
the IoU threshold 0.5 was used as the evaluation metric.
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(a) Original

(b) PGD(ACIS )

(c) PGD(A,,)

(d) CWA

(e) DAG

HRSC UCAS-AOD DIOR
Figure 6. Visual comparison between the clean image and adversarial examples under several attacks
on different datasets.

4.3. Ablation Study

We performed a series of ablation experiments to evaluate the performance of our
method independently. ‘Clean’ represents the detector trained with normal training using
clean images. Since object detection consists of two tasks: classification and location
regression, we divided the PGD attack into classification attack A.; and localization attack
Areg.
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4.3.1. Ablation Test of MAConv

We assessed the effectiveness of MAConv on HRSC and employed the common
DynamicConv [40] used in the current RobustDet for comparison. As shown in Table 1,
the performance under different attacks was increased by 1.21%, 3.55%, 4.07%, 4.03%, and
3.90% compared with the original DynamicConv. In addition, MAConv effectively controls
the parameter scale and maintains a proper balance between model accuracy and size.
Compared with the DynamicConv, the number of convolution layers increased from 155 to
187 using MAConv, and the trainable parameters decreased from 114.73 M to 41.63 M. As
MAConv is utilized in the early stage of the neural network to optimize the convolution,
it can extract both shared and specific features from clean and adversarial images. Thus,
MAConv reduces the training difficulty and improves the feature extraction ability. By
increasing the attention dimension instead of simply stacking the network parameters
and layers, the accuracy was greatly improved while ensuring the model magnitude. The
results demonstrate that MAConv is highly effective at extracting feature information in
RSIs.

Table 1. Ablation study of MAConv on HRSC.

Attack mAP (%)
Params
Method Clean A Ayeg CWA DAG
DynamicConv 80.98 10.85 11.57 11.12 13.54 114.73 M
MAConv 82.19 (+1.21) 14.40 (+3.55) 15.64 (+4.07) 15.15 (+4.03) 17.44 (+3.90) 41.63 M

4.3.2. Ablation Test of Consistency Regularization Loss

We analyzed the ability of consistency regularization loss under different attacks on the
HRSC dataset. Table 2 shows the experimental results. Without regularization, the model
exhibits poor robustness under attacks with only 10% to 14% mAP. In contrast, although
slight degradation occurs on clean images, the detector achieves substantial performance
improvement under all kinds of attacks using regularization loss. In particular, the highest
improvement reached 35.87% under DAG attack with only 2.95% performance sacrifice on
clean images. This demonstrates that the model predicts the correct distribution under the
constraint of regularization loss and thus effectively improves the robustness of the detector.
Compared with MAConv, which requires multiple layers to extract features, consistency
regularization loss imposes more direct and stronger constraints on reconstructed features
for subsequent detection, leading to a higher precision increase.

Table 2. Ablation study of consistency regularization loss on HRSC.

Attack mAP (%)
Le; Clean Ags Areg CWA DAG
X 80.98 10.85 11.57 11.12 13.54
v 78.03 (—2.95)  23.53 (+12.68) 39.07 (+27.50) 31.26 (+20.14)  49.41 (+35.87)

4.3.3. Evaluation Using Different Network Architecture

Based on our proposed methods, we evaluated the model using different backbone
networks. Besides the original VGG16 backbone in the SSD, we also utilized the ResNet50
backbone for our experiments. The results shown in Table 3 illustrate that our model can
increase the accuracy of the robust detector by 3.55 to 4.07% under the VGG16 backbone.
Meanwhile, the mAP on the clean image is also slightly increased on the HRSC dataset,
about 1.21% compared with the original DynamicConv. For the ResNet50 backbone,
MAConv was applied in the base layers of the SSD. The results show that the adversarial
attacks still cause performance degradation after changing the backbone. Compared
with the original 84.21%, 12.16%, 12.93%, 12.79%, and 14.77% mAP values, our model
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improves the performance by 1.36%, 4.38%, 4.16%, 4.22%, and 3.78% under different
attacks, respectively. The results illustrate that our model can consistently enhance the
adversarial robustness of object detectors in different backbone networks.

Table 3. Ablation study of different network architecture on HRSC.

Attack mAP (%)
Backbone Clean Ags Areg CWA DAG
VGG16 DynamicConv 80.98 10.85 11.57 11.12 13.54
ours 82.19 (+1.21) 14.40 (+3.55) 15.64 (+4.07) 15.15 (+4.03) 17.44 (+3.90)
RESNETS50 DynamicConv 84.21 12.16 12.93 12.79 14.77
ours 85.57 (+1.36) 16.54 (+4.38) 17.09 (+4.16) 17.01 (+4.22) 18.55 (+3.78)

4.4. Overall Comparison

To evaluate the comprehensive performance, our detector was tested on the natural
image set VOC(07 and three remote sensing datasets: HRSC, UCAS-AOD, and DIOR. For
fairness, all experiments were performed under the same conditions. Lastly, the evaluation
results were comprehensively analyzed.

4.4.1. Results for the VOC07 Dataset

To verify the effectiveness and generality of the proposed model, we conducted
experiments on the VOCO07 dataset of natural images. As demonstrated in Table 4, for
the clean SSD detector, the adversarial attacks lower the accuracies to less than 5%. The
current robust detectors improve the performance under attacks but also degrade a lot on
clean images. Our proposed model is theoretically effective at enhancing the detection
robustness for natural images. The experimental results also show improvements of 2.8%
and 2.7% under PGD attacks compared to clean the SSD. For CWA and DAG attacks, the
performance improved by 2.4% and 2.6%, respectively. At the same time, it achieves an
increase of 0.8% on clean images.

Table 4. Experimental results on the VOC07 dataset.

Attack mAP (%)
Detectors Clean Ags Aveg CWA DAG
Clean SSD 77.5 1.8 4.5 1.2 49
MTD 48.0 29.1 319 18.2 28.5
CWAT 51.3 224 36.7 19.9 50.3
RobustDet [15] 74.8 459 49.1 48.0 56.6
Ours 75.6 48.7 51.8 50.4 59.2

4.4.2. Results for the HRSC Dataset

Rectangular ships are the main targets in HRSC. We can summarize from the results
in Table 5 that there was stable performance improvement in our model under different
types of attack. The state-of-the-art robust detector RobustDet shows mAPs of 80.98%,
10.85%, 11.57%, 11.12%, and 13.54% in different cases. In comparison, our model shows
enhancements of 2.29%, 4.57%, 4.99%, 4.53%, and 5.93%, respectively. At the same time, it
also improves the performance by 2.21% on clean images. With comparable performance
to the SSD on clean images, this proves the robustness of the proposed model in dealing
with different attacks while surpassing the performance of the current robust detectors.
Figure 7 visualizes an example of the detection results of the model on HRSC. In Figure 7,
we can see the attack may lead to inaccurate localization of the densely arranged targets,
resulting in overlapping bounding boxes.
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Table 5. Experimental results on the HRSC dataset.
Attack mAP (%)

Detectors Clean Ay Aveg CWA DAG

Clean SSD 83.20 3.79 6.50 10.07 29.74

MTD 71.13 13.20 14.55 13.77 16.83

CWAT 73.45 14.93 16.08 17.58 15.54

RobustDet 80.98 10.85 11.57 11.12 13.54

Ours 83.27 15.42 16.56 15.65 19.47

Figure 7. Visualization of the detection results under different attacks on a HRSC example.

4.4.3. Results for the UCAS-AOD Dataset

Table 6 depicts the results of current robust detectors for the UCAS-AOD dataset
under mainstream adversarial attacks. The attacks significantly degrade the detector’s
performance. In particular, for small objects such as vehicles, the accuracy is worse than that
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of aircraft, which reduces the overall detection accuracy. The results in Figure 8 demonstrate
that adversarial attacks also make the localization of objects more difficult, especially for
densely distributed small targets such as cars. Several bounding boxes overlap near the
same target. For the clean SSD model, adversarial attacks decrease the mAP to 1.36%,
making the detector almost ineffective. This requires robust detectors to improve the
performance under attacks while maintaining robustness on clean images. Current robust
detectors alleviate this problem to some extent. The results indicate that the proposed
model increases the performance by up to 4.34% under different attacks compared with
RobustDet, which shows excellent performance on RSIs.

Table 6. Experimental results on the UCAS-AOD dataset.

Attack mAP (%)
Detectors Clean Ay, Areg CWA DAG
Clean SSD 81.15 1.36 3.24 2.63 9.57
MTD 80.84 8.70 10.40 9.67 10.65
CWAT 83.32 17.69 19.55 18.56 20.42
RobustDet 85.49 13.51 16.39 15.99 17.13
Ours 85.34 17.85 19.87 18.45 20.53

Google

CWA ' DAG

Figure 8. Visualization of the detection results under different attacks on a UCAS-AOD example.

4.4.4. Results for the DIOR Dataset

The DIOR dataset has more complex scenes and multiple target categories, containing
dense and sparse objects of different scales. This not only increases the difficulty of
detection, but also turns adversarial training into a challenge. The performance results are
shown in Table 7. Despite the poor accuracy for some objects of small size, our proposed
method still maintains performance and robustness advantages compared to other detectors.
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Compared with RobustDet, our model improves mAP by 2.28% on clean images. At the
same time, it also has advantages in robustness under different attacks, and the mAP
increased by 1.47%, 1.32%, 1.58%, and 1.61%, respectively. The visualization results are
presented in Figure 9. The results show that for small targets in normal arrangement, the
attack may also make the bounding boxes overlap and lead to inaccurate localization. In
general, our model achieves higher overall performance across datasets of different sizes
and various types of objects.

Table 7. Experimental results on the DIOR dataset.

Attack mAP (%)
Detectors Clean Ay Areg CWA DAG
Clean SSD 53.92 0.16 0.32 1.47 2.81
MTD 33.84 1.21 2.07 1.68 2.23
CWAT 38.19 413 4.65 4.29 3.92
RobustDet 49.28 5.74 6.02 5.45 6.34
Ours 51.56 7.21 7.34 7.03 7.95

Figure 9. Visualization of the detection results under different attacks on the DIOR example.



Remote Sens. 2023, 15, 3997

16 of 19

5. Discussion

The results of this study show that our methods are effective at enhancing detection
robustness. Compared with the latest robust detector RobustDet, the proposed method
has a maximum improvement of 5.93%, 4.34%, and 1.61% on the remote sensing datasets
HRSC2016, UCAS-AOD, and DIOR under different attacks. These results show that our
proposed MAConv and consistency regularization loss play a key role in the robust detector.
However, there are still many issues to be discussed for real-world applications. Firstly,
in remote sensing scenarios, the coverage of attack is limited, and adversarial attacks on
remote sensing targets often appear in the form of patches, which are inconspicuous and
difficult to defend against. The specific attack implementation methods are still under
development, and defense and robustness studies for such attacks still need to be further
carried out in the future. In addition, for large datasets with many categories, especially for
small targets with only a few samples, it is still hard to detect issues accurately. This brings
difficulty to the adversarial training process of robust detectors. Optimizing the adversarial
training process effectively and improving the feature learning strategy are also possible
research directions for future works.

6. Conclusions

In this work, we perform a robust object detector for muti-scale objects in remote
sensing data. With the aim of alleviating the robustness bottleneck under adversarial
attacks, we proposed a multi-dimensional convolution to dynamically learn the specific
and consistent features in clean and adversarial images. This method also enriches the
feature extraction process for subsequent detection while controlling the network scale. Fur-
thermore, to eliminate the interference of adversarial attacks on accuracy, the reconstruction
of the clean image was carried out with a regularization constraint from the perspective
of image distribution. The regularization loss contributes to extracting consistent features
from the mixture distribution and eliminating the interference brought by adversarial
attacks to conduct accurate object detection in complex remote sensing scenarios. The ex-
perimental results illustrate that our proposed method successfully increases the accuracy
under adversarial attacks and maintains the performance on clean images at the same
time. Thus, our method effectively enhances the robustness of the object detector and
transcends current robust detectors in terms of performance on RSIs. However, for remote
sensing applications, although current robust detectors can resist attacks to some extent, the
accuracy under interference is still difficult to reach an application level. Tradeoff between
accuracy and robustness of remote sensing object detectors for actual deployment is an
important research direction in the future. Additionally, we will conduct the research on
robust out-of-distribution detection to further improve the reliability of object detectors for
RSIs.
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