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Abstract: The wellbeing of pipelines is influenced by a range of factors, such as internal and external
pressures, as well as deterioration over time due to issues like erosion and corrosion. It is thus essential
to establish a reliable monitoring system that can precisely examine pipeline behavior over time in
order to prevent potential damages. To this end, pipelines are inspected based on internal and external
approaches. Radar, as a non-contact sensing system, can be a suitable choice for external pipeline
inspection. Radar is capable of the transmission and receiving of thousands of signals in a second,
which reconstructs the displacement signal and is used for a vibration analysis. Synthetic aperture
radar (SAR) imaging adds cross-range resolution to radar signals. However, a data acquisition rate
of longer than several seconds makes it unsuitable for sub-second vibration monitoring. This study
aims to address this limitation by presenting a method for high-resolution vibration monitoring using
ground-based SAR (GBSAR) signals. To this end, a signal processing method by modifying the radar’s
signal model is presented, which allows for estimating scattering targets’ vibration parameters and
angle of arrival with high resolution. The proposed method is validated with numerical simulation
and a real case study comprising water pipelines. Moreover, various analyses are presented for
the in-depth evaluation of the method’s performance in different situations. The results indicate
that the proposed method can be effective in detecting pipeline vibration frequencies with micro-
scale amplitudes while providing high spatial resolution for generating accurate vibration maps
of pipelines. Also, the comparison with the radar observations shows a high degree of agreement
between the frequency responses with the maximum error of 0.25 Hz in some rare instances.

Keywords: vibration; displacement; pipeline monitoring; GBSAR; non-contact sensing system

1. Introduction

Deformation and vibration monitoring plays an important role in early damage detec-
tion, reducing repair costs, and enhancing safety in structural health monitoring (SHM). In
this regard, interferometric processing techniques in radar remote sensing provide valuable
insights into structural behavior and conditions, reducing the risk of failures and enhanc-
ing safety measures. Unlike contacting sensors like accelerometers, radar is non-contact,
non-invasive, and non-destructive, enabling it to measure deformation over extensive
areas without causing harm to the structure. Moreover, radar is insensitive to weather and
lighting conditions and capable of penetrating through fog or smoke, thus significantly
surpassing optical sensors [1]. As a result, studies in SHM are increasingly exploring radar
remote sensing across various domains, including civil structures such as bridges [2] and
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buildings [3], tall structures such as towers [4] and wind turbines [5], cultural heritage [6],
and industrial structures such as pipelines [7].

Pipelines are essential for transporting fluids, including gas, oil, and water, from one
location to another. However, various factors such as internal or external pressure, stress,
and damages such as corrosion, erosion, and cracking pose a threat to pipeline safety. Regu-
lar inspections of pipelines can help detect potential issues, enabling preventative measures
to be taken before significant problems arise [8]. Thus, pipeline inspections are mainly
performed internally or externally. Internal inspections are based on in-line inspection
methods and pipeline inspection gauge (PIG) systems [8], while external inspections can
be performed with various contact and non-contact sensors. To this end, various external
pipeline inspection methods have been proposed in the literature. A vibration monitoring
system for water leak detection using accelerometers was presented in [9]. In another
study, a system based on a fiber ring cavity laser was presented for the highly sensitive
monitoring of gas pipeline vibrations up to 400 kHz [10]. A robotic non-contact monitoring
system based on autonomous ground vehicle, radar, and metal magnetic memory sensors
was presented in [11] for the condition monitoring and fault detection of buried oil and
gas pipelines. In another study, an inspection study for subsurface pipeline fault detection
using magnetic sensors was demonstrated in [12]. In particular, changes in a pipeline’s
vibration signature, such as an increase in vibration frequency, can be an indication of
damages such as a leakage, cracking, or loosened connections [10,13]. Radar technology
can provide a continuous monitoring system for simultaneously detecting deformations
and vibrations in multiple areas of a pipeline.

Radar interferometry has been investigated, experimented with, and adapted in a wide
range of applications in radar remote sensing. The space-based technique makes it feasible to
monitor targets’ displacement with an up to sub-millimeter accuracy [14–16]. Multi-baseline
and/or time-series synthetic aperture radar (SAR) provides cross-range resolution with the
interferometric processing of radar signals acquired at different cross-range locations [17].
While the satellite-based SAR interferometry (InSAR) is a mature tool for the large-scale
monitoring of the Earth environment, the terrestrial (or ground-based) radar interferome-
try (TRI), ground-based SAR (GBSAR) interferometry (GBInSAR), and recent ground-based
multiple-input-multiple-output (MIMO) radars are mainly categorized as noncontact sys-
tems for monitoring dynamics of small areas with a better temporal resolution and lower
atmospheric impact than satellite data [18–21].

GBSAR systems generally enable cross-range resolution by moving the radar sensor
on a mechanical rail in a specified trajectory [22]. Ka and Ku frequency bands are most
prevalent in GBSAR systems, due to their relatively high resolution and compact size [23,24].
However, recent studies have also demonstrated the effectiveness of automotive 77 GHz
W-band radars for structural monitoring [25–28]. In fact, a higher operational frequency
results in a more compact and lighter system and, as a result, simpler deployment [23].
However, these systems, due to their weak power, are suitable for monitoring a single
object such as a building, bridge, or wind turbine [5,29–31].

Vibration monitoring using radar interferometry has gained more attention due to
radar’s capabilities and accurate performance based on recent studies [26,32,33]. Real
aperture radars (RAR) have the capability to send and receive thousands of signals per
second, allowing for the detection of vibrations with kilohertz frequencies. Nevertheless,
the primary disadvantage of radar sensing is the super positioning of moving or stable
targets located in the same radial distance but with different cross-range locations. As a
result, not only is radar unable to localize targets in a cross-range direction, but also, due
to the broadening of the antenna footprint, the accuracy of displacement measurement
can be decreased by increasing the distance. Multi-static or MIMO radar systems enabled
the cross-range resolution by exploiting a network of multiple transmitter and receiver
antennas [23]. Thus, these systems can provide a high data acquisition rate with moderate
cross-range resolution for resolving scatterers at range and cross-range directions. However,
improving the cross-range resolution in these systems is highly dependent on increasing
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the number of antennas and improving their geometry, which can dramatically increase
the size, complexity, and cost of the system [34].

Compared to the mentioned radar systems, SAR allows for cross-range resolution by
relocating the radar and capturing signals from various positions. In contrast to RAR and
MIMO systems, one of the challenging issues in SAR (or, more specifically, in our study
GBSAR) imaging is the data acquisition interval of several minutes, which prevents its
applications for real-time and fast displacement monitoring, such as involving structural
vibrations. To address this issue, this paper presents a framework for the high-resolution
monitoring of vibrational displacements by processing GBSAR signals. The performance
of the proposed framework was validated with numerical simulations and in a case study
comprising pipelines with micrometer-scale vibrations. Thus, the main contributions of
this paper can be summarized as follows:

• Presenting a framework for resolving a scatterer’s cross-range location and vibrational
displacement parameters from a GBSAR signal.

• Providing an in-depth analysis on the performance and limitations of the pro-
posed framework.

• Investigating the applicability of the proposed framework for the high-resolution and
accurate imaging of pipelines with micrometer vibrations.

The rest of the paper is organized as follows: Section 2 presents the proposed method-
ology including the theoretical background. The results of the simulations and real experi-
ments as well as discussion are brought in Section 3. Finally, the summary of this study
and concluding marks are drawn in Section 4.

2. Materials and Methods

This section presents the proposed approach for resolving high-resolution SAR imag-
ing and detecting scatterers’ vibration characteristics based on GBSAR signal processing.
Firstly, we define the problem and signal model, considering the GBSAR imaging geometry.
Next, we explain our processing algorithm for detecting vibrations from GBSAR signals.

2.1. Problem Statement and Signal Model

Azimuth angle or, in other words, angle of arrival (AoA) estimation cannot be achieved
with conventional monostatic radar unless signals are collected from different viewing
angles. In a GBSAR system, this capability is enabled by moving a radar sensor on a
mechanical rail. However, the common approach assumes that scatterers in the scene
of interest are stationary during SAR signal acquisition. To detect the targets’ vibration
characteristics, it is necessary to account for their effects in the received signal model.
Figure 1 illustrates the relative geometry between the transmission geometry with linear
GBSAR and a vibrating point scatterer in the scene. At each step on the trajectory, the sensor
separately transmits the signal and collects the echo waves, while the target point scatterer
vibrates during the imaging process. This section aims to discriminate the scattering
targets’ AoA and vibrational deformation parameters by improving the signal model and
describing the required SAR imaging considerations.

In this case, we can formulate the recorded GBSAR signals as a multi-temporal stack
of Na one-dimensional range profiles with a spatial baseline from the sensor’s zero location
along the azimuth axis. Therefore, the raw acquired GBSAR data would form a 2D Nr × Na
matrix, where Nr and Na are the number of samples in the range and azimuth directions.

Considering that the recorded signal with the radar sensor is dechirp-on-receive, the
range-compressed data of recorded Nr fast-time samples at the mth virtual receiver are
given with the Fourier transform of the received signal: src = F r{s}. Accordingly, each bin
on the acquired range profile is directly related to the pixel’s range. The general signal
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model for the distribution of received signals from different cross-range points at the rth
range slice of the range-compressed SAR signal can be represented as

src =
∫
θ

γ(θ) · e−j 4π
λ (`m sin θ)dθ (1)

where γ is the function modelling the scattering distribution, θ is the scattering target’s
cross-range angle or AoA, and `m is the radar’s mth virtual antenna location on the azimuth
or along-track axis for m = 0, 1, . . ., Na − 1, respectively [35–37].

The signal model shown in (1) is the starting point for multi-dimensional imaging
and the simplest scenario, where the scattering targets are assumed to be fixed during the
data acquisition.

Assuming that the scattering target is vibrating during the data acquisition, an extra
displacement term needs to be added to the range-compressed signal’s model (1) in order
to model the contributions of scattering targets’ displacement in time along with their
azimuth AoA (θ).
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Figure 1. Relative geometry of a GBSAR data acquisition and a vibrating point scatterer (θ: AoA, ξ:
vibration amplitude, η: vibration frequency, ∆R: LOS deformation, X: cross-range direction, and Y:
range direction).

Vibration refers to the oscillatory motion of an object or system around its equilibrium
position. It involves periodic fluctuations characterized by a dominant frequency in the
time domain and an amplitude representing the maximum extent of the displacement in
space. Hence, at the mth range profile acquisition of GBSAR at time Tm = mtp, the vibration
signal can be represented by the sinusoidal function ξsin(2πηTm + ϕ), where tp denotes the
range profile acquisition interval, ξ is the amplitude of the target’s vibration, η denotes the
vibration frequency, and ϕ is the vibration signal’s initial phase.

Thus, in the case of having vibrational displacement behavior, the term representing
the displacement needs to be included in the base signal model shown in (1). The modified
signal model can be reformulated as follows:

src =
∫ ∫

χ

∫ ∫
γ(χ) · e−j 4π

λ (`m sin θ)
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In (2), one variable represents the target’s AoA and three variables represent the
model for the target’s sinusoidal vibration in the radar’s LOS direction. Thus, for the
multi-dimensional modelling of azimuth AoA and vibrational displacement, the vector
of unknown variables is defined as χ = [θ, ξ, η, ϕ] and γ(χ) is the function modelling the
scattering distribution along the space of unknowns, χ [38].

2.2. Inversion Model

After performing range compression and revealing the scatterers’ locations in the
range direction, the estimation of other unknown parameters, i.e., AoA and vibration
parameters, is obtained with the inversion of (2). This process is achieved through a time-
domain-matched filtering process and the generation of power spectral density (PSD) maps.
Figure 2 illustrates the processing steps for resolving scatterers’ vibration characteristics as
well as their AoA from the collected GBSAR signals.
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The algorithm begins by generating the system matrix (A) in the domains of inter-
est [39]. The system matrix is a collection of Na × 1 steering vectors (ak), where each
steering vector is a reference signal as follows:

ak = ak(χk) = exp
{

j
−2π

λ
(2L sin θk + ξk sin(2πηkT + ϕk))

}
(3)

where L = [`0, `1, . . ., `Na−1] is the vector containing radar’s azimuth locations, and T = [T0,
T1, . . ., TNa−1] is the vector containing signal acquisition times.

Therefore, for K discretized samples of the domain of interest in the variables’ space
(χ), the system matrix A ∈
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K×1 is collected from the values of the backscattered signals
at K discrete bins.

As a result, the inversion of (4) provides the estimated PSD of parameters for the rth
range slice as follows:

^
γ(χ)=AHx (5)

where AH is the transpose conjugate of A.
The resulting PSD is represented as a K × 1. By reshaping this array, the final multi-

dimensional PSD in the parameter domain is generated. This process is repeated for each
range slice. The corresponding AoA and vibration parameters are identified as peak points
within the PSD, exhibiting the highest power and indicating the highest match (correlation)
with the reference signal. Thus, the scatterers’ position vector

_
χ i in the multi-dimensional

search space of parameters can be identified by finding the peak power in the estimated
power spectrum [39]:

_
χ i = argmax

χ

{∣∣∣_γ(χ)∣∣∣} (6)

Finally, after detecting the range, AoA, and vibrational characteristics of scatterers, the
vibration map is obtained by transforming the (R, θ) dimensions to (X = Rcosθ, X = Rsinθ)
and vibration frequency and amplitudes can come as the other dimensions.

3. Experiments and Results

This section presents the experiments and results related to high-resolution vibration
monitoring from a single pass of GBSAR data for the application of pipeline health moni-
toring. Firstly, various numerical simulations were conducted to validate and analyze the
proposed method’s performance in-depth. Then, we demonstrate the results obtained from
a real experiment on a case study of water pipelines with micrometer-scale vibrations.

In this study, we utilized an AWR1642BOOST (https://www.ti.com/product/
AWR1642, accessed on 30 May 2023) radar sensor manufactured by Texas Instruments
(TI). This sensor generates a linear frequency-modulated continuous wave (FMCW)
signal in the W band, with a frequency range of 76–81 GHz, yielding a wavelength of
approximately 3.9 mm. After the dechirping process, which includes mixing with a
reference signal and low-pass filtering, the digitized dechirped signal is stored in the
system’s memory. The maximum affordable signal bandwidth of this system is 4 GHz,
but we only exploited 1.5 GHz of signal bandwidth in this study, resulting in a 10 cm
resolution in the range direction of the radar. To create SAR imaging and improve the
cross-range resolution, we mounted the radar system on a linear mechanical rail with a
maximum length of 15 cm and rotation velocity of 5 mm/s. The details of the system
parameters are provided in Table 1.

https://www.ti.com/product/AWR1642
https://www.ti.com/product/AWR1642
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Table 1. Parameters of the system used in this study.

Name Value

Radar model TI-AWR1642BOOST
Signal type Linear FMCW

System’s operating frequency 76–81 GHz
Carrier frequency (fc) 77 GHz

Wavelength (λ) 0.0039 m
Bandwidth (B) 1.5 GHz

Range resolution 0.1 m
Range samples 512

Sweep time 60 µs
Maximum length of SAR 0.15 m

Maximum cross-range resolution 0.013 rad
SAR velocity 0.005 m/s

3.1. Simulations and Numerical Experiments

To validate the correct implementation of the method and evaluate it, first, we nu-
merically simulated a point scatterer positioned at a distance of 5 m from the SAR central
point with an azimuth angle of θ = 7 degrees. The target was fluctuating with a vibration
frequency and amplitude of η = 24.2 Hz and ξ = 0.51 mm, respectively. We used the
parameters provided in Table 1 to simulate the radar signal, while for SAR imaging, we
simulated an aperture length of 4 cm with a signal repetition time of 8 ms. The parameters
specific to this simulation scenario are listed in Table 2. Figure 3 depicts the focused PSD
of a simulated point scatterer. To better illustrate the focused signal, we represented the
three-dimensional space of AoA, vibration frequency, and vibration amplitude as three
two-dimensional surfaces. The obtained results indicate that the proposed method can
accurately detect a target’s azimuth angle as well as its vibrational displacement character-
istics, namely vibration amplitude and frequency. Therefore, if we define the resolution of
signal focusing to be the width of the peak signal at its half-power (−3 dB from the peak
power), then from the response of the focused target, we can observe that the vibration
frequency and AoA axes exhibit a narrow response with half-power resolutions of 0.03 Hz
and 4 degrees, respectively. Conversely, the vibration amplitude axis response is relatively
wider, with a half-power resolution of 0.9 mm.

To conduct a further analysis, we examined the effect of the linear synthetic aperture
length, which is linearly related to data acquisition time, on the quality of the focused
signal in terms of the half-power (−3 dB) resolution and signal-to-noise ratio (SNR). For
this experiment, we simulated a point target with the same characteristics as those shown
in Table 2. We considered a linear trajectory for the radar from 7.5 mm to 75 mm, which
correspond to monitoring durations of 1.5 and 15 s, respectively. The results are presented
in Figure 4.

Table 2. Specified parameters for numerical simulation of a point target.

Parameter Value

Signal SNR 5 dB
SAR length 0.04 m

Signal repetition time 8 ms
Total acquisition duration 8 s

Target’s location r = 5 m
θ = 7 deg

Target’s vibration ξ = 0.51 mm
η = 24.2 deg
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As observed in Figure 4, increasing the length of monitoring time (which results in a
longer aperture length) leads to improved half-power resolution for vibration frequency
and azimuth angle estimation, along with a higher SNR. This implies a better distinction
and probability of detection. However, the resolution of the vibration amplitude is not
affected by an increase in monitoring time (and aperture length) and remains fixed at
approximately 0.9 mm. Based on these findings, we can infer that for sub-millimeter
vibration monitoring purposes, our system might accurately detect multiple vibration
frequencies, but their amplitudes might be mixed.

In another simulation experiment, we aimed to further analyze the accuracy of the
parameter estimation in more complex scenarios when a point scatterer is vibrating with
different frequencies and amplitudes. To achieve this, we conducted simulations for a
target vibrating with frequencies ranging from 0 to 30 Hz and amplitudes ranging from
10−7 to 10−3 m. The rest of the simulation parameters were set to the values provided in
Table 2.

The estimation error for each vibration scenario is depicted in Figure 5. It can be
observed that the SNR of the focused signal decreases as the vibration amplitude decreases,
while the effect of vibration frequency is not significant. The vibration frequency estimation
error increases primarily in the region with small vibration amplitudes (about <10−3 mm)
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and for small vibration frequencies (as shown in Figure 5a). However, for small vibration
amplitudes (<10−3 mm), the vibration amplitude estimation error increases dramatically at
almost all frequencies (as shown in Figure 5b).
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3.2. Real Experiments

After the analysis and evaluations with simulated experiments, real experiments were
carried out in a case study including a network of water pipelines. The investigated area
is shown in Figure 6a. In this area, the SAR image covers the specific zone, enclosing the
observation of seven cylindrical metallic pipelines with vertical orientation with respect to
the radar’s looking angle. As identified with a blue sign in Figure 6a, two of these pipelines
were functioning and the water flow was pumping in them. The remaining pipelines were
inactive during the experiment, which are labelled with a red sign in Figure 6a. It is worth
noting that these disparate pipelines are connected to each other via the horizontal pipes
that are placed near the ceiling. This implies that the vibration of the functioning pipelines
could potentially impact the inactive ones, but with a lesser power. Also, a fixed 10 cm
trihedral metallic corner reflector was placed in the scene for calibration and comparison
purposes (shown with a white sign in Figure 6).
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Figure 6. Real experiments for water pipeline monitoring: (a) study area, including a network
of functioning (marked with blue circles) and not functioning (marked with red circles) pipes;
(b) specified radar trajectory on a mechanical rail for signal transmission and SAR imaging.

For GBSAR imaging, we specified a 4 cm aperture length, and the radar sensor
with a linear velocity of 5 mm/s moved on it. Figure 6b shows the radar’s trajectory on
the mechanical rail during the GBSAR imaging process. In this case, the radar’s linear
movement continues for 8 s until it reaches the 4 cm synthetic aperture length. After that,



Remote Sens. 2023, 15, 3981 11 of 18

the radar is fixed, and signal transmission continues for approximately 5.5 s. Therefore,
within 13.5 s of radar observations with a transmission rate of 8 ms, a total of 1687 range
profiles were collected to be processed for the SAR imaging and vibration mapping of the
study area.

Figure 7 displays the SAR image of the study area obtained through a two-dimensional
Fourier transform. However, it is important to note that this method does not account
for target displacement during SAR imaging and was solely utilized in this study for
visualizing the SAR image of the scene, while the rest of the results presented in this paper
are based on the proposed methodology. It is apparent that nearly all targets in the scene
are clearly distinguishable, except for one pipe located on the right side of the image. The
occlusion of this pipe may be due to the presence of another pipe in the radar’s line of
sight direction.
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Once the raw data were processed according to the flowchart presented in Figure 2,
the scatterers with strong power responses were chosen, and their dominant vibration
frequencies were extracted. The resulting vibration frequency map of the studied area is
shown in Figure 8a. It can be observed that the corner reflector and inactive pipes display a
vibration frequency of zero, while the detected points related to the functional pipelines
show a dominant vibration frequency of approximately 25 Hz. Some of the inactive pipes
and water pumps also exhibit a similar vibration frequency to the functional pipes, which
could be attributed to their interconnection. Additionally, since water pumps regulate the
water flow in the pipes, they may demonstrate a similar vibration pattern to the pipes.
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For comparison purposes, the vibration frequency map of the MIMO configuration of
AWR1642BOOST is presented in Figure 8b. This configuration can generate a virtual array
of 1.52 cm by creating eight virtual arrays, and the vibration map was obtained using direct
displacement measurement and the time-series radar interferometry processing algorithm.
Both the GBSAR and MIMO radar maps exhibit a good agreement and demonstrate similar
patterns of vibration frequencies. However, GBSAR provides a cleaner image with a lower
presence of clutter and more precise localization of targets in the scene.

Moreover, the difference in dominant vibration frequencies of the scatterers detected
from GBSAR data and MIMO radar is illustrated in Figure 9. Based on the results, the
frequency detection error varies within a range of ±0.25 Hz. However, the majority of the
detected peaks exhibit a zero difference between GBSAR and MIMO radar measurements.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 9. Vibration frequency difference between GBSAR and MIMO radar. 

To conduct a more detailed analysis, we extracted the peak power response of all 
scatterers within the vibration frequency range of 24–25 Hz. The results are presented in 
Figure 10, where it can be observed that the corner reflector and its two adjacent pipes 
exhibit the lowest power responses, consistent with the previous figure. Conversely, the 
other pipelines display higher power responses, with the functional pipes and water 
pumps demonstrating the strongest responses. In comparison, the other pipes, in close 
proximity to the functional ones, exhibit relatively weaker power responses. 

 
Figure 10. Normalized vibration frequency response power at 24–25 Hz. 

Figure 9. Vibration frequency difference between GBSAR and MIMO radar.



Remote Sens. 2023, 15, 3981 13 of 18

To conduct a more detailed analysis, we extracted the peak power response of all
scatterers within the vibration frequency range of 24–25 Hz. The results are presented in
Figure 10, where it can be observed that the corner reflector and its two adjacent pipes
exhibit the lowest power responses, consistent with the previous figure. Conversely, the
other pipelines display higher power responses, with the functional pipes and water pumps
demonstrating the strongest responses. In comparison, the other pipes, in close proximity
to the functional ones, exhibit relatively weaker power responses.

Figure 11 compares the reconstructed power spectral density of the scatterers detected
with GBSAR measurements and MIMO radar. The comparison indicates a high degree
of agreement between the frequency responses obtained with GBSAR and MIMO radar.
Peak points and noise levels are often very similar, validating our proposed method’s
accuracy in reconstructing a scatterer’s vibration frequency response and improving cross-
range resolution. However, in some instances, GBSAR processing produces noisier signals
than those obtained with MIMO radar measurements. The main possible reasons for
this could be the target’s weak backscattering SNR, a weak vibration amplitude, or the
interference of scatterers, particularly with the reduction in the cross-range resolution in
high ranges. The simulation analysis in Figure 5 also validated that estimating vibration
power spectral density for scatterers with a weak vibration amplitude is less reliable and
provides lower SNRs. For example, scatterers 60, 71, and 72 (shown in Figures 11 and 12)
exhibit a relatively lower vibration SNR, which can be attributed to their weak vibration
power and backscattering SNR.
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4. Discussion

This study presented a method for high-resolution pipeline vibration monitoring using
GBSAR imaging. The method addressed this problem by considering a sinusoidal vibration
model and improving the radar’s received signal. This model adds three parameters to the
signal equation, the vibration amplitude, frequency, and initial phase shift. Although our
experiments were limited on GBSAR, this method can also be applied to the SAR signals
collected from airborne or satellite systems for the vibration monitoring of other types of
structures such as a bridge or building.

The proposed framework’s performance was validated through simulations and real
experiments. The results obtained from MIMO radar interferometric processing were used
as a benchmark and for comparison. Previous studies have shown that radar observa-
tions exhibit a high correlation with vision-based methods and accelerometers, with a
maximum error of approximately 0.02 mm [5,7]. Our simulations revealed that while the
resolutions of the AoA and vibration frequency improved with an increasing observation
length, the resolution of the vibration amplitude remained at around 0.9 mm in our study.
Consequently, our goal was to increase the observation time to improve the resolution
of the vibration frequency. This was particularly important since our specific study area
had micrometric vibrations. Our analysis indicated that although the estimated vibration
amplitudes may be less precise, the vibration frequencies could be estimated with a high
precision and reliability.

The estimated vibration signals showed a lower SNR compared to MIMO radar ob-
servations. This difference could be attributed to the effects of the sensor’s movement,
including fluctuations and interference from the scatterer’s range migration and vibrational
displacement. It is important to highlight that in this study, the sensor was situated in a
relatively stable environment, and we did not take into consideration the effects of local
sensor vibrations. However, it is worth noting that in situations involving intense environ-
mental vibrations, it becomes crucial to model and minimize the effects of instrumental
vibrations on the collected radar signal in order to attain reliable and accurate results.

Furthermore, simulations showed that estimating very small vibrations (below the
system’s noise level, e.g., 25 microns) at unlike vibration frequencies may lead to unreliable
results in terms of estimated vibration amplitudes. However, increasing the vibration
amplitude leads to more reliable estimates of the parameters.

In this study, SAR imaging was based on a linear trajectory, even though it has been
demonstrated that irregular data acquisition produces the best scatterer resolving in multi-
dimensional SAR imaging [39,40]. Nevertheless, irregular imaging may be beneficial for
repeat-pass multi-baseline SAR data acquisition, especially in applications such as height
or differential tomography [41,42]. However, when collecting single-pass SAR data from
various range profiles, irregular imaging poses significant challenges, including the need
for the precise estimation of the antenna location at each step and requiring a higher number
of samples in the cross-range to improve resolution.

The matched filtering method can be replaced by advanced spectral estimation meth-
ods such as Capon or MUSIC to achieve a super-resolution performance for multiple
scatterer detection. This is especially beneficial when monitoring targets with high spatial
density. These methods make use of the antenna covariance matrix and improved inversion
techniques to enhance scatterer resolution with a higher SNR [42,43]. However, this comes
at the cost of an increased computational complexity, especially for AoA and vibration
modelling with dense cross-range signal sampling and four unknown parameters. There-
fore, these methods are suitable for scenarios with coarse cross-range resolution or a dense
presence of scatterers with varying vibration behavior.

5. Conclusions

This study presented a GBSAR signal processing framework for the high-resolution
monitoring of micrometer-scale vibrations in pipelines. Pipelines are commonly used to
transport fluids like water, and regular inspections can aid in identifying potential issues
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and preventing major problems. As a non-contact monitoring system, radar is capable of
sub-second data acquisition rates and displacement monitoring with the interferometric
processing of time-series signals. Nonetheless, SAR imaging is required to enable target
discrimination in the cross-range direction, which comes at longer data acquisition rates,
rendering SAR imaging unsuitable for vibration monitoring. This study tackled this chal-
lenge by enhancing the radar signal model and incorporating the target vibration model.
Thus, we resolved the vibrational parameters as well as the target’s azimuth angle itera-
tively using a matched filtering algorithm. We conducted numerous experiments, including
numerical simulations and real case studies, to evaluate the proposed framework. The
findings demonstrate the efficacy of this approach on GBSAR signals. Based on the analysis
provided, vibration frequencies with amplitudes up to 1 micrometer were accurately de-
tected. Moreover, as shown, increasing the monitoring time and synthetic aperture length
enhanced the detection results of the target vibration frequency and azimuth angle but
proved to be ineffective in improving the detection of the vibration amplitude. The findings
of our case study indicate that the proposed method was effective in detecting pipeline
vibration frequencies while providing high spatial resolution for generating accurate vi-
bration maps of pipelines. Future works can be dedicated to addressing the remaining
challenges of the proposed methodology including the analysis and mitigation of external
noises such as a sensor’s fluctuations, using super-pixel methods for reducing the multiple
scatterer interferences, and implementing the proposed method on an airborne dataset and
conducting further case studies.
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