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Abstract: Lithium (Li) has grown to be a strategic key metal due to the enormous demand for the
development of new energy industries over the world. As one of the most significant sources of Li
resources, pegmatite-type Li deposits hold a large share of the mining market. In recent years, several
large and super-large spodumene (Spd)-rich pegmatite deposits have been discovered successively
in the Hoh-Xil–Songpan-Garzê (HXSG) orogenic belt of the northern Tibetan Plateau, indicative of
the great Li prospecting potential of this belt. Hyperspectral remote sensing (HRS), as a rapidly
developing exploration technology, is especially sensitive to the identification of alteration minerals,
and has made important breakthroughs in porphyry copper deposit exploration. However, due
to the small width of the pegmatite dykes and the lack of typical alteration zones, the ability of
HRS in the exploration of Li-rich pegmatite deposits remains to be explored. In this study, Li-rich
pegmatite anomalies were directly extracted from ZY1-02D hyperspectral imagery in the Zhawulong
(ZWL) area of western Sichuan, China, using target detection techniques including Adaptive Cosine
Estimator (ACE), Constrained Energy Minimization (CEM), Spectral Angle Mapper (SAM), and SAM
with BandMax (SAMBM). Further, the Li-rich anomalies were superimposed with the distribution
of pegmatite dykes delineated based on GF-2 high-resolution imagery. Our final results accurately
identified the known range of Spd pegmatite dykes and further predicted two new exploration target
areas. The approaches used in this study could be easily extended to other potential mineralization
areas to discover new rare metal pegmatite deposits on the Tibetan Plateau.

Keywords: pegmatite; lithium; mineral exploration; ZY1-02D; hyperspectral remote sensing; target
detection; Tibetan Plateau

1. Introduction

Lithium (Li), the lightest metal element in nature, is widely used in various industries
such as air treatment, ceramics, glass, aeronautics, pharmaceuticals, and polymers [1].
In particular, it is known as “white oil” due to its application in rechargeable Li-ion
batteries, serving as a substitute for fossil fuels to power burgeoning electric vehicles.
Sovacool et al. [2] estimated that the annual demand for Li in the field of low-carbon
energy technology alone will reach 415,000 tons by 2050. Therefore, Li is crucial to the
development of a low-carbon future and the mitigation of global warming [3], and has
been listed as one of the most critical metals in many countries over the world [2,4,5].
Present Li deposit worldwide could be classified as three types—brine, hard rock, and
clay. Particularly, hard rock-type Li deposit holds a significant market share due to its
simplicity of mining and short investment cycle [3]. As the primary source of hard rock
type Li ores, spodumene (Spd, LiAlSi2O6) pegmatite has become one of the most valuable
mineral resources nowadays with high Li content and high rate of extraction [3,6].
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The Tibetan Plateau contains abundant Li resources preserved in salt-lake brine and
granitic pegmatites [7]. The pegmatite-type Li deposits are mainly distributed in the Hi-
malayan orogenic belt in the south [8] and the Hoh-Xil–Songpan-Garzê–West Kunlun
orogenic belt in the north [7,9]. However, these metallogenic belts are generally high-
elevations, cold, hypoxic with harsh environmental conditions, raising great difficulties
during field investigation. Therefore, it is necessary to develop a more efficient and
cost-effective exploration method specifically for Spd-rich pegmatite deposits. The rapid
development of remote sensing technology has made it possible [10–12]. There have been
several preliminary attempts to detect Li mineralization through remote sensing techniques
mainly in Portugal/Spain [13–17], China [18–26], Afghanistan [27], Mozambique [28,29],
Namibia [30–33], and Brazil [34]. These studies aimed at mapping the associated altered
zones (i.e., iron oxides and clay minerals) or directly identifying Li-bearing minerals (e.g.,
spodumene, lepidolite, petalite, and cookeite) to locate the distribution of mineralized
areas. Besides, optical and radar sensors were also used for interpreting lineaments and
circular structures that may control pegmatite emplacement to assist in predicting min-
eralized areas [18,24,35]. The optical satellite data commonly used at present include
Landsat-5, Landsat-8, ASTER, Sentinel-2 with medium spatial resolution, and Worldview-
2, Worldview-3, RapidEye, Geoeye-1 with high spatial resolution. Cardoso-Fernandes
et al. [14] carried out the representative work in the Fregeneda–Almendra (Spain-Portugal)
aplite-pegmatite field. Based on different multispectral spaceborne platforms with a
medium resolution, several classic methods, including false color composite, band ra-
tio, and selective principal component analysis, have been adapted to successfully identify
the known Li-bearing pegmatite open-pit mines [14]. In recent research, machine learning-
based classifiers were widely used for various ore deposit exploration including Li [36].
For example, Köhler et al. [16] proved the application of artificial neural networks in delin-
eating exploration targets of Li-rich potential areas from Central Portugal. Additionally,
support vector machine models were trained on Sentinel-2 images to map the distribution
of Li-bearing pegmatites in the Fregeneda–Almendra region [15].

The enhancement of spectral resolution in sensors significantly improves satellites’
capability to identify specific ground objects [37]. In recent years, hyperspectral remote
sensing (HRS) has gained widespread utilization in geological mapping and mineral explo-
ration [38,39], particularly in the exploration of porphyry copper deposits and epithermal
gold deposits [40]. This is primarily due to the prevalence of extensive mineral alteration
zones in such deposits, which exhibit distinct spectral characteristics [39]. In contrast,
pegmatite deposits are typically characterized by their small outcrop area and lack of
prominent regional alteration features, making it challenging to apply established HRS
exploration models. Therefore, the direct detection of Li-bearing pegmatites using hy-
perspectral data remains a subject that requires verification, particularly considering that
the width of most pegmatite dykes is often smaller than the spaceborne sensor’s spatial
resolution. In the Namibia, Oshigami et al. [33] applied the airborne HyMap hyperspectral
data with a 5 m resolution to delineate the distribution of lepidolite, and Booysen et al. [31]
mapped cookeite and montebrasite at outcrop scale using ground-based hyperspectral
imaging, whereas, there are few cases of applying satellite hyperspectral imagery to target
Li deposits so far [25,26], mainly due to its low spatial resolution and limited data source.

The limited number of bands poses a challenge for extracting Li-bearing pegmatites
based on multispectral remote sensing, resulting in high uncertainty of results and a
certain number of false anomalies. While HRS has found extensive application in mapping
alteration zones, its potential for exploring pegmatite-type rare metal deposits is yet to
be fully explored. This study directly extracted Li-rich pegmatite anomalies from ZY1-
02D hyperspectral imagery in the Zhawulong (ZWL) deposit area of western Sichuan,
China, using several target detection techniques. Meanwhile, the spatial distribution of the
pegmatite dykes was directly delineated based on GF-2 satellite image with high spatial
resolution. Further, the Li-rich anomalies were superimposed with the distribution of
pegmatites to predict the potential Li-mineralized target areas. The methodology proposed
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in this study enables direct detection of the distribution of Li-rich pegmatites, reducing the
interference of false anomalies. It holds certain implications for exploring rare metal (i.e.,
Li and Be) deposits in remote and undiscovered areas.

2. Study Area and Geological Setting

The Hoh-Xil–Songpan-Garzê (HXSG) orogenic belt, situated in the northern Tibetan
Plateau and sandwiched between the South China block to the east, the Kunlun terrane to
the north, and the Qiangtang terrane to the south (Figure 1a), is the most important and
promising metallogenic belt of rare metals in China. This belt is mainly composed of thick
(5–15 km) Triassic turbidites of Bayan Har Mountain Group which are considered as the
marine sediments of a “remnant” ocean [41], “Mediterranean-style” basin [42], or “back-arc
basin” [43]. The Triassic turbidites were extensively intruded by Late Triassic-Early Jurassic
granitoids [44], usually forming shales and slates rich in cordierite or andalusite in their
contact metamorphic zones. Particularly in the easternmost of the HXSG belt, a series of
dome structures were developed due to the dynamic intrusion of the pluton, which could
create favorable conditions for the rare metal mineralization of pegmatite [45,46]. Around
these domes, a number of large and super-large rare metal deposits have been discovered
(Figure 1a), including Jiajika (JJK), Ke’eryin (KEY), Xuebaoding (XBD), and Zhawulong
(ZWL), and their ore-forming ages are accordantly concentrated in the Late Triassic to Early
Jurassic [47,48].

The ZWL spodumene pegmatite deposit is geographically located at the junction
of Shiqu County in Sichuan Province and Chindu County in Qinghai Province and geo-
logically lies in the eastern HXSG orogenic belt [49,50]. In this region, the Late Triassic
muscovite granite pluton intruded in Triassic metasedimentary strata, forming a dome
structure (Figure 1b). The dome is conducive to the formation of Li-Cs-Ta pegmatite and
the enrichment of Li group elements [45], and the ore dykes are exposed in the contact zone
between granitic pluton and wall rock of turbidites in research area. Exposed strata in the
ore field are mainly composed of Triassic metasediments and Quaternary sediments [49–52].
The Triassic lithologies include biotite quartz schist, phyllite, biotite granulite, metamorphic
sandstone, and metamorphic shale. The Quaternary is mainly sand and gravel alluvium,
accounting for more than 50% of this area, and is widely covered by meadows in sum-
mer. The granitic pluton is emplaced into anticlinal core composed of turbidites including
sandstone and siltstone, occurring as an irregular fusiform on the surface, and its mineral
composition mainly includes quartz, feldspar, and muscovite. The residual roof of wall
rock still remains at the top of the granitic intrusion, indicating a low degree of regional
denudation. It is speculated that there may be undiscovered ore bodies that have not yet
been exposed in the deep [49]. Pegmatites in the ore field are dominated by microcline
pegmatite, microcline-albite pegmatite, and albite-spodumene pegmatite [49–52]. As the
ore-forming dykes, albite-spodumene pegmatites intruded the Triassic strata on the south
side of the granitic pluton, outcropping as a linear structure, and are composed of large
crystals of quartz, albite, spodumene, and muscovite. Spodumene is primarily grayish
white and light green, and it typically appears as semi-euhedral to euhedral plate columnar
crystal and is generally thick and big without specific alteration (Figure 2). The Li-rich
pegmatite dyke occurs with a length of more than 1000 m and a width of 5 m on the ground
surface. The Li2O reserves are approximately 100,000 tons with an average Li2O grade of
1.2%, indicating a large-scale Li deposit [49]. According to the geophysical survey results,
the ore dyke can extend further into the deep and laterally, and the prospective resources
of Li2O were estimated to exceed 700,000 tons [50,53], indicative of tremendous explo-
ration potential. Recently, new Spd-rich pegmatites have been successively discovered
in Caolong [54,55] and Gaduo [56] areas, approximately 8–70 km far from the western
ZWL deposit, suggesting that there are still undiscovered deposits in the vicinity of the ore
field. However, this region belongs to the Sanjiangyuan National Nature Reserve, and the
remote terrain and limited accessibility make it difficult to conduct large-scale geological
and geophysical survey. Remote sensing, as a rapid, non-destructive, and environmentally
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friendly technique, can play a crucial role in the exploration of rare metal minerals in
this area.

Figure 1. (a) Simplified tectonic map of the major pegmatite rare metal deposits in the Hoh-
Xil-Songpan-Garzê-West Kunlun orogenic belt, modified after [48,57]. AKMS: Ayimaqin-Kunlun-
Matztagh Suture, JS: Jinshajiang Suture, BNS: Bangong-Nujiang Suture, GLS: Garzê-Litang Suture, CL:
Caolong, ZWL: Zhawulong, JJK: Jiajika, KEY: Ke’eryin, XBD: Xuebaoding, CKBS: Chakabeishan, XFL:
Xuefengling, BLS: Bailongshan, DHLT: Dahongliutan, HSTS: Huoshitashi, and XEBL: Xiaoerbulong.
(b) Simplified geological map of the ZWL ore field after [49].
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Figure 2. (a) Field outcrop of spodumene pegmatite in the Zhawulong deposit; (b,c) field pictures of
spodumene (Spd) crystals.

3. Materials and Methods

The raw data used in this study mainly include one scene of GF-2 multispectral sensor
with a high spatial resolution, and one scene of Advanced Hyperspectral Imager (AHSI)
onboard ZY1-02D satellite with a high spectral resolution. The procedures of data pre-
processing and image analysis were performed using Environment for Visualizing Images
(ENVI) software version 5.3.1 and ArcMap software version 10.8. Figure 3 shows the
overall workflow.

Figure 3. Schematic diagram of overall workflow.

3.1. Data Pre-Processing
3.1.1. GF-2 Satellite

The GF-2 satellite was launched in China on 19 August 2014, with an optimal spatial
resolution of better than 1 m, marking the beginning of the “high-resolution era” for China’s
civilian remote sensing satellites at the sub-meter level. Its imaging system consisted of
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the panchromatic (PAN) camera with a 1 m resolution and the multispectral camera
with a 4 m resolution (Table 1). The multispectral camera was configured with 4 bands,
covering the spectral range of 0.45–0.89 µm, and the swath width of 45 km was achieved
by combining two cameras [58]. The high spatial resolution of the GF-2 satellite provides
specific advantages in the geological application, such as the information extraction of
structures, strata, and dikes [59–61].

Table 1. GF-2 and ZY1-02D AHSI sensors parameters.

Data Spectral Range Spectral
Resolution Pixel Size Swath Width

GF-2

PAN 0.45–0.90 µm - 1 m

45 km
Blue 0.45–0.52 µm -

4 m
Green 0.52–0.59 µm -
Red 0.63–0.69 µm -
NIR 0.77–0.89 µm -

ZY1-02D
VINR 395–1040 nm 10 nm

30 m 60 kmSWIR 1005–2510 nm 20 nm

The imagery was a level-1A product with radiometric correction, which was imaged
on 2 September 2020 and acquired on 8 November 2022 through applying to Natural Re-
sources Satellite Remote Sensing Cloud Service Platform of China (http://sasclouds.com/
english/normal/, accessed on 8 August 2023). According to the application requirements,
the imagery was processed by spatial subset, orthorectification, and quick atmospheric
correction (QUAC). Then, the NNDiffuse Pan Sharpening method [62] was employed to
fuse the multispectral data with the PAN image to improve its spatial resolution to 1 m
while preserving the fidelity of its spectrum (Figure 4). Further, geographical registration
between the GF-2 image and ZY1-02D image was performed.

Figure 4. Comparison of image spatial features before (left) and after (right) panchromatic fusion.

3.1.2. ZY1-02D Satellite

The ZY1-02D satellite was launched in China on 12 September 2019, carrying an AHSI,
which is the first civilian hyperspectral satellite independently constructed and operated by
China. The satellite data can be queried and downloaded from Natural Resources Satellite
Remote Sensing Cloud Service Platform of China (http://sasclouds.com/english/normal/,
accessed on 8 August 2023). As shown in Table 1 [63,64], the ZY1-02D AHSI covers
a spectral range of 0.4–2.5 µm equipped with 166 bands. The spectral resolution is
10 nm in the visible and near-infrared (VNIR) region and 20 nm in the shortwave in-
frared (SWIR) region, and the spatial resolution is 30 m. The ZY1-02D AHSI stands
out from existing satellite hyperspectral sensors worldwide due to its superior swath

http://sasclouds.com/english/normal/
http://sasclouds.com/english/normal/
http://sasclouds.com/english/normal/
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width of 60 km and signal-to-noise ratio (SNR ≥ 240@0.4–0.9 µm, ≥180@0.9–1.75 µm, and
≥120@1.75–2.5 µm) [64]. This makes it highly promising for applications in natural re-
sources survey and mineral information extraction [65–69].

The level-1A imagery used here was imaged on 14 October 2021 and acquired on
22 August 2022. The pre-processing of hyperspectral data mainly includes the following steps:

(1) Spatial subset to research area and removal of overlapping, water vapor, strip and
noise-evident bands (i.e., B1-B2, B77-B79, B96-B102, B124-B133, B164-B166). The
remaining 141 bands were used for subsequent analysis;

(2) Conversion of digital number (DN) value to radiance through radiometric calibration;
(3) Correction of radiance data to reflectance by using the FLAASH module in ENVI;
(4) Orthorectification using a Landsat-8 scene as a reference image by “RPC Orthorectifi-

cation Using Reference Image” tool in ENVI;
(5) Geographical registration with the GF-2 image. The spatial registration accuracy

(RMSE < 1) has been visually verified to meet the requirements of the research.

3.2. Methods

For mineral exploration purpose, remote sensing detection only requires distinguish-
ing whether an object is mineralized, with no necessity for a completed classification of
all lithological units. Additionally, ore-bearing pegmatite dykes typically have limited
distributions and small areas, appearing as low probability and sub-pixel targets in hy-
perspectral imagery [70], making it challenging for conventional supervised classification
methods to accurately extract such weak anomalies. Considering the mentioned conditions,
four target detection techniques based on ZY1-02D hyperspectral data were implemented
to directly extract Li-rich pegmatite anomalies in the region.

3.2.1. Constrained Energy Minimization (CEM)

CEM is proposed based on a spectral linear mixing model [71], which assumes that
the spectral signal of a mixed pixel is composed of endmembers’ spectra weighted by their
proportions. It aims to maximize the response of a target signature on a pixel-by-pixel
basis while suppressing the response of undesired background signatures, resulting in
an optimal estimate of the abundance or fraction of the material of interest in each pixel.
Basically, CEM operator employs a finite impulse response (FIR) filter to achieve target
detection, which is defined by two constraints [71,72]. The first constraint is to minimize
the total output energy of all pixels. The second constraint is to assume the energy of an
individual pixel summed across the wavelength range to be 1 when applied to a target
spectrum. CEM technique is powerful to deal with a variety of spectral backgrounds,
and no a priori knowledge except the desired target signature (either image or laboratory
spectra) is required. In previous research, CEM has been successfully applied in various
geological fields, such as mine contamination survey [71], lithology mapping [72], and
extraction of alteration minerals [73]. In this study, the CEM detector based on minimum
noise fraction (MNF) [74,75] was employed to detect Li-rich pegmatite anomalies.

3.2.2. Adaptive Cosine Estimator (ACE)

The ACE algorithm initially assumes that the target and background follow distinct
probability models and then utilizes the generalized likelihood ratio (GLR) method to
construct a detector [70,76]. It maintains invariance to the relative scaling of input spectra
and exhibits a constant false alarm rate (CFAR) in relation to this scaling. ACE uses
an angular threshold between the target pixel and the test pixel in a whitening space,
which is different from the distance threshold used by the adaptive matched filter (AMF)
detector [76]. The same as CEM, ACE does not require knowledge of all the endmembers
but the target spectra within an image scene. ACE is not constrained by the size of targets
and remains reliable for both small and large targets detection. It has been utilized to
extract hydrothermal alterations related to ore deposits [77,78].
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3.2.3. Spectral Angle Mapper (SAM)

The SAM is a tool that permits rapid evaluation of the spectral similarity between
image spectra and reference spectra and is also the most used technique in geological
mapping [79]. The reference spectra can be obtained from either laboratory or field mea-
surements or extracted directly from the image. The algorithm determines the spectral
similarity between two spectra by calculating the “angle” between the two spectra, treating
them as vectors in a high-dimensional space with dimensionality equal to the number of
bands. Smaller spectral angles correspond to higher similarity, and these pixels would be
sieved as desired targets. The spectral angle (θ) between a test spectrum t and a reference
spectrum r can be calculated by applying the following equation:

θ = cos−1 (

→
t ·→r∣∣∣→t ∣∣∣ · ∣∣∣→r ∣∣∣ ) (1)

3.2.4. Spectral Angle Mapper with BandMax (SAMBM)

The SAMBM is a target detection method combining SAM and BandMax techniques
and can be implemented through the “SAM Target Finder with BandMax” module in ENVI
software (https://www.nv5geospatialsoftware.com/docs/SAMTargetFinderWithBandMax.
html, accessed on 8 August 2023). BandMax is a patented technique developed by Galileo
Group, Inc [80]. According to the theory of BandMax, a spectral feature can be defined as
any pair of bands that present a unique slope between them. That means it is no longer
confined to having only one feature in each band. Then, the number of total features
comes to ((n2) − n)/2, where n = number of spectral bands. If two very similar mineral
spectra were in a data set of their natural environment, more distinguishing features would
be found by the BandMax algorithm than standard processing methods. Furthermore,
through the real-time interactive threshold adjustment, analysts can narrow down spectral
subsets to only key bands with the most vital information [81,82]. This information can
help to eliminate redundant identical features between two very similar objects, it allows
standard algorithms to give weight to the important, yet subtle, differences between tar-
get and background spectra, resulting in reduced false alarms. In this study, the Li-rich
pegmatite spectrum was taken as the target, while the granite spectrum was taken as back-
ground. The SAMBM was applied to detect targets based on MNF-transformed ZY1-02D
hyperspectral data.

4. Results
4.1. Pegmatite Delineation

Pegmatite is commonly outcropped in a small width and area, making the spatial
resolution of satellite imagery a decisive role in the accuracy and efficiency of pegmatite
dykes delineation. GF-2 multispectral sensor has a resolution of 4 m, and it generates
color image with a resolution of 1 m after fusion with the panchromatic image, containing
abundant spatial texture information. As shown in Table 2, various ground objects in
research area present distinct features on the high-resolution GF-2 true-color imagery
(B3-2-1). Pegmatite is mainly composed of quartz, feldspar, and muscovite, exhibiting
an elongated and vein shape. It appearing as bright white with a high reflectivity on the
imagery. The outcrop is usually small in area, often occurs as dyke swarms with a certain
direction, and a ridge-like landform due to its strong resistance to weathering. Based on
the satellite imagery features of various lithology units in Table 2, the spatial distribution
of pegmatite with a certain scale was directly delineated through visual interpretation
in Figure 5. The results suggested that a number of pegmatite dykes were distributed in
the vicinity of the known Li-rich pegmatites in the ore field. They outcropped linearly
in Triassic strata and Quaternary sediment around the granite pluton, showing certain
metallogenic potential.

https://www.nv5geospatialsoftware.com/docs/SAMTargetFinderWithBandMax.html
https://www.nv5geospatialsoftware.com/docs/SAMTargetFinderWithBandMax.html
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Table 2. Interpretation features of relevant ground objects in the GF-2 true color imagery.

Lithology Units Imagery Features Spectra Descriptions

Granite

High overall reflectivity and
increasing from blue to near infrared

band; gray to bright white, blocky,
large area, concentrated distribution,

and clear lithology boundary.

Pegmatite

Bright white with a high reflectivity,
elongated and vein shape, usually

small in area, occuring as dyke
swarms with a certain direction, and

a ridge-like landform due to its
strong resistance to weathering.

Metasediment
Blue-gray, dark tone, low overall

reflectivity, large distribution area,
with bedding texture.

Quaternary sediment

The reflectivity is low in visible bands,
but rises sharply in near infrared

band. They fan out along both sides
of the river and were often covered

with meadows in grassy green.

Figure 5. Distribution of pegmatite dykes delineated based on GF-2 imagery.

4.2. Li-Rich Pegmatite Anomaly Detection
4.2.1. MNF Transform Results

It was found that the whitening process is key to detecting small targets from hyper-
spectral image [83]. The MNF transform attempts to concentrate the effective information
from a high-dimensional image into a lower dimensional space by maximizing the SNR and
effectively reduce the noises [75]. Figure 6 shows the ZY1-02D true-color image (B29-19-10)
and the false-color image (MNF3-2-1) composited by the first three components of MNF
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transformation. The transformed result suggested that the differences between various
lithologies have been enhanced through MNF, and presented as distinct synthesized colors
in Figure 6b. The Triassic metasedimentary rocks are mainly lime green to orange depend-
ing on the degree of shading, the Quaternary sediments are aquamarine, the granites are
medium blue to deep pink, and the known Li-rich pegmatites present violet red, which are
visually distinguishable from the background objects. Different endmembers of ground
objects were extracted based on the MNF-transformed image, and their average reflectance
spectra and MNF component curves are shown in Figure 7a,b, respectively. Li-rich peg-
matite differentiate from metasediments, granites and Quaternary sediments with a distinct
spectrum, due to its special mineral composition and content. The research [13] suggested
that the main absorption features located around ~1412 nm, ~1913 nm, and ~2205 nm and
shallow secondary absorption at ~2352 nm and ~2440 nm for spodumene in pegmatite
specimens. These features are probably caused by molecular water and Al-OH-bearing
altered minerals (e.g., illite, montmorillonite, and kaolinite). Despite the similar spectra,
Li-rich pegmatites can be distinguished from Li-poor lithologies through the distinctive
reflectance magnitude, absorptions depths, the symmetry of absorption bands, and distinct
key absorption wavelength [13,25]. The spectral signature of the Li-rich pegmatite acquired
from the hyperspectral image is used as the reference spectrum for spectral detecting. The
spectral signatures of all the pixels in the data cube are compared with the reference spectra
and the best matching pixel spectra are identified as belonging to the target material.

Figure 6. (a) True-color composite image (B29-19-10) and (b) MNF-transformed image (MNF3-2-1) of
ZY1-02D of the study area. The purple ellipse denotes the known Li deposit area. Mg: muscovite
granite, Ms: metasediment, Lp: Li-rich pegmatite, and Qs: Quaternary sediment.

4.2.2. Target Detection Results

Figure 8a–d shows the results of four algorithms, ACE, CEM, SAM, and SAMBM,
respectively, for Li-rich pegmatite anomaly detection in the Zhawulong area. Hyperspectral
target detection is the process of searching for a specific object on the image. Essentially, it
involves the identification of spectral signatures. If the spectrum of a pixel is sufficiently
similar to the reference spectrum, it can be determined that the pixel is the desired target. In
the resulting grayscale images of ACE and CEM (Figure 8a,b), the pixel with a brighter level
indicates a greater abundance of Li-rich pegmatites. For results of SAM and SAMBM, score
value of a pixel represents the vector angle between the test spectrum and the reference
spectrum, and thus a lower value indicates a better matching degree between them. To
highlight the targets in bright pixels, the greyscale images were inverted for SAM and
SAMBM (Figure 8c,d). The purple ellipse denotes the known Li ore field, presenting as
bright pixels in all four resulting greyscale images.
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Figure 8. Li-rich pegmatite anomaly detection results of the (a) ACE, (b) CEM, (c) SAM, and
(d) SAMBM algorithms applied on MNF-transformed ZY1-02D imagery. The purple ellipse denotes
the known Li ore field. Brighter levels of pixels indicate higher abundances of targets.

Thresholding method was used to spatially localize the target pixels on the imagery.
The thresholds were determined through inspecting the histogram of the score map. The
minimum score value with prominent number of occurrences of the known Li-rich targets
can be used as the lowest threshold for detecting the target region. Color density slice
was also applied to the greyscale images to explicitly showcase the detection results.
Consequently, the Li-rich anomaly distribution was mapped from low to high probability
using a blue (low values) to red (high values) color sequence. Further, the Li-rich anomalies
were superimposed with the distribution of pegmatite dykes delineated based on GF-2



Remote Sens. 2023, 15, 3969 12 of 20

high-resolution imagery (Figure 9). The results show that the known Li-rich areas exhibit
high anomalies and present a zoning distribution, where the anomalies lower as farther
away from the center of the ore vein. This could be attributed to the widespread presence of
mixed pixels in the image caused by the low spatial resolution of spaceborne hyperspectral
imaging. The central pixels of the ore body retain most of the target spectral signatures with
higher pixel purity, thus showing strong target signals, i.e., high anomalies. Conversely, the
closer to the edge of the ore body, the higher the proportion of pixel mixing. The mixture
of target (Li-rich pegmatite) and background (metasediment, Quaternary sediment et al.)
objects leads to the weakening of target spectral signatures, resulting in lower anomalies.
This also demonstrates the robust reliability of various target detection techniques in
extracting Li-rich pegmatites in this area. However, there are also a certain number of false
anomalies due to the common existence of spectral similarity of foreign objects in nature.
For example, all four algorithms incorrectly identified some granite pixels as targets to
varying degrees. On the one hand, the detection results based on the partial unmixing
methods (ACE and CEM) are superior to those based on the matching methods (SAM
and SAMBM). On the other hand, compared with the result of SAM, it can be found that
the false alarms of granite detected by the SAMBM algorithm is significantly reduced,
which proves that BandMax is capable of enhancing the subtle spectral differences between
background and target, thereby reducing false anomalies.

Figure 9. Density slice results of (a) ACE, (b) CEM, (c) SAM, and (d) SAMBM superimposed with the
distribution of pegmatite dykes, draped over B29 greyscale image of ZY1-02D.

5. Discussion

The primary step in the exploration of hard-rock Li deposits is to identify pegmatite
dykes with a certain scale. The fused GF-2 multispectral image has a spatial resolution
of up to 1 m, which is benefit to quickly and accurately delineate the distribution of thin
pegmatites. However, it is difficult to distinguish whether these pegmatites are mineralized
due to the limited number of bands. HRS enables the acquisition of fine reflectance spectra
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for minerals or rocks, allowing the identification of ground surface materials that cannot be
distinguished using multispectral data [84,85]. It is even possible to determine the relative
abundance and chemical composition of objects through the analysis of diagnostic spectral
signatures [86]. The ZY1-02D hyperspectral image offers a spectral resolution of 10–20 nm,
enabling the identification of specific minerals. However, its spatial resolution is limited to
30 m, making it susceptible to issues such as pixels mixing and spectral confusion. As a
result, the false anomalies usually occurred in the detection results.

On the basis of image registration, this study overlaid the distribution of pegmatite
dykes delineated using high-spatial-resolution data and the Li-rich anomalies detected
through hyperspectral data to pinpoint target areas with Li mineralization potential
(Figure 10). Three potential areas (A, B, C) were identified in Figure 10, where the peg-
matite dykes coexisted with the distribution of Li-rich anomalies. Among these areas, A
corresponds to the known Zhawulong Li ore [49,52], and the detected Li-rich anomaly dis-
tributed range agrees very well with the observed distribution of spodumene pegmatites in
the field. B and C exhibited Li-rich anomalies distribution in all four algorithms, although
the anomalies were relatively weak because of their small vein width. The predicted areas
of B and C shared similar spectral and spatial features with the known mineralized areas
(Figure 11). Therefore, they can be considered as new exploration targets and require
further field verification. The X03 super-large Li-rich ore body was discovered in the deep
underground of the Jiajika ore field in western Sichuan (China) through detailed investiga-
tion of the Spd-bearing pegmatite accumulation in the Quaternary covered area [87]. While
the target areas of B and C are similarly exposed above the Quaternary with small surface
outcrop areas, they may extend to larger volumes of dykes beneath the Quaternary cover,
indicating a possibly huge potential for Li resources.

Figure 10. Prediction results of Li exploration target area integrating high-resolution (GF-2) and
hyperspectral (ZY1-02D) imagery detected information. Area A denotes the known Zhawulong Li
ore body [49,52], while B and C are newly discovered prospecting target areas.
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Figure 11. Comparison of detailed spectral anomalies and spatial features between (a,a′) the known
Li-rich pegmatite [49,52] and (b,b′,c,c′) the newly predicted targets.

The target detection algorithms demonstrated a high accuracy in distinguishing Li-rich
pegmatites from metasediments (Figure 9). However, the challenge lies in the considerable
spectral similarity and the absence of thermal infrared bands, which constrain the ability to
differentiate between Li-rich pegmatites, granites, and Li-poor pegmatites. As a result, a
certain number of false anomalies occur, and it is difficult to quantitatively assess their exact
percentage due to the absence of a definitive training and testing dataset. Nonetheless,
qualitative estimation of false anomaly occurrences can be achieved through a comparison
with established geological maps and field reconnaissance. This predicament is a common
challenge frequently encountered in remote sensing-based mineral exploration. Despite
the mentioned limitations, the methodology can be readily applied to other regions with
minimal prior knowledge, and most of the operations undertaken here can be executed
using ENVI software.

The methodology proposed here for Li ore detection integrates high-resolution and
hyperspectral remote sensing images, which can also be extended to explore rare metal
deposits in other regions on the Tibetan Plateau. The rare metal mineralized pegmatites
in the West Kunlun orogen and the HXSG orogen exhibit similar geological, geochemical,
and geochronological characteristics, suggesting a common petrogenesis and metallogene-
sis [47,48]. They might be connected to form a giant Paleo-Tethys rare metal metallogenic
belt that extends approximately 2800 km. Currently, world-class rare metal pegmatite de-
posits represented by the Bailongshan were discovered in the West Kunlun area [88,89], and
several large-super-large rare metal deposits including Jiajika, Ke’eryin, and Zhawulong
were hosted in the Songpan-Garzê area [90]. Their ore-forming ages are concentrated in the
Late Triassic-Early Jurassic and they share similar metallogenic setting [47,48] (Figure 1a).
However, no rare metal pegmatites have been discovered so far in the ~1200 km gap be-
tween the West Kunlun orogenic belt and the Songpan-Garzê belt (especially the Hoh-Xil re-
gion). This suggests a future target area for rare metal pegmatites exploration. Furthermore,
pegmatite-type Li-Be (Beryllium) deposits were recently discovered in Qiongjiagang [8]
and Gabo [91] regions of the Himalayan orogen. This approves the huge potential for
Li-Be mineralization in leucogranite developed areas of the Himalayan region, together
with using national Li geochemical mapping [92]. These critical areas with mineralization
potential are characterized by high-altitude locations with harsh environments, limited
transportation access, and difficult field investigations. The method for Li detection with
remote sensing technology presented in this study will serve as valuable support for future
ore prospecting in these regions, especially playing a key role in early-stage exploration by
narrowing down target areas and guiding the direction of mineral exploration.
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Different types of materials are distinguished by their distinctive spectra, forming the
theoretical foundation of HRS mapping [37]. Hence, spectral libraries play a crucial role
in mineral exploration, serving as reference spectra for extracting desired minerals (e.g.,
Li-rich minerals). There are several spectral libraries or online databases that collect spectra
of major minerals and lithologies, such as the United States Geological Survey (USGS)
spectral library (https://speclab.cr.usgs.gov/spectral-lib, accessed on 8 August 2023) [93],
ECOSTRESS spectral library (https://speclib.jpl.nasa.gov/, accessed on 8 August 2023) [94],
and RELAB spectral database (https://sites.brown.edu/relab/relab-spectral-database/,
accessed on 8 August 2023). However, a spectral library built exclusively dedicated to rare
metal minerals and pegmatite deposits exploration is scarce [95]. Recently, a high-quality
spectral library [96] of European pegmatites and related minerals has been developed in an
open, ready-to-use format, which can be easily utilized by users with diverse backgrounds.
The database is publicly accessible on the Zenodo platform (https://doi.org/10.5281/
zenodo.6518319, accessed on 8 August 2023). Given the specific metallogenic conditions
on the HXSG orogen [48], it is necessary to establish a spectral library exclusively focused
on rare metal minerals, pegmatites, and associated wall rocks. This endeavor would be of
great significance to the remote sensing-based exploration of rare metals in this region.

6. Conclusions

In this study, we integrated high-resolution and HRS data to detect the spatial dis-
tribution of Li-rich pegmatites in the ZWL area, the HXSG orogenic belt. It showed the
effectiveness of target detection techniques in directly extracting anomalies associated with
Li-rich pegmatite using hyperspectral satellite imagery. Based on the combined results
of pegmatite delineation and Li-rich anomaly detection, this study not only accurately
identified the known ZWL Li-rich deposit but also identified two additional areas with
great potential for Li exploration. The procedures described here can be easily extended to
other potential Li-mineralized areas without much prior knowledge, allowing the discov-
ery of new rare metal pegmatite deposits on the Tibetan Plateau. In future research, we
plan to explore multi-source data fusion techniques to overcome the limitations of spatial
resolution in hyperspectral satellites, which is crucial for the exploration of rare metal
pegmatites. Additionally, it is essential to investigate whether there are specific spectral
parameters directly associated with Li in Li-rich minerals to reduce false alarms induced by
spectral similarities with lithologies such as granite and Li-poor pegmatite. Furthermore,
field validation of the predicted areas is also required when conditions permit.
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