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Abstract: Accurately estimating hydrological parameters is crucial for comprehending global water
resources and climate dynamics. This study addresses the challenge of quantifying uncertainties in
the global land data assimilation system (GLDAS) model and enhancing the accuracy of downscaled
gravity recovery and climate experiment (GRACE) data. Although the GLDAS models provide
valuable information on hydrological parameters, they lack uncertainty quantification. To enhance the
resolution of GRACE data, a spectral downscaling approach can be employed, leveraging uncertainty
estimates. In this study, we propose a novel approach, referred to as method 2, which incorporates
parameter magnitudes to estimate uncertainties in the GLDAS model. The proposed method is
applied to downscale GRACE data over Alberta, with a specific focus on December 2003. The
groundwater storage extracted from the downscaled terrestrial water storage (TWS) are compared
with measurements from piezometric wells, demonstrating substantial improvements in accuracy.
In approximately 80% of the wells, the root mean square (RMS) and standard deviation (STD) were
improved to less than 5 mm. These results underscore the potential of the proposed approach to
enhance downscaled GRACE data and improve hydrological models.

Keywords: downscaling groundwater storage; GRACE gravity models; spectral combination;
terrestrial water storage; uncertainty estimation

1. Introduction

The gravity recovery and climate experiment (GRACE) mission, as described by Tap-
ley et al. [1], comprises a pair of satellite missions that provide precise measurements of
temporal and spatial variations in the Earth’s gravity field. The monthly global gravity
models derived from these missions include spherical harmonic coefficients and associated
errors. These models have proven valuable for estimating variations in terrestrial water
storage (TWS) at a large scale, thereby facilitating the assessment of surface and groundwa-
ter storage (GWS) [2–5]. However, the application of GRACE models is limited when it
comes to monitoring changes at smaller scales, thereby limiting their utility for local water
management authorities due to their low spatial and temporal resolutions (approximately
200,000 km2 and one month, respectively) [6,7]. Hydrogeologists and researchers have
acknowledged these limitations [8,9] and recognise the need for high-resolution GRACE
data products, especially in regions with insufficient in situ monitoring networks, such as
the northern regions of Canada. Mohamed et al. [10] discussed water scarcity challenges in
north and central Africa, focusing on Chad, due to climate change and human activities.
By integrating GRACE data, climatic model outputs, and precipitation information, the
study examines spatial and temporal mass fluctuations caused by groundwater variations,
providing valuable insights for water resource management in the region.
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Downscaling techniques can be employed to obtain high-resolution GRACE data
products. Downscaling refers to the reconstruction of variations at a finer scale, assuming
that the values observed at a larger scale are representative averages of those at smaller
scales [11]. Numerous downscaling techniques have been proposed, broadly categorised
into two groups: deterministic (dynamical) and statistical downscaling. Deterministic
approaches, including data assimilation techniques, utilise high-resolution models within
limited areas when compared to GRACE (such as global climate models or general circula-
tion models) and are driven by lateral boundary conditions to derive information at smaller
scales [12–14]. Although these methods offer physical consistency, their computationally
intensive nature restricts their applicability [15]. Statistical downscaling methods, on the
other hand, establish statistical relationships between large-scale and small-scale parame-
ters to predict finer-scale details [16]. These methods offer flexibility in utilising various
spatiotemporal datasets and enable the estimation of uncertainties in the model outputs.
Various statistical techniques have been applied and studied in the downscaling literature,
including classification-based methods, empirical and statistical regression models [17,18],
correlative relation methods [19], and Markov chains. In recent years, statistical inversion
using machine learning algorithms has been widely employed for downscaling GRACE
observations [20–24], including random forest [25,26], artificial neural networks [27–29],
support vector machines [30], and multiple linear regression [31] models. However, statisti-
cal methods require access to large datasets and rely on the assumptions that the observed
data and small-scale information accurately capture the dynamics of the system under
study and that these dynamics remain valid beyond the observation period [32].

An iterative adjustment method has gained popularity as a novel approach for down-
scaling GRACE data. Zhong et al. [33] applied this method spatially, using a self-calibrating
variance–component model to downscale coarse resolution GRACE observations (300 km)
to a finer resolution of 5 km. Their method also estimated uncertainties in high-resolution
TWS and GWS variations. Additionally, Zhong et al. [34] developed an iterative adjustment
method that holds promise for downscaling GRACE-derived TWS both spatially and tem-
porally. Their approach enhances the spatiotemporal resolution of TWS variations from the
original coarse resolution GRACE data in two stages: spatially from a 3-degree spherical
cap (~300 km) to 5 km, and temporally from monthly to daily. However, further verification
of the model’s performance is required due to the absence of precise and comparable ob-
servations. Arshad et al. [35] employed geographically weighted regression and a soil and
water assessment tool (SWAT) model for downscaling. They reported promising results.
Another study by Ali et al. [36] utilised machine learning techniques, including random
forest, support vector machine, artificial neural network, and extreme gradient boosting
(XGBoost), to downscale GRACE TWS and GWS datasets. The XGBoost model outper-
formed other methods, accurately reproducing local groundwater behaviour. Ali et al. [37]
have also studied this method further and applied it over the Indus Basin.

In this study, we employ spectral combination theory [38–40] for downscaling GRACE
models. Previous researchers [41–44] have successfully applied this theory primarily in
gravity field modelling. Unlike existing downscaling methods, spectral combination or
spectral downscaling, operates in the spectral domain [45,46]. Fatolazadeh et al. [45]
utilised this method to spatially downscale GRACE models using the global land data
assimilation system (GLDAS) model and later extended it to simultaneous spatiotemporal
downscaling. Spectral downscaling involves employing an estimator in spectral form that
incorporates GRACE observations, hydrological models, and their spectral uncertainties.
The parameters of the estimator are determined using a least-squares approach to minimise
the global mean square error. In this paper, we expand on previous research by considering
both low- and high-frequency signal components of the GRACE and GLDAS system. We
compare two approaches for estimating uncertainties in the GLDAS models: Method 1,
previously used by Fatolazadeh et al. [12,46], and Method 2, a novel method developed in
this study. Method 2 incorporates a condition adjustment approach that does not require
additional information and considers the magnitudes of the hydrological parameters during
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uncertainty estimation. Both methods are employed to estimate the uncertainties of the
GLDAS models, which are then applied in the spectral downscaling of GRACE gravity
models over the province of Alberta for December 2003. The effectiveness and accuracy of
the two methods are compared to assess their performance.

2. Methodology

The methodology for downscaling GRACE products is illustrated in Figure 1, and it
incorporates the consideration of magnitudes of hydrological parameters during uncer-
tainty estimation. Two distinct methods are utilised to estimate the uncertainties of the
global land data assimilation system (GLDAS) models, which are subsequently applied in
the spectral downscaling of GRACE products.
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2.1. Gravity Field and Terrestrial Water Storage from GRACE Models

The monthly gravity models derived from the gravity recovery and climate experiment
(GRACE) provide valuable information on Earth’s gravity field. These models can be used
to compute terrestrial water storage (TWS) in land areas using the spherical harmonic
coefficients (SHCs) of the GRACE data. The conversion from SHCs to TWS is based on the
spherical harmonic expression presented by Wahr et al. [47] and further mathematically
elaborated by Eshagh [48]:

−
T

TWS,G

(θ, λ) = ∑N
n=0 ∑n

m=−n TTWS, G
nm Ynm(θ, λ) =

1
4πGRγ ∑N

n=0
2n + 1
1 + kn

∑n
m=−n vGRACE

nm Ynm(θ, λ), (1)
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where G = 6.67 ×10 −11 N.m2

kg2 represents the Newtonian gravitational constant, R is the
radius of the spherical Earth, γ denotes the normal gravity, kn represents the Love number of
degree n, vGRACE

nm corresponds to the SHCs of the gravitational potential, TTWS, G
nm the SHCs

of the terrestrial water storage, and Ynm(θ, λ) represents the fully normalised spherical
harmonics with the arguments of co-latitude (θ) and longitude (λ). The parameters n and
m denote the degree and order of the spherical harmonic function, respectively.

The fully normalised associated Legendre functions, denoted by Pnm(cos θ), are em-
ployed in Equation (2) to calculate the spherical harmonics:

Ynm(θ, λ) =

{
cos mλPnm(cos θ) m ≤ 0
sin mλPnm(cos θ) m > 0

. (2)

The orthogonality property of the spherical harmonic functions is given by Equation (3),
where δij represents Kronecker’s delta; see e.g., [49]:

1
4π

x

Ω
Ynm(θ, λ)Yn′m′(θ, λ)dΩ = δnn′δmm′ where δij =

{
1 for i = j

0 for i 6= j
. (3)

In Equation (3), Ω denotes the sphere on which the surface integration is performed
and dΩ represents the surface integration element.

The GRACE monthly models also provide uncertainties associated with the SHCs of
the Earth’s gravitational potential. By applying the error propagation law of random errors
to Equation (1), the error of SHCs of TWS (σTWS,G

nm ) can be derived:

σTWS,G
nm =

1
4πGRγ

2n + 1
1 + kn

σvGRACE
nm

. (4)

In Equation (4), σvGRACE
nm

represents the error of SHCs of the GRACE monthly models.
These equations provide the theoretical framework for computing TWS from the GRACE
models and estimating the associated uncertainties.

2.2. Terrestrial Water Storage from Hydrological Models

In addition to the GRACE gravity models, TWS can also be estimated using hydrolog-
ical models such as the GLDAS. This later provides information on various components
of the water cycle, including groundwater storage (GWS), snow water equivalent (SWE),
canopy water (CAN), soil moisture (SM), and TWS. These data are typically available in
gridded forms with a specific resolution, such as 0.25 × 0.25 degrees. To estimate TWS
from the GLDAS model, we can use the spherical harmonic expansion of TWS (TTWS) as
presented by Eshagh [48]:

TTWS,H(θ, λ) = ∑∞
n=1 ∑n

m=−n TTWS,H
nm Ynm(θ, λ). (5)

TTWS
nm represents the SHCs of TTWS, which can be derived using the orthogonality

property of the spherical harmonics (Equation (3)):

TTWS,H
nm =

1
4π

x

Ω
TTWS,H(θ′, λ′

)
Ynm

(
θ′, λ′

)
dΩ. (6)

To derive TTWS
nm , a global grid of TTWS with a specific resolution is needed; for each

degree n and order m of spherical harmonics, the corresponding frequency of TTWS of the
same degree and order (TTWS

nm ) is computed. This principle can be simply presented in the
following vectorised model:

TTWS
nm = BnmTTWS. (7)
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In fact, Equation (6) is discretised and converted to the multiplication of two vectors
of Bnm: the vector of discretised integral and the gridded data of TTWS converted to the
column vector TTWS.

2.3. Error Estimation of GLDAS Components

The uncertainties of the hydrological parameters play a significant role in the spectral
combination of the GLDAS and GRACE models. In this section, two approaches are
presented for the estimation of uncertainties for the hydrological parameters. The first one
deals with the case where the same uncertainty is considered for all parameters, but the
second one, which is new and more advanced, estimates the uncertainties based on the
magnitudes of the hydrological parameters.

2.3.1. Conventional Method of Uncertainty Estimation (Method 1)

Theoretically, the relationship of the hydrological parameters is expressed by the
following mathematical formula:

TTWS = TSM + TSWE + TCAN + TGW + TSW , (8)

where again TTWS stands for the TWS signal, and TSM, TSWE, TCAN , TSW , and TGW are,
respectively, the soil moisture (SM), snow water equivalent (SWE), canopy water (CAN),
surface water (SW), and groundwater storage (GWS).

Equation (8) is valid in the case of absence of any error associated with in situ measure-
ment networks and other data sources that were being considered. However, this condition
is not satisfied in practice.

Let us rewrite Equation (8) in the following form:

TSM + TSWE + TCAN + TGW + TSW − TTWS = 0. (9)

Let us consider the following matrix for this equation:

Bε = w with E{ε} = 0 and E
{
εεT

}
= σ2

0 Q, (10)

where E{ } stands for statistical expectation, σ2
0 is the a priori variance factor, Q the co-

factor matrix with a dimension of six, B is the coefficient matrix, and ε is a vector of εSM,
εSWE, εCAN , εGW , εSW , and εTWS, which are errors of TSM, TSWE, TCAN , TGW , TSW , and
TTWS, respectively. Furthermore, []T is the transposition operator, w is the misclosure of
the equation, and L is the vector of TSM, TSWE, TCAN , TGW , TSW , and TTWS. The vectors
of Equation (10) are the following:

B =
[
1 1 1 1 1 −1

]
, ε =

[
εSM εSWE εCAN εGW εSWεTWS]T (11)

and
w = −BL, with L =

[
TSM TSWE TCAN TGW TSW TTWS]T . (12)

The minimum norm solution of Equation (10) when Q = I is the following:

ε̂ =



ε̂SM

ε̂SWE

ε̂CAN

ε̂GW

ε̂SW

ε̂TWS

 = BT
(

BBT
)−1

w =
w
6



1
1
1
1
1
1

. (13)

The assumption Q = I and σ̂2
0 = 1 mean to consider one value for uncertainties of

all of the hydrological parameters. ε̂ can be used for adjusting the parameters. The a
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posteriori variance factor of the model (10), which is an overall estimate of variance, is the
following [50]:

σ̂2
0 = ε̂Tε̂ = wT

(
BBT

)−1
w =

wTw
6

. (14)

The square root of σ̂2
0 is a global uncertainty value for the uncertainties of the hydro-

logical parameters for each point.

2.3.2. New Method for Uncertainty Estimation (Method 2)

One problem with the previous method, which was applied by Fatolazadeh et al. [46]
(2022b, 2022c), is related to estimating one value for hydrological parameters with different
magnitudes. For example, soil moisture (SM) can have a stronger signal than the canopy
(CAN) water, estimating one value for their uncertainties is thus not fair. Estimating the
same uncertainty for all signals can lead to a situation where weaker signals, such as canopy,
lose their statistical significance as their errors may surpass the signal itself. In such cases,
the signal is wrongly categorised as noise, when, in fact, it is weak but not entirely noise.
Hence, a more pragmatic approach is necessary for estimating uncertainties that considers
the magnitude of the signals. By doing so, a more realistic assessment of the actual signal
strength can be achieved. Therefore, the magnitudes of the parameters are considered.

Let us consider the following co-factor matrix in Equation (10):

Q = diag
(
σ2

TSM σ2
TSWE σ2

TCAN σ2
TGWS σ2

TSW σ2
TTWS

)
, (15)

where σTSM , σTSWE , σTCAN , σTGWS , σTSW , and σTTWS are the uncertainties of SM, SWE, CAN,
GWS, SW, and TWS, respectively, and diag() means a diagonal matrix.

The a posteriori variance factor, which considers the co-factor matrix (15), is (cf. [50])
the following:

σ̂2
0 = wT

(
BQBT

)−1
w. (16)

So far, we considered w as a vector since we wanted to use matrix algebra, but in our
special case of this study, w contains only the element w. Then, Equation (16) can be further
simplified. From Equations (11), (12), and (15), the following equation is concluded:

σ̂2
0 =

w2

σ2
TSM + σ2

TSWE + σ2
TCAN + σ2

TGWS + σ2
TSW + σ2

TTWS

. (17)

After rearranging Equation (17) we obtain the following:

σ2
TSM + σ2

TSWE + σ2
TCAN + σ2

TGWS + σ2
TSW + σ2

TTWS =
w2

σ̂2
0

. (18)

The left-hand side is the summation of absolute uncertainties; if they are replaced with
the relative uncertainties, Equation (18) will change to the following:

−
σ

2

TSM

(
TSM

)2
+
−
σ

2

TSNW

(
TSWE

)2
+
−
σ

2

TCAN

(
TCAN

)2
+
−
σ

2

TGWS

(
TGWS

)2
+
−
σ

2

TSW

(
TSW

)2
+
−
σ

2

TTWS

(
TTWS

)2
=

w2

σ̂2
0

. (19)

This is a new system of equations with the relative uncertainties as the unknowns.
There are infinite numbers of solutions to this equation. In order to solve this system, we
write it in the following matrix form:

Ax = L, (20)

where

A =
[(

TSM)2 (
TSWE)2 (

TCAN)2 (
TGWS)2 (

TSW)2 (
TTWS)2

]
, (21)
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L’ =
w2

σ̂2
0

, (22)

x =
[
−
σ

2

TSM
−
σ

2

TSWE
−
σ

2

TCAN
−
σ

2

TGWS
−
σ

2

TSW
−
σ

2

TTWS

]T
. (23)

Matrix A has only one row as there is only one condition equation for each point, and
the unknown parameters are variances of the hydrological parameters. Therefore, there
is no redundancy in the created system of equation, and it cannot be solved using the
least-squares method. However, since the unknown parameters of the system are variances
of the hydrological parameters, it is rational to estimate vector x in Equation (19) in such
a way that the quadratic norm xTQ−1x is minimised; in other words, the quadratic form
of variances is minimised with the weight Q−1. Such a solution considering the co-factor
matrix (15) is the following:

x̃ = QAT
(

AQAT
)−1

L′ =



(
TSM)2(
TSWE)2(
TCAN)2(
TGWS)2(
TSW)2(

TTWS)2


w2/σ̂2

0

(TSM)
4
+ (TSWE)

4
+ (TCAN)

4
+ (TGWS)

4
+ (TSW)

4
+ (TTWS)

4 . (24)

The solution (24) can be written in a short general formula:

−
σTi =

∣∣Ti
∣∣|w|

σ̂0

√
∑6

i=1
(
Ti
)4

i = SM, SWE, CAN, GWS, SW and TWS, (25)

which is the estimated relative uncertainty for each hydrological parameter; it is not difficult
to conclude that the absolute uncertainty of each parameter is the following:

σTi =

(
Ti)2|w|

σ̂0

√
∑6

i=1
(
Ti
)4

. (26)

As observed, Equation (26) is the uncertainty of a hydrological parameter, which
depends on the magnitude of the parameter in addition to the misclosure w. In practice, we
consider σ̂0=1, which means that our assumption is that the uncertainties of the parameters
are in balance/statistical agreement with the size of misclosure.

All these uncertainties are used point by point over the land area based on the res-
olution of the GLDAS model, and thereafter, they are transferred to spherical harmonic
domain for each degree and order based on the method presented in Section 2.2.

2.4. Spectral Combination of GRACE and GLDAS TWSA

Here, the main goal is to see if our new method (Method 2) for estimating the un-
certainties of the GLDAS model can improve the GRACE downscaling using spectral
combination, compared to the former method applied by Fatolazadeh et al. [46]. Therefore,
we use the GLDAS models as extra information for downscaling the monthly TWS derived
from the GRACE models to the daily TWS. The beauty of the spectral combination is to
weigh the data based on the quality of their frequencies. This means that prior information
about the uncertainties of the TWS from both GRACE and GLDAS models are required. In
Sections 2.1 and 2.2, the methods for estimating the signal spectra or the SHCs of the TWS
from these models were presented and discussed. Now, assume that the SHCs of the TWS
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of both models and their uncertainties are available. Fatolazadeh et al. [46] proposed the
following estimator for the daily TWS from a GRACE monthly model:

TTWS,G(θ, λ) = ∑∞
n=1 an ∑n

m=−n κnm
−
T

TWS,G

nm Ynm(θ, λ), (27)

where an is the spectral coefficients of the estimator, which should be estimated in such a
way that the mean square error (MSE) of the estimator is minimised; κnm is the SHCs of the
ratio of the daily and monthly variation in the TWS, from external information, such as
hydrological models, which can be derived by the following equation:

κnm = 1
4π

s
Ω κ(θ′, λ′)Ynm(θ′, λ′)dΩ = BnmK and κ(θ′, λ′) =

TTWS,H(θ′ ,λ′)
−
T

TWS,H
(θ′ ,λ′)

, (28)

where
−
T

TWS,H
(θ′, λ′) means the monthly average of the TWS from the hydrological model,

and K is the column vector of ratio of daily to monthly TWS of the hydrological model.
The uncertainties of κnm can be estimated from the error propagation law of random errors
to the vectorised model:

(σ(κnm))
2 = BnmCκBT

nm, (29)

and Cκ is the variance–covariance matrix of the error of κ.
The optimal estimation of an is [46] the following:

ân =
cn

κ2
nσ2

n

(
−
T

TWS,G

n

)
+ σ2

n(κn)c2
n + σ2

n(κn)σ2
n

(
−
T

TWS,G

n

)
+ cn

, (30)

where

σ2
n

(
−
T

TWS,G

n

)
= ∑n

m=−n

(
σTWS,G

nm

)2
, cn = ∑n

m=−n

(
TTWS,G

nm

)2
, σ2

n(κn) = ∑n
m=−n(σ(κnm))

2, (31)

and where TG
i and TH

i are, respectively, the daily TWS estimated from GRACE (unknown

in this case). The daily TWS that is obtained from the hydrological model, and TG and
TH , are their monthly averages. To shorten the mathematical derivations, we considered
TG = TTWS,GRACE and TH = TTWS,GLDAS.

In fact, we used the initial idea presented by Zhong et al. [34] and assumed that the
daily frequency behaviour of GLDAS used to form monthly averages is similar to the daily
frequency of our estimator. In the case that TG

= TH , then the daily TWS of GRACE and
the hydrological model would be identical, which is not the case in practice. In fact, k is a
scale factor (a constant at each point) transforming the monthly TWS to daily values when
the errors in TWS of the hydrological models are available. This means that k changes from
one point to another. Based upon the error propagation law of random errors, the variance
of k is the following:

σ2(κ) =
1

M

(
−
T

TWS,H
)4


∑M−1

j = 1
j 6=

TTWS,H
j


2

σ2
TTWS,H

i
+
(

TTWS,H
i

)2
∑M−1

j = 1
j 6=

σ2
TTWS,H

j

, (32)

where σ2
TTWS,H

i
is the variance of daily TWS from the hydrological models. M stands for the

total number of days in the months.
As observed, the uncertainty of the TWS in the GLDAS model influences our estimator

via the spectral coefficients an. On the other hand, in Method 2 of uncertainty estimation,
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each hydrological parameter possesses its own estimated uncertainty, while our estimator
only utilises the uncertainty of the TWS from the GLDAS and GRACE models, requiring
only the TWS data and their respective uncertainties. It is essential to note that estimating
the uncertainty of the GLDAS TWS solely is not possible without considering the other
hydrological parameters.

The output of our estimator provides downscaled TWS, which facilitates the de-
termination of GWS by subtracting canopy, soil moisture, snow water equivalent, and
surface water signals. In this process, considering the uncertainties of these parameters
would enable a more comprehensive estimation of the uncertainty of groundwater storage.
Nevertheless, for the purposes of this study, we have not accounted for these uncertainties.

3. The Area and Data

In this section, we present the study area, Alberta (Canada), and provide the rationale
behind its selection, considering its unique hydrological and geological characteristics.
Subsequently, we describe the data sources employed in our analysis, namely GRACE,
GLDAS, and piezometric wells.

3.1. The Area

Alberta, located in western Canada, lies between the latitudes 49◦ and 60◦ north and
longitudes 110◦ and 120◦ west. This province encompasses a vast and diverse landscape
characterised by its dominant topography, which comprises the Rocky Mountains to the
west, the boreal forest in the north, and the rolling plains in the south. The hydrology of
Alberta is heavily influenced by the province’s geographical features, including numerous
rivers and lakes. In fact, Alberta’s hydrology is characterised by a complex network of
rivers, lakes, wetlands, and aquifers, shaped by its diverse geography and climate. The
province’s hydrological system plays a crucial role in supporting various ecosystems,
agriculture, industry, and human settlements. Alberta is well known for its extensive river
systems, with major rivers such as the Athabasca, Bow, and North and South Saskatchewan
flowing through the province. These rivers are primarily fed by melting snowpack in the
Rocky Mountains and rainfall. The spring melt from the mountains contributes to seasonal
fluctuations in river flow, providing a crucial source of water for downstream regions and
reservoirs for both human and ecological needs. Alberta is also dotted with numerous lakes
and wetlands, which contribute to the region’s biodiversity and act as important habitats
for various plant and animal species (e.g., Lake Athabasca, Lesser Slave Lake, and Lake
Claire). The hydrology in the region is also influenced by an extensive network of aquifers,
which are essential for providing water to wells, supplying water for agricultural irrigation,
industrial processes, and supporting rural communities.

Alberta’s hydrology faces several challenges, including water scarcity and variability,
especially during drought periods. The province’s semi-arid regions can experience water
stress, impacting agriculture and ecosystems. Climate change further compounds these
challenges, altering precipitation patterns, snowmelt timing, and potentially leading to
more extreme weather events. Therefore, Alberta is not exempt from the challenges of
groundwater depletion. The province has witnessed significant groundwater extraction for
various purposes, such as agriculture, industrial processes, and municipal water supply,
leading to concerns about the sustainability of this resource. Studies have highlighted
the impacts of groundwater depletion on aquifer levels, water quality, and the long-term
availability of this vital resource [51–53].

3.2. GRACE, GLDAS and Piezometric Wells Data

In this study, we utilised the monthly gravity field models of GRACE release-06,
which consist of the spherical harmonic coefficients (SHCs) of the field along with their
uncertainties up to degree and order 60. These models were obtained from the Centre
for Space Research, University of Texas at Austin (UTCSR), for the period ranging from
the 1st to 31st of December 2003 as an example for showing the performance of our
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methods. All the necessary processes, such as the replacement of degrees 1 and 2 (as
described by Cheng et al. [54]), correction of leakage errors, implementation of glacial
isostatic adjustment (GIA), and determination of de-stripping error, have already been
applied to these models; see [55] for details.

The GLDAS hydrological system comprises several hydrological variables that are
effective in analysing the water cycle, such as SM, SWE, CAN, GWS, and TWS anomalies.
Our research utilises the GLDAS products that are based on the catchment land surface
model (LSM) L4 daily 0.25◦ × 0.25◦ (GLDAS_CLSM025_DA1_D 2.2). These products
have higher spatial resolution and temporal resolutions as compared to GRACE (3◦ × 3◦).
It is worth mentioning that this study utilises the only GLDAS LSM that contains the
GWS variable. To align with the GRACE model’s temporal resolution, GLDAS daily
data needs to be averaged out monthly. However, it is important to note that GLDAS
products lack the surface water body variables necessary for accurately reconstructing
water balance equations.

In addition to GRACE and GLDAS data, we used in situ measurements to validate
the results that were obtained following the application of the approach. For instance,
16 active unconfined piezometric wells were used to validate our downscaled GRACE GWS
anomalies. Validation was limited to the province of Alberta, based upon the wells that
were available. Figure 2 shows the locations of the piezometric wells over the topographic
map of Alberta. As the figure shows, there are 16 wells over the area and their distribution
is denser in the south-east and the north-west over flat areas and close to residents.
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4. Numerical Results

In this section, we present the analysis of two key datasets: GRACE TWS and GLDAS
TWS/GWS. Subsequently, we discuss the results of the uncertainty estimation for the
GLDAS TWS using both Method 1 and Method 2. To downscale the GRACE TWS data,
we apply the spectral combination method. Next, we compare the GWS derived from
the subtraction of the hydrological parameters of GLDAS, excluding TWS from the down-
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scaled GRACE TWS. Finally, we evaluate and compare the GWS data obtained from the
piezometric wells in the study area.

4.1. GRACE TWS before Downscaling and GLDAS TWS/GWS

Figure 3a is the map of the TWS storage computed by Equation (1) and the GRACE
gravity model of December 2003. High values (about 65 mm) are seen in the north-east of
the area and low values (about −98 mm) in the south-east over the urban areas. The map
of the TWS is rather smooth and does not show any detail as it shows monthly TWS, which
is an average value of TWS at each point during December 2003. Figure 3b is the map of
uncertainties of the GRACE TWS, generated from errors of the SHCs given in the gravity
model of the month. The uncertainties are computed using Equation (4) and range from
16.7 to 17.3 mm. Although larger uncertainties are seen in the north-west of the area, the
difference between the maximum and minimum of the errors is extremely small and seems
to be insignificant.
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Figure 3. (a) Terrestrial water storage (TWS) and (b) TWS error computed from the GRACE model in
December 2003 over the Alberta province.

Figure 4 illustrates the maps of monthly GLDAS TWS in December 2003. The range of
values was between about 293 mm and −182 mm. In fact, all daily values of TWS during
this month are averaged to generate this map. Generally, comparison of this figure with
the GRACE TWS map (Figure 3a) shows almost similar spatial patterns with high and low
values over the north-east and south-east areas, but the maximum values are not seen in
the same places. Since the GLDAS TWS has a higher spatial resolution compared to the
GRACE, more details are observed in the map. However, we should state that our goal for
presenting Figure 4 is to give a general idea about the TWS regime in comparison with the
GRACE model, presented in Figure 3a.

Because the daily TWS of the GLDAS model (and not the monthly ones) are used in
the calculations for downscaling the GRACE TWS model to daily products, producing
these daily TWSs is part of this process. However, as December has 31 days, providing 31
maps for the daily TWS of the GLDAS is impractical for this paper. Therefore, we have
chosen to display only one day (15 December 2003) for illustrative purposes. Figure 5a,b
are the maps of TWS anomalies (TWSA) and GWS anomalies (GWSA) of the GLDAS model
in Alberta on 15 December 2003. The maximum and minimum variations in GLDAS TWS
in this day are about +8 mm and −9 mm, respectively.

It must be noted that the GWSA from GLDAS model are not included in the process
of spectral combination. We will see in the following sub-section that by proposing two
methods of GLDAS errors, two different downscaled results of GRACE-based TWS/GWS
will be extracted (reference to the provided flowchart in Figure 1). Therefore, showing the
variations in GWS derived from GLDAS is only to understand which downscaled GRACE
GWS are similar to the GWS derived from GLDAS.
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The misclosures derived from Equation (12) play a significant role for estimation
of quality of the hydrological parameters including TWSA. In fact, our two proposed
methods of GLDAS TWSA error estimation are based on two different strategies from these
misclosures. Figure 6 is the map of these misclosures in Alberta on 15 December 2003. We
only interpret this map and the rest of misclosure maps for other days of the month can be
explained similarly.

According to Equation (12), an ideal case would have c = 0, indicating that the sum-
mation of all hydrological parameters is equal to the TWS. Therefore, areas on the map in
Figure 6 with values close to zero suggest good quality parameters with smaller estimated
errors. However, large negative values north-east of Alberta indicate that the value of TWS
is greater than the sum of the other hydrological parameters. Hence, it is reasonable to
estimate larger errors for parameters in this region.
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Figure 6. Map of misclosures of the GLDAS TWSA in Alberta on 15 December 2003.

4.2. GLDAS TWS Error Estimation Proposed by Two Theories

The spectral combination method can be seen as a generalised form of spectral averag-
ing, where the uncertainties of the GRACE and GLDAS signals’ spectra play a vital role.
In this process, certain frequencies may be upweighted or downweighted based on their
respective uncertainties. For instance, if the signal quality at a particular frequency in the
GLDAS model is deemed poor, the estimator will weigh it down and take more signal from
the GRACE model and vice versa. In this study, the mathematical formulas for computing
the errors of the GRACE (Equation (4)) and GLDAS TWS models (Section 2.3) have been
presented. The uncertainties of the GRACE TWS are mapped in Figure 3b, while those of
the GLDAS model on the 15th of December are presented in Figure 7. Precisely, Figure 7a
is the map of the estimated uncertainties using Method 1 in Alberta on the selected day, (15
December 2003) and Figure 7b is a similar map using Method 2.
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It is interesting to note that the map depicted in Figure 7b bears a stronger resemblance
to the map of misclosures presented in Figure 6 rather than in Figure 7a. The map of
misclosures highlights the presence of significantly negative values in the north-east region,
indicating a higher degree of uncertainty regarding the hydrological parameters in that area.
However, Figure 7a indicates that there are large uncertainties in the south-east region, with
maximum values reaching about 44 mm. However, as shown in Figure 7b, this maximum
value is only approximately 5 mm. This leads to the conclusion that Method 2, which is a
more sophisticated and complex technique for estimating uncertainties in GLDAS models,
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is superior to Method 1. Method 2 considers the size of the hydrological parameters and
distributes the misclosures such that larger parameters receive higher uncertainties. This
approach is reasonable because assigning the same level of uncertainty to soil moisture
(which has a strong signal and contribution to TWS) and canopy water (which has a weak
signal and contribution to TWS) is not appropriate. In contrast, Method 1 estimates only
the uncertainty value for all hydrological parameters, including the TWSA, at each point. It
is also expected that by using Method 2 to estimate uncertainties, the spectral downscaling
of the GRACE TWSA based on the GLDAS TWSA will yield more realistic results.

The downscaling method uses a form of spectral combination that requires transform-
ing the TWSA of GRACE and GLDAS, along with their respective errors, to the spectral
domain. Figure 8 displays the signal and error spectra, along with degree variances, of the
TWSA derived from GRACE in December and those of GLDAS on the 15th of the month.
It is important to note that our interpretation of this plot is specific to this day; however,
the principle remains the same for all days. Method 1 delivers larger uncertainties of the
GLDAS TWSA than Method 2, except for low degrees. In the spectral combination, our
estimator gives higher weights to the GRACE TWSA than to those of the GLDAS. The
GLDAS TWSA role is more pronounced in higher degrees.
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4.3. Results of Spectral Combination to Downscale GRACE TWS/GWS

Without incorporating supplementary data containing higher spatial and temporal
frequencies than those present in the GRACE models, it is not feasible to downscale them.
Without such data, mathematical and statistical methods would only act as interpolators
without including significant high-frequency signals. In this study, we employed GRACE
models and their uncertainties in conjunction with simulated hydrological products from
GLDAS to downscale GRACE-based TWS and GWS changes. The uncertainty of GLDAS
TWS was derived in the spatial domain and later, by performing a spherical harmonic
analysis using Equations (14) and (26), they are transferred to the spectral domain. Later,
the spectra of the daily GLDAS TWSAs and their respective errors in conjunction with
GRACE TWS were used in the estimator (Equation (27)) for downscaling TWSA. In this
section, we select only 15 December 2003 for illustrating the downscaled TWSA and GWSA.

Figure 9 illustrates the fluctuations in the spectral coefficient (an) on December 15,
2003, with both Method 1 and Method 2 employed to estimate the downscaled GRACE
TWSA. The range of an is between 0 and 1, and because it is multiplied to the spectra of
the GRACE TWSA, it can either amplify or reduce the power of the signals at different
frequencies. The downweighting effect of this spectral coefficient differs between the two
methods, and in fact, they act in opposite directions.
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Figure 10 presents a graph depicting the changes in the mean squared error (MSE)
of the estimator (Equation (27)) as the degree of combination increases. According to the
least-squares principle, it is expected that the MSE will decrease with increasing data, in
this case, the signal frequencies. The plot in Figure 10 shows a decreasing trend, except
for very low degrees. This can be attributed to the limited amount of data over the oceans
in the GLDAS model. Nevertheless, the estimator displays an RMS of approximately
10 mm when considered up to degree 360. As expected, our new method for uncertainty
estimation, Method 2, leads to a smaller RMS for the spectral downscaling estimator than
Method 1. The MSE is smaller for degrees higher than degree 300 when using Method 1 for
downscaling, but this result was anticipated, considering that the estimated uncertainty
spectra of the TWS exhibit greater independence when Method 1 is employed, in contrast
to the case when Method 2 is used. The incorporation of the magnitude of hydrological
parameters in Method 2 for estimating uncertainties restricts the uncertainty spectra from
decaying rapidly.
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Figure 11a shows the downscaled daily TWSA of the GRACE model, when Method 1
is applied to estimate the uncertainties of the GLDAS daily models; Figure 11b depicts a
similar map but based on the new strategy, i.e., Method 2, presented in this research. These
figures show how different the result will be when the errors of the GLDAS models are
estimated in different ways. When Method 1 is applied, the high TWSAs are seen mainly
on the western part of the area (with maximum and minimum values of about 6 mm and
−16 mm, respectively), but when Method 2 is used they are mainly in the north-west part
(with the maximum and minimum amounts of 4 mm and 1 mm, respectively).
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Figure 11. Daily downscaled TWSA of GRACE using (a) Method 1 and (b) Method 2, and downscaled
GWSA of GRACE using (c) Method 1 and (d) Method 2 on 15 December 2003 over Alberta.

Figure 11c,d are the maps of the downscaled GWSA of GRACE based on our spectral
downscaling method in which Method 1 and Method 2 are, respectively, used for uncer-
tainty estimation of the GLDAS TWSA up to degree and order 60. When Method 1 is used,
the GWSA ranges from about −17 mm to 10 mm, but from about −4 mm to 13 mm when
Method 2 is used although the maps are similar but the values of GWSA are different. It
can be seen that the GWSA presented in Figure 11d, Method 2, are more similar to the
GLDAS GWSA (Figure 5b). It could be expected that the uncertainties of the GLDAS TWSA
estimated by Method 2 are more realistic when compared to those in Method 1.

4.4. Validation with Piezometric Wells

In order to show the performance of our methods on all days of the month and the
external evaluation of our results, the downscaled GWSA of GRACE are compared with
those 16 piezometric wells in Alberta. Here, the GWSA of these wells are considered as
the reference information and the estimated downscaled GRACE GWSA are compared
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to them. Table 1 summarises the statistics of the differences between the use of each one
of our methods in GRACE GWS downscaling and these wells in the study areas for the
average of 31 days of December 2003.

Table 1. Statistical metrics between the downscaled GRACE GWSA computed by the two proposed
uncertainty methods and piezometric wells in Alberta (in the unit of mm in whole metrics except
for correlation).

Method 1 Method 2

No. Latitude Longitude Max Mean Min STD RMS Corr Max Mean Min STD RMS Corr

1 56.1892 −117.999 4.0 0.7 −3.8 2.5 2.5 0.84 5.5 3.2 −1.2 2.1 3.8 0.89

2 57.5193 −111.404 12.9 6.7 0.7 3.8 7.7 0.11 1.2 −4.1 −8.2 3.2 5.2 0.23

3 55.2935 −118.461 2.9 −1.1 −4.3 2.4 2.6 0.86 0.9 −3.3 −5.7 2.1 3.9 0.84

4 54.5759 −110.811 −5.3 −7.7 −11.6 1.8 7.9 0.01 5.5 3.0 0.7 1.5 3.3 0.19

5 52.6254 −114.053 −3.1 −5.1 −7.9 1.3 5.2 0.46 3.8 2.0 0.6 0.9 2.2 0.39

6 53.5689 −113.828 −3.8 −6.2 −8.1 1.4 6.3 0.90 3.7 2.5 0.5 1.1 2.8 0.93

7 52.7257 −110.848 14.1 11.4 9.6 1.3 11.5 0.15 0.3 −1.8 −2.8 0.9 2.0 0.08

8 51.1073 −115.366 5.3 3.1 1.1 1.2 3.3 0.26 0.8 −1.1 −3.0 0.9 1.5 0.45

9 50.1354 −112.494 8.5 6.7 5.3 0.7 6.7 0.54 −1.1 −1.8 −2.4 0.3 1.9 0.48

10 51.5718 −110.474 14.7 13.2 11.9 0.8 13.3 0.20 −0.5 −1.4 −2.0 0.4 1.4 0.18

11 49.3784 −112.203 −8.1 −11.3 −14.9 2.1 11.4 0.18 3.9 1.2 −2.4 2.0 2.4 0.16

12 49.2376 −111.351 −9.6 −12.4 −16.5 2.1 12.5 0.29 3.6 1.3 −1.9 1.9 2.3 0.32

13 58.9796 −118.915 5.5 3.5 −3.0 2.8 4.4 0.69 6.8 4.3 −2.4 2.9 5.2 0.77

14 58.2244 −116.018 2.5 −1.2 −8.3 3.5 3.6 0.56 6.4 3.7 −3.0 3.1 4.8 0.63

15 55.7176 −117.723 4.8 3.3 −0.4 1.6 3.7 0.74 2.8 0.2 −3.4 1.9 1.9 0.79

16 54.0359 −114.397 −2.7 −4.3 −6.6 1,0 4.4 0.17 4.9 3.3 0.7 1.1 3.5 0.26

The well number and its geographic coordinates are given in the first three columns,
see Figure 2. It should be stated that the compared wells are at a specific position are
scattered and the downscaled GWSAs are in grid forms with much lower resolution. We
had to linearly interpolate the GRACE GWSA to find the corresponding values. Table 1
shows that the downscaling based on Method 2 leads to a smaller standard deviation
(STD) and root mean squares (RMS) of differences between the downscaled GRACE GWSA
and those of wells in most of the wells (about 13 wells out of 16 wells). Moreover, the
Pearson correlation extracted from Method 2 showed better consistency with wells when
compared to Method 1 (11 wells in Method 2 had higher correlation compared to wells in
Method 1). This means that the spectral downscaling based on the uncertainty estimation
for the GLDAS model using Method 2 delivers closer GRACE GWSA to those of the
piezometric wells.

In order to show the behaviour of the time series of the changes in a meaningful way,
we have normalised the GWSA of wells and the interpolated downscaled one by subtracting
their respective mean values and dividing the result to their standard deviations. In other
words, we have standardised them for better visualisation. Some of these time series have
been shown in Figure 12. Generally, the estimated GRACE GWSA have good agreements
with those of the wells. Figure 12a–f are, respectively, the time series of variation in GWSA
at wells number 1, 3, 6, 13, 14, and 15. We observe the significance of a proper uncertainty
estimation strategy for the GLDAS hydrological parameters in spectral downscaling of
GRACE models for estimating GWSA. As all these time series show, the variations in the
GWSA where Method 2 was used for uncertainty estimation are closer to those of the wells
than Method 1.
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5. Discussion

The downscaling of GRACE data based on hydrological information has been the
subject of various research studies. One approach proposed by Fatolazadeh et al. [8] is
the application of spectral combination theory, which has been successfully used for the
spatial downscaling of GRACE data over the Canadian prairies. This method was further
developed to enable spatial and temporal downscaling of GRACE data, allowing for the
estimation of daily TWSA and GWSA using monthly GRACE TWSA data in the spectral
domain; see [9].

An important aspect of our methods, referred to as spectral downscaling in this study,
is the estimation of uncertainties. The quality of hydrological parameters, particularly
TWSA, plays a significant role in weighting GRACE and GLDAS TWSA data. However,
this issue has not been adequately addressed in most studies on downscaling GRACE data.
Merging data of different types with varying frequency content is problematic, and merging
and combining data based on least-squares approaches or machine learning algorithms
would only be meaningful if the differences between the merged data types were purely
random in nature. It is crucial to consider the type of signal being input to the method and
what is being obtained as a result. Here, we can refer to the work by Arshad et al. [35],
where they downscale GRACE-based GWS variations using geographically weighted
regression combined with results from a calibrated soil and water assessment tool (SWAT)
model. While their results are promising, like other downscaling methods, the difference
here is that we have considered the frequency contents of the signals. Another study by
Ali et al. [36] used various machine learning techniques to downscale GRACE TWS and
GWS datasets from 1◦ to 0.25◦ resolution. They obtained the best results with the extreme
gradient boosting model. Ali et al. [37] also conducted a related study on this subject. While
these methods are largely stochastic, ours is more deterministic or semi-stochastic. It is
important to note that uncertainty estimation was not the primary focus in these studies,
and the uncertainties of machine learning results were estimated by comparing them with
a percentage of data not used in the training step. For a specific focus on uncertainty in
GRACE-based GWS, Li et al. [56] conducted a study, primarily addressing the uncertainty
of the GRACE models rather than the hydrological parameters.
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In spectral downscaling, different signals at the same frequencies are combined consid-
ering their uncertainties. Therefore, realistic estimation of these uncertainties is essential. In
this study, we propose a new method to address this goal and apply it to spectral downscal-
ing of GRACE data. However, this method can also be applied to estimate the uncertainties
of the GLDAS hydrological parameters for other purposes.

Finally, the results of correlation between GWSA derived from GRACE and wells
proved that the quality of the results in the northern part of Alberta is better than the
southern part. Some potential factors could explain this. First, the hydrogeological char-
acteristics in the northern part of Alberta might be more homogeneous or exhibit more
consistent groundwater behaviour compared to the southern region, resulting in a stronger
correlation between the GRACE GWSA and well measurements. Second, groundwater
extraction practices and patterns of water usage can differ between the north and south
of Alberta, as there are fewer water-intensive activities or less groundwater extraction in
the northern region. It may result in less interference with natural groundwater storage
variations, and this reduced human influence can lead to a stronger correlation between
satellite data and well measurements in the north. Finally, the northern part of Alberta may
experience climate conditions that favour more reliable and consistent rainfall or snowmelt,
resulting in a more pronounced correlation between GRACE satellite-derived GWSA and
in situ well data.

One significant advantage of our downscaling method, when compared to other
studies and methods, is that it operates in the spectral domain, allowing us to examine the
frequency content of the TWS. In many other studies, errors in the hydrological models are
not considered, and downscaling is performed in the spatial domain without considering
the frequency characteristics of the hydrological and GRACE TWS signals.

Our uncertainty estimation methods can be enhanced by calibrating the estimated
uncertainties using reliable sources. In our study, we made an assumption to create
condition models, where the summation of soil moisture, snow water equivalent, canopy,
and surface water equals terrestrial water storage (TWS). This assumption is a valid one
in hydrology. However, when the summation is close to the TWS value, the misclosure
approaches zero, which may lead to unrealistically small uncertainties, potentially falling
below the sensor’s precision level in certain areas.

Further improvements to our method could be achieved by developing an integral
estimator. However, since hydrological data is unavailable over oceans, we currently set
the grid data over these regions to zero when estimating the signal and uncertainty spectral
of the TWS. Unfortunately, the presence of zeroes in the spherical harmonic analysis, which
is a global averaging process, weakens the signal. A potential improvement lies in creating
a method for locally estimating the spectral properties of the hydrological parameters and
their uncertainties. Certainly, such a precise theory and method, combined with future
satellite gravity missions, which will provide high spatial and temporal resolution and
precision, will significantly advance our understanding of the hydrological nature of the
Earth’s system.

6. Conclusions

This study introduces a novel method for estimating the uncertainties in hydrological
parameters within the GLDAS model. This method considers the magnitude of parameters
to ensure a more accurate assessment of their quality. To evaluate these uncertainties,
they were utilised in the spectral combination-based downscaling of GRACE products.
The spectral combination method is highly sensitive to the uncertainties associated with
merged data. Our comparative analysis revealed that spectral downscaling of GRACE data
yielded superior results when employing this new method, method 2, for estimating the
uncertainties within the GLDAS hydrological model. The downscaled groundwater storage
anomalies and measurements from 16 piezometric wells in Alberta during December
2003 exhibited smaller standard deviations and root mean square errors when using this
approach when compared with the older method, referred to as method 1 in our study. It is
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worth noting that the optimal uncertainties derived from our study can be readily applied
to the spectral downscaling of GRACE data. Moreover, they can be incorporated into other
downscaling techniques that require an accurate estimation of the uncertainties associated
with the GLDAS parameters.

The findings presented in this paper are expected to make significant contributions to
the advancement of downscaling methodologies and offer valuable insights for enhancing
the accuracy of hydrological models. The proposed method provides a more robust
framework for estimating uncertainties in GLDAS parameters, consequently enhancing
the overall quality of downscaled GRACE data. Based on our comprehensive study, which
revealed noteworthy uncertainties in daily GLDAS TWS data and monthly GRACE TWS
data at a global scale, we recommend that policymakers allocate resources to improve data
collection and measurement techniques for these variables. Furthermore, we advocate for
efforts to transfer the GLDAS TWS data and its associated uncertainties into the spectral
domain. This process will facilitate further analysis and application of our downscaling
estimator, ultimately leading to improved accuracy in water resource management. Given
the dynamic nature of hydrological conditions in various regions, our research findings
can serve as essential inputs to inform decision-making processes. By incorporating the
proposed downscaling methodology and addressing data uncertainties, policymakers can
better respond to challenges posed by changing hydrological conditions and implement
more effective water resource management strategies.
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