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Abstract: The building damage caused by natural disasters seriously threatens human security.
Applying deep learning algorithms to identify collapsed buildings from remote sensing images is
crucial for rapid post-disaster emergency response. However, the diversity of buildings, limited
training dataset size, and lack of ground-truth samples after sudden disasters can significantly
reduce the generalization of a pre-trained model for building damage identification when applied
directly to non-preset locations. To address this challenge, a self-incremental learning framework
(i.e., SELF) is proposed in this paper, which can quickly improve the generalization ability of the
pre-trained model in disaster areas by self-training an incremental model using automatically selected
samples from post-disaster images. The effectiveness of the proposed method is verified on the
2010 Yushu earthquake, 2023 Turkey earthquake, and other disaster types. The experimental results
demonstrate that our approach outperforms state-of-the-art methods in terms of collapsed building
identification, with an average increase of more than 6.4% in the Kappa coefficient. Furthermore,
the entire process of the self-incremental learning method, including sample selection, incremental
learning, and collapsed building identification, can be completed within 6 h after obtaining the
post-disaster images. Therefore, the proposed method is effective for emergency response to natural
disasters, which can quickly improve the application effect of the deep learning model to provide
more accurate building damage results.

Keywords: building damage; remote sensing; self-incremental learning; sample selection; disaster
emergency response

1. Introduction

The frequent occurrence of extreme natural disasters seriously threatens the safety of
human life. Timely access to the distribution information of collapsed buildings is crucial to
emergency response and post-disaster rescue efforts [1]. Currently, remote sensing technol-
ogy provides an efficient solution for the accurate and rapid extraction of building damage.
As a result, post-disaster remote sensing images with high spatial resolution have become
indispensable basic data for identifying disaster damage in numerous studies [2,3]. Among
these, optical imagery stands out as a common and accessible source of remote sensing
data [3], with a wide variety of sensors facilitating easy data acquisition. Some studies have
also utilized radar equipment mounted on drones to scan post-disaster buildings [4], which
remain unaffected by post-disaster weather conditions and can be combined with optical
images for comprehensive analysis [5]. Moreover, LiDAR data proves useful in detecting
height changes in buildings, enabling precise extraction of collapsed parts [2].

The vast diversity of buildings in different regions presents a significant challenge in
accurately identifying buildings and assessing their damage using a pre-trained model [6].
Currently, deep learning technology, particularly convolutional neural networks, has
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achieved state-of-the-art results in the task of building damage extraction [3]. Most of
the research in this area focuses on proposing or improving a model for change detec-
tion to extract building damage information from paired bitemporal images of pre- and
post-disaster [3,7–9]. However, in the context of emergency response scenarios, relying
on pre-disaster imagery can significantly impact both the effectiveness and the efficiency
of damage assessment. Therefore, an alternative approach worth considering is that the
distribution maps of buildings extracted from pre-disaster images should be prepared
before any disaster occurs.

The building distribution maps can filter out complex background categories and
provide key information, including building location and shape, which is obviously helpful
for building damage identification. Currently, there are only a few studies that exclusively
utilize pre-disaster building distribution maps in combination with post-disaster imagery,
despite the availability of building footprint or rooftop data that covers the vast majority of
the world [10]. Notable examples include Open Street Map (http://www.openstreetmap.
org/, accessed on 13 October 2022) and Bing maps of Microsoft (https://github.com/
microsoft/GlobalMLBuildingFootprints, accessed on 21 February 2023) open-access data.
Admittedly, there is a real problem that these building distribution data cannot guarantee a
high update frequency at present, resulting in long time intervals between the availability
of pre-disaster building distribution maps and post-disaster images, potentially spanning
several years.

In addition, it is still difficult to accurately identify buildings from post-disaster images
because the training data may come from different sensors or from different geographical
regions [11]. Therefore, simply applying a pre-trained model to post-disaster scenarios can
lead to a considerable drop in generalization performance and poor recognition results [9].

Transfer learning is a common solution to adapt the original model for better perfor-
mance on the target domain. Data-based transfer learning has been shown to improve the
model’s application by utilizing target domain data [12,13]. Hu et al. [14] demonstrated that
using post-disaster samples effectively enhances the identification accuracy of damaged
buildings. On the other hand, incremental learning is a model-based transfer learning
approach that improves generalization in specific scenarios by adding new base learn-
ers [15,16]. Ge et al. [6] confirmed that incremental learning significantly saves transfer
time during emergency response, as it focuses on training only on new data containing
post-disaster information. Therefore, learning sufficient post-disaster samples incremen-
tally can effectively and rapidly improve the model’s performance. In this process, the
key technology lies in selecting high-quality post-disaster samples with the assistance of
building distribution maps.

To enhance both the accuracy and efficiency of building damage extraction during
disaster emergency response, we propose the Self-incremental Learning Framework (SELF).
This framework utilizes post-disaster samples selected from optical remote sensing images
to rapidly improve the identification accuracy of collapsed buildings. As illustrated in
Figure 1, the preparation involves building distribution maps and a building recognition
model before any disaster occurs. Subsequently, after the disaster event, essential samples
of disaster imagery are automatically selected based on the knowledge of building distri-
bution and predicted probability maps generated by the pre-trained model. The model’s
generalization ability is then swiftly improved through self-supervised training using these
selected samples in an incremental learning manner. This process enables us to obtain
reliable building damage results efficiently and effectively.

http://www.openstreetmap.org/
http://www.openstreetmap.org/
https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/GlobalMLBuildingFootprints


Remote Sens. 2023, 15, 3909 3 of 26Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 28 
 

 

 
Figure 1. The SELF framework. The dotted line defines before and after a disaster. 

This paper is organized as follows. The literature review related to this study is sum-
marized in Section 2. The data and methods are introduced in Sections 3 and 4, respec-
tively. The experimental results are shown in Section 5, and a discussion is conducted in 
Section 6. Some conclusions are drawn in Section 7. 

2. Related Work 
2.1. Building Damage Identification Methods 

Most studies have focused on using the paired images, i.e., pre- and post-disaster 
images, to identify building damage [8,17]. Durnov [18] proposed a change detection 
method utilizing a Siamese structure that achieved top-ranking results in a competition 
focused on building damage identification. Subsequently, several similar change detec-
tion models were introduced [3,7], with a primary focus on optimizing the model struc-
ture. However, these methods necessitate the use of bitemporal images for damage detec-
tion, thus limiting the efficiency of disaster emergency response due to the reliance on pre-
disaster images. Additionally, methods that combine multi-source images with various 
auxiliary data have been employed to extract high-precision disaster results [5]. For in-
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only post-disaster high-resolution images. Munsif et al. [22] achieved a lightweight CNN 
model, occupying just 3 MB, which can be deployed on Unmanned Aerial Vehicles (UAVs) 
with limited hardware resources, by utilizing several data augmentation techniques to 
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introduced a deep model based on ground-level post-disaster images and demonstrated 
that using semantic segmentation results as the foreground positively impacted building 
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ground is relatively low [24]. Solely using post-disaster information often falls short in 
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Figure 1. The SELF framework. The dotted line defines before and after a disaster.

This paper is organized as follows. The literature review related to this study is
summarized in Section 2. The data and methods are introduced in Sections 3 and 4,
respectively. The experimental results are shown in Section 5, and a discussion is conducted
in Section 6. Some conclusions are drawn in Section 7.

2. Related Work
2.1. Building Damage Identification Methods

Most studies have focused on using the paired images, i.e., pre- and post-disaster
images, to identify building damage [8,17]. Durnov [18] proposed a change detection
method utilizing a Siamese structure that achieved top-ranking results in a competition
focused on building damage identification. Subsequently, several similar change detection
models were introduced [3,7], with a primary focus on optimizing the model structure.
However, these methods necessitate the use of bitemporal images for damage detection,
thus limiting the efficiency of disaster emergency response due to the reliance on pre-
disaster images. Additionally, methods that combine multi-source images with various
auxiliary data have been employed to extract high-precision disaster results [5]. For
instance, Wang et al. [2] employed multiple types of data, including LiDAR and optical
images, to extract the collapsed areas through the changes of the information of building
height and corner points. However, the reality is that many types of specific data may be
difficult to obtain in the short time after a disaster.

Methods that solely rely on post-disaster images aim to efficiently identify dam-
aged buildings [19,20]. Based on the morphological and spectral characteristics of post-
earthquake buildings, Ma et al. [21] proposed a method for depicting collapsed buildings
using only post-disaster high-resolution images. Munsif et al. [22] achieved a lightweight
CNN model, occupying just 3 MB, which can be deployed on Unmanned Aerial Vehicles
(UAVs) with limited hardware resources, by utilizing several data augmentation techniques
to enhance the efficiency and accuracy of multi-hazard damage identification. Nia et al. [23]
introduced a deep model based on ground-level post-disaster images and demonstrated
that using semantic segmentation results as the foreground positively impacted building
damage assessment. Miura et al. [20] developed a collapsed building identification method
using a CNN model and post-disaster aerial images, and achieved a damage distribution
that was basically consistent with the inventories in earthquakes. However, existing stud-
ies have shown that the separability between collapsed buildings and the background is
relatively low [24]. Solely using post-disaster information often falls short in accurately
locating the damaged areas.

It is not easy to meet both the accuracy and efficiency requirements under emergency
conditions by relying on bitemporal images or only post-disaster images. Therefore, com-
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bining key pre-disaster knowledge (such as pre-disaster building distribution maps, a
pre-trained model for buildings identification, and so on) with post-disaster images to
identify damaged buildings quickly and accurately is a solution that is being developed
in some studies [25]. For example, Galanis et al. [26] introduced the DamageMap model
for wildfire disasters, which leverages pre-disaster building segmentation results and post-
disaster aerial or satellite imagery for a classification task to determine whether buildings
are damaged. At present, there are few studies that make full use of pre-disaster building
distribution maps. Even though the building distribution data may not strictly correspond
to each building in the post-disaster images, it can still provide much effective information
about the location and shape of the buildings. Therefore, it is a promising way to devise
methods to better apply the pre-disaster information in the future disaster response tasks.

2.2. Transfer Learning Methods

When a pre-trained model is directly applied to a target domain with significantly
different features from the training data, there can be a considerable drop in accuracy.
Transfer learning is used to address this practical problem. Current transfer learning
methods can be categorized into the following three categories: (1) Data-based transfer
learning [27] usually uses some samples of the target domain to enhance the model’s
performance in target applications. An example is the self-training method [28], which
improves the model’s generalization ability by automatically generating pseudo-labels.
(2) Feature-based transfer learning [29,30] transforms the data of two domains into the
same feature space, reducing the distance between the features of the source domain and
the target domain, such as domain adversarial networks [31]. (3) Model-based transfer
learning [32] usually adds new layers or integrates new base learners to optimize the
original model, such as incremental learning [16].

Transfer learning in building damage extraction tasks aims to improve the performance
of models in post-disaster scenes. However, these methods encounter challenges in practical
applications, such as the scarcity of post-disaster samples, variations in image styles, and
the unique features of buildings themselves. Hu et al. [14] conducted a comparison of
three transfer learning methods for post-disaster building recognition and discovered that
utilizing samples from disaster areas can significantly boost the recognition accuracy for
various types of disasters. On the other hand, Lin et al. [33] proposed a novel method to
filter historical data relevant to the target task from earthquake cases, aiming to improve
the reliability of classification results.

In addition to transfer learning, data augmentation is often used to improve the gener-
alization performance of the models [16,24], including applying various transformations to
existing images, such as rotations, flips, or zooms, so that the model becomes more robust.
Data synthesis is another valuable strategy that can address data scarcity by combining
real data with computer simulations or generative models [34]. In fact, these methods
can be combined with transfer learning to provide more precise and timely disaster infor-
mation in emergency missions. Ge et al. [6] employed the generative network to transfer
the style of remote sensing images under an incremental learning framework, and used
data augmentation strategy to train the models, which improved the accuracy of building
damage recognition.

2.3. Contributions of This Research

However, there is insufficient exploration on how to obtain and utilize important
samples from post-disaster images efficiently and effectively. The aim of this paper is to
fill this gap. The main contributions of this paper are twofold. (1) A knowledge-guided
sample selection method is present, which uses a pre-trained model and pre-disaster
building distribution maps to assist in sample selection from post-disaster images. (2) A
self-incremental learning method is proposed by assembling self-training and incremental
learning, which uses selected samples to realize the growth of the original model to quickly
improve the accuracy of building damage extraction.
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3. Data
3.1. Training Data: DREAM-B+

The DREAM-B+ dataset [6,16] is a large-scale building dataset comprising sampled
remote sensing images and corresponding labels from over 100 cities worldwide. The
dataset consists of 18,876 image tiles, each captured with RGB bands and having a high
spatial resolution of either 0.5 m or 0.3 m. Each image tile has a size of 1024 × 1024 pixels.
There are two categories in the ground-truth: building and background. The location of the
images in this dataset is shown in Figure 2, and some examples are showcased in Figure 3.
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The DREAM-B+ dataset is split into two sets for training and validation purposes.
Specifically, 90% of the dataset is allocated for training a building recognition model, which
serves as the prepared model in stage 1 before any disaster occurs. The remaining 10% of
the dataset is used as a validation set to assess and validate the training process.

3.2. Test Data

The Yushu earthquake (Mw 6.9) occurred on April 14, 2010, with the epicenter very
close to the urban area. This earthquake eventually resulted in about 14,700 deaths and
many densely distributed houses were destroyed [35]. As shown in Figure 4a, the hardest-
hit urban region of Yushu is used as an emergent disaster event to test both the effectiveness
and efficiency of the proposed method. We obtained the post-disaster aerial images of this
area with a resolution of 0.5 m. Due to the lack of available satellite images before the
event, the building distribution map was visually interpreted from the pre-disaster images
captured in 2004, and cross-validated by multiple domain experts in order to minimize the
uncertainty of the map.

1 
 

 
Figure 4. Location map and main data of the test areas. Yushu test area (a), and Turkey test area (b).

The Turkey earthquake (Mw 7.8) occurred on 6 February 2023, with the epicenter at
37.15◦N, 36.95◦E. This earthquake killed more than 40,000 people in Turkey and Syria. We
obtained the post-disaster remote sensing images captured by Worldview-3, which have a
spatial resolution of 0.3 m. As shown in Figure 4b, the Islahiye town serves as the second
test area, which is close to the epicenter and has been severely affected. The pre-disaster
building distribution map are from Microsoft’s products [36], and the ground-truth of
collapsed buildings are obtained by visual interpretation. The data details of Yushu and
Turkey test areas are shown in Table 1.

Table 1. Details of the test data.

Cases Data Source Bands Acquisition Time Resolution

Yushu
Post-disaster image Aerial platform

RGB
April 2010 0.5 m

Pre-disaster image Quickbird
6 November 2004

0.6 m
Pre-disaster building distribution map Visual interpretation / 0.5 m

Turkey Post-disaster image Worldview-3 RGB February 2023
0.3 mPre-disaster building distribution map Microsoft / 2023
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4. Methodology
4.1. Overview

The purpose of the proposed self-incremental learning framework (SELF) aims to
rapidly enhance the identification accuracy of a pre-trained model by selecting and utilizing
new samples from post-disaster images. The specific application process of the framework
is shown in Figure 5. First, we need to prepare both the building distribution map and a
pre-trained model (i.e., stage 1 model) for building identification. When the post-disaster
images are available, the stage 1 model is then used to produce the probability maps of
buildings on the post-disaster images. To improve the accuracy of identifying post-disaster
buildings, the framework employs the knowledge-guided sample selection (K-SS) method
to select new samples from the post-disaster images. The new samples then incrementally
learned a new model, i.e., the stage 2 model, through an end-to-end gradient boosting
algorithm (i.e., EGB-A). The stage 2 model is specifically designed to identify buildings from
post-disaster images. Finally, pixel-level collapsed buildings are identified by comparing
both pre- and post-disaster building maps.
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4.2. Knowledge-Guided Sample Selection Method

As presented in Table 2, the pixels in both the pre-disaster building distribution maps
and the post-disaster images are classified into two categories: building (positive class) and
background (negative class). The post-disaster category “building” consists of buildings
that have not collapsed, other buildings that consist of new buildings that only appear in
post-disaster images, and some buildings that were missed in the building distribution
maps. The post-disaster category “background” refers to pixels of both collapsed buildings
and the pre-disaster background.
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Table 2. Categories of pre- and post-disaster data.

Data Category Class Label Detailed Category

Pre-disaster
Building Positive

/Background Negative

Post-disaster
Building Positive

Not collapsed building
Other building

Background Negative Collapsed building
Original background

The location and shape information of each building provided by the pre-disaster
building distribution maps should be fully utilized in the process of sample selection.
The first core idea of the K-SS sample selection method is to analyze each building object
individually. In existing studies, the entropy-based sample selection methods often screen
an entire image or region, such as selecting the top 10% of the image with the highest
probability value as positive samples. We believe that conducting a detailed analysis for
each individual building can better consider the capabilities of the model for buildings
with various features. In addition, buildings and their nearby background pixels are
relatively critical samples, because the pixels near the classification boundary are often
easily confused by the model, such as the edge of buildings and their junction with the
background. Therefore, another idea of the K-SS method is to use the contrast between the
probability values of the building and its surrounding area as the basis for selecting samples.
Specifically, the probability values within a certain range, including buildings, are counted,
and threshold segmentation is performed to maximize the variance between classes.

The complete K-SS sample selection method is shown in Algorithm 1. Please note that
Figure 6 might be helpful for understanding the algorithm in a more intuitive way. One of
the important steps is to double the minimum enclosing rectangle of each building object
and use the Otsu algorithm [37] to perform threshold segmentation on the probability map
in the enlarged area. The Otsu algorithm has the advantages of fast calculation speed and is
not affected by image contrast. The principle of Otsu is to maximize the variance between
classes and automatically generate the best segmentation threshold:

T = Otsu({P}) (1)

where {P} is the set of image pixel values in the region to be segmented. The Otsu
algorithm binarizes {P} and returns a threshold T. Pixels whose value are greater than T
are classified as foreground (i.e., not collapsed buildings and other buildings); otherwise,
they are background (i.e., collapsed buildings and original background). In addition, three
specific modules are designed for sample selection of categories: not collapsed buildings,
collapsed buildings, and other buildings, respectively.

Building selection module is utilized to select samples of the category of not collapsed
buildings and their surrounding background. The rationale behind designing this module
is that the probability value of the building predicted by the stage 1 model is generally
higher than the surrounding background. The Otsu algorithm can roughly distinguish
the foreground and the background. Combining the threshold segmentation results and
the pre-disaster building information, pixels with high confidence are selected as positive
samples—-that is, take the intersection of the post-disaster threshold segmentation results
and pre-disaster building distribution maps in the same category. To minimize the inclusion
of erroneous samples, other pixels are ignored because it is difficult to determine their
actual classes.

Collapsed building selection module is designed to select samples of collapsed build-
ings and their surrounding background. In general, the features of building ruins are close
to those of the background, so the probability value of the collapsed buildings predicted by
the model is close to that of their surrounding areas. If there is no obvious contrast between
the foreground and background probability values, the ratio of the two categories after
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threshold segmentation is likely to be unbalanced. For not collapsed buildings, the areas of
the foreground and background after segmentation should be relatively similar, because
we doubled the minimum enclosing rectangle of each building. The very unbalanced
area ratio of the two classes gives us greater confidence that the building has collapsed.
Here, we assume that if the area ratio of two categories is more than four times, it is very
unbalanced. Similarly, some samples of collapsed buildings are selected in combination
with the pre-disaster building distribution maps, and other pixels are ignored.

There may be missing buildings in the pre-disaster building distribution maps or
newly built buildings. Background screening module serves the purpose of filtering out
possible buildings in the background area of the building distribution maps. First, find the
average value Pb of the post-disaster probability corresponding to the pixels of the building
category before the disaster is calculated. Then, ignore the pixels whose probability value
is greater than Pb in the background category before the disaster, and the remaining areas
have a great confidence that they belong to the background category in all the pre- and
post-disaster data.

As depicted in Figure 6, after the screening by using the three modules, the final
effective samples are labeled as positive or negative samples, and other pixels are ignored
or invalid.

Algorithm 1 The K-SS method for post-disaster sample selection.

Definition:
The minimum enclosing rectangle of N
building objects : r1, r2, . . ., rN .
Expand the area of rn to get : R1, R2, . . ., RN . (AreaRn = 2Arearn ).
In probability map : the value of pixels {Pi}, and the average value of the pixels
corresponding to the building category pre-disaster : Pb

Sample selection:
for n = 1 to N do:

T = Otsu(P i ∈ Rn)
As for Pi ∈ Rn:

Building selection:
(1) if Pi > T and corresponds to the pre-disaster building category:

Not collapsed.
(2) if Pi < T and corresponds to the pre-disaster background category:

Background.
(3) other regions: Ignored.

Collapsed building selection:
when Number o f Pi>T

Number o f Pi<T < 1
4 or Number o f Pi>T

Number o f Pi<T > 4:

(1) if Pi < T: Collapsed.
(2) other regions: Ignored.

end for.
Background screening:

As for the regions except R1
⋃

R2
⋃

. . .
⋃

RN :
(1) if Pi < Pb: Background.
(2) other regions: Ignored (may be buildings).

Output: Positive samples: Not collapsed.
Negative samples: Collapsed and background.
Invalid samples: Ignored.
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4.3. Incremental Learning Using the EGB-A

The end-to-end gradient boosting (EGB) algorithm achieves incremental learning by
integrating multiple base learners together [16]. The new base learner is trained on the
newly collected data based on all existing base learners. This method has certain advantages
in the disaster emergency process because it can utilize post-disaster data to urgently train
a base learner and incorporate it into the original model in order to achieve rapid transfer
learning for specific applications. The EGB-A method [6] is an improved version of the
EGB for the building damage classification task, which alleviates the knowledge forgetting
problem and optimizes the ability of adaptive learning. The training algorithm of the
EGB-A method is shown in Algorithm 2. For additional application details of the method,
we recommend referring to the papers of Ge et al. [6] and Yang and Tang [16].

Algorithm 2 Training algorithm of EGB-A [4].

Input: Training data, X = {x0, . . . , xM}, and labels, Y =
{

y0, . . . , yM
}

; base learner, f (x; θ);
learning rate of base learner, v; and softmax function, σ.
1: F0(x0) = σ( f0(x0; θ0))
2: f0(x0) = argminθ0

L
(
y0, F0(x0)

)
3: for m = 1 to M do
4: Fm(xm) = σ( fm(xm) + ∑m−1

i=0 vi · fi(xm))
5: fm(xm; θm) = argminθm , v0,...,vm−1

L(ym, Fm(xm))

6: end for
Output: FM(x) = σ(∑M

i=0 vi· fi(x; θ)), vM = 1

In the SELF framework, the EGB-A method is used to incrementally train a new base
learner based on the existing stage 1 model, utilizing the selected post-disaster samples.
This process results in an ensemble model with two base learners in stage 2. One of
the significant advantages of this approach is that the training process does not need
to reuse pre-disaster datasets (e.g., DREAM-B+), which can save valuable time during
emergency response.

The network architecture of each base learner in the SELF framework is based on
U-NASNetMobile [16], as illustrated in Figure 7. It combines the neural architecture search
structure in NASNet [38] and the upsampling module in the classic U-Net model [39]
to perform semantic segmentation tasks. The U-NASNetMobile is suitable for ensemble
models and disaster scenarios due to its small number of parameters and fast training
speed [16].
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4.4. Experimental Settings and Evaluation Metrics

The Adam optimizer [40] and the cosine learning rate annealing schedule [41] are
employed to update the weights of the model. The default batch size is 4, and the maximum
learning rate is 3 × 10−4. During the training process, the parameters of the latter base
learner are initialized with the parameters of the previous base learner to speed up the
convergence. In addition, traditional data augmentation methods are also applied to
prevent overfitting, including brightness variation, flipping, and random rotation. The
experiments were run on the hardware device of NVIDIA Tesla K80 GPU.

For the identification of post-disaster buildings, the IoU metric [42] of the building
category is employed to evaluate the accuracy. The F1 score, recall, precision, and OA
(overall accuracy) are employed as reference evaluation metrics:

IoU =
Prediction

⋂
GroundTruth

Prediction
⋃

GroundTruth
(2)

F1 score =
2TP

2TP + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

OA =
TP + TN

TP + TN + FP + FN
(6)

where TP, FP, TN, and FN are the pixel numbers of true positive, false positive, true negative,
and false negative, respectively.

For the building damage extraction result, the Kappa metric [43] is employed to
represent the evaluation accuracy. In addition, the OA, PA (producer accuracy of collapsed
buildings), and UA (user accuracy of collapsed buildings) are provided for reference:

Kappa =
p0 − pe

1− pe
(7)
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PA =
a1
⋂

b1

a1
(8)

UA =
a1
⋂

b1

b1
(9)

pe =
a1 × b1 + a2 × b2 + a3 × b3 + a4 × b4

n2 (10)

where p0 is equal to the value of OA, that is, the number of pixels correctly classified
divided by the total number of pixels; a1, a2, a3 and a4 are the real pixels of collapsed
buildings, not collapsed buildings, other buildings, and the background, respectively; b1,
b2, b3 and b4 are the predicted pixels of collapsed buildings, not collapsed buildings, other
buildings, and background, respectively; and n is the total number of pixels.

5. Experimental Results

On the one hand, we quantitatively evaluate the results of our method in Section 5.1.
On the other hand, the difference in building damage extraction is qualitatively highlighted
in Section 5.2. Furthermore, failure examples are analyzed in Section 5.3.

5.1. Quantitative Evaluation
5.1.1. Post-Disaster Building Recognition

Table 3 presents the post-disaster building recognition accuracy on the test data using
the stage 1 and stage 2 model, respectively. The results show that utilizing the selected
post-disaster samples leads to a significant improvement in the IoU value after incremental
learning. In the Yushu case, the IoU increased by 14%, and in the Turkey case, it increased
by 7.23%. This improvement can be primarily attributed to the substantial increase in the
recall metric of building recognition, although the precision might be slightly sacrificed.
The optimized model can identify more buildings that have not collapsed after the disaster,
which is the premise to ensure a better effect of building damage extraction.

Table 3. Post-disaster building recognition accuracy in test cases predicted by the pre-trained model
(stage 1 model) and the incrementally learned model (stage 2 model) using selected samples.

Cases Stages IoU F1 Score Recall Precision OA

Yushu
Stage 1 0.4286 0.6001 0.4953 0.7609 0.9603
Stage 2 0.5686 0.7249 0.7108 0.7397 0.9676

Turkey Stage 1 0.4998 0.6665 0.5971 0.7542 0.9788
Stage 2 0.5721 0.7278 0.6705 0.7957 0.9822

5.1.2. Building Damage Extraction

Table 4 presents the building damage extraction accuracy on the test cases of stage 1
and stage 2. The Kappa coefficient and OA represent the comprehensive situation of the four
categories of collapsed buildings, not collapsed buildings, other buildings, and background,
and PA and UA specifically measure the accuracy of collapsed buildings. Due to the
significant improvement in the accuracy of post-disaster buildings in stage 2, the damage
results of Yushu and Turkey cases become more reliable, with Kappa values reaching 0.8267
and 0.7688, respectively. The UA metric shows that the accuracy of collapsed building
identification has increased significantly in the Yushu case. The UA value of the Turkey
case is relatively low because the not collapsed buildings identified by the model have
incomplete edges, resulting in some extra collapsed building pixels. In addition, the number
of collapsed buildings in the Turkey case was less compared to the Yushu case. Therefore,
the influence of these misclassified pixels on the UA value will be more obvious.
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Table 4. Building damage extraction accuracy in test cases predicted by the pre-trained model (stage
1 model) and the incrementally learned model (stage 2 model) using selected samples.

Cases Stages Kappa OA PA UA

Yushu
stage 1 0.7379 0.9303 0.9126 0.6931
stage 2 0.8267 0.9676 0.9021 0.7998

Turkey stage 1 0.7281 0.9788 0.8656 0.2741
stage 2 0.7688 0.9880 0.8387 0.2852

Overall, the proposed building damage extraction method is feasible. The K-SS method
provides key post-disaster samples, which can effectively improve the performance of the
model in disaster areas to obtain high-precision results.

5.2. Qualitative Analysis

As shown in Figure 8, we have visualized the results of post-disaster building and
damage recognition in partial areas of Yushu to intuitively analyze the significance of
incremental learning using post-disaster samples. It is evident that the pre-trained model
was directly applied to post-disaster images, that some buildings were missed, and that
the effect of damage extraction needs to be improved furthermore. The proposed sample
selection method effectively identifies buildings that were not recognized in stage 1. The
model learned the features of these samples in an incremental manner of EGB-A, which
can keep the buildings that have been correctly identified in stage 1 as much as possible,
and continue to optimize the recognition results. In the white boxes, we can see that the
results in stage 2 have been significantly improved, and most of the missed buildings
were identified.

Figure 9 displays the results of post-disaster building and damage identification at
different stages in some areas of the Turkey case. Comparing the results, it is evident that
the improved stage 2 model using post-disaster samples can more completely identify
building edges and small buildings with white roofs. As a result, the model, after self-
incremental learning, can predict a more accurate distribution of post-disaster buildings.
Referring to the ground-truth, the stage 2 model using the selected samples has achieved
more reliable building damage results.
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Figure 9. Comparison of post-disaster building identification (second row) and damage results
(third row) at different stages in the Turkey test area. Results before optimization (stage 1), results
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(b) post-disaster image; (c) selected samples; (d) stage 1; (e) stage 2; (f) ground-truth; (g) stage 1;
(h) stage 2; (i) ground-truth.



Remote Sens. 2023, 15, 3909 15 of 26

The final damage extraction results (stage 2) of the entire Yushu test area are shown
in Figure 10. We can see that the distribution of collapsed buildings identified by the
model is similar to the ground-truth. From the map, it is evident that the buildings in
the southwest of the urban area, specifically subfigure (1) in Figure 10, have sustained
severe damage, with extensive areas of ruins. In contrast, the buildings near the center
exhibit less concentrated collapse and seem to have experienced relatively less damage. At
a subtle level, the results of building damage extraction have more red parts, indicating
that the model has identified some undamaged buildings as collapsed buildings. Overall,
the proposed method obtains results that are basically consistent with the real situation at
the macro level.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 28 
 

 

 
Figure 10. Building damage results of the Yushu case extracted by the SELF method (top) and the 
corresponding ground-truth (bottom). To highlight collapsed areas, we combined the categories of 
not collapsed buildings and other buildings in blue. The orange boxes show a severely damaged 
area. (1) The region enlarged from the building damage results; (2) The region enlarged from the 
ground-truth. 

 

Figure 10. Building damage results of the Yushu case extracted by the SELF method (top) and the
corresponding ground-truth (bottom). To highlight collapsed areas, we combined the categories of
not collapsed buildings and other buildings in blue. The orange boxes show a severely damaged
area. (1) The region enlarged from the building damage results; (2) The region enlarged from the
ground-truth.

The final damage extraction results (stage 2) of the entire Turkey test area are shown in
Figure 11. On the whole, there are not many collapsed buildings, and the building damage
results show more collapsed pixels than the ground-truth. There is an area of concentrated
damage in the middle of the town, which is the enlarged subfigure (1). It can be seen that
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some edge pixels of intact buildings are misclassified as collapsed because there is still
space for improvement in the recall value of post-disaster building identification. The
collapsed buildings can basically be completely extracted.
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Figure 11. Building damage results of the Turkey case extracted by the SELF method (left) and the
corresponding ground-truth (right). The orange boxes show a severely damaged area. (1) The region
enlarged from the building damage results; (2) The region enlarged from the ground-truth.

5.3. Failure Example Analysis

Despite the improvements achieved by the stage 2 model using the SELF method,
there are still some recognition errors. As shown in the first row of Figure 12, although
the post-disaster samples are correctly selected, some buildings are still missed in the
recognition results. This is related to the lack of buildings with similar features in the
training set, and smaller buildings are generally harder to identify. The second row shows a
case where the K-SS sample selection method fails. The reason is that although the building
is damaged, there are still some building roof features that lead to a higher activation value
in this area. The recognition results in this example are not affected by the wrong samples,
indicating that impure sample does not necessarily reduce the recognition effect, and we
need to avoid overfitting when using these samples for training. In addition, it is usually
difficult for the model to identify roofs covered by shadows of high-rise buildings (the third
line in Figure 12). To address this problem, it may be feasible to design data enhancement
strategies or use generative networks to remove shadows.
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Figure 12. Failure examples in post-disaster building identification (stage 2) or sample selection step.
The first line shows that the sample selection was correct but the building was not recognized. The
second line shows the failure cases of sample selection. The third line shows the missed detection of
buildings due to shadows. Blue: buildings or building samples. Gray: ignored samples. The white
boxes indicate noteworthy areas. (a) Post-disaster image; (b) selected samples; (c) recognition results;
(d) ground-truth; (e) post-disaster image; (f) selected samples; (g) recognition results; (h) ground-
truth; (i) post-disaster image; (j) selected samples; (k) recognition results; (l) ground-truth.

6. Discussion

This section begins by comparing the accuracy of the proposed method with several
state-of-the-art building damage extraction methods. Subsequently, using the Yushu case
as an example, the impact of different sample selection methods is discussed, and the
timeliness of the proposed approach is analyzed. Finally, the performance of the proposed
method in multiple disaster types other than earthquakes is evaluated and analyzed.

6.1. Comparison of Building Damage Extraction Methods

The proposed method is compared with the Incre-Trans method [6] since both ap-
proaches aim to enhance building damage recognition through transfer learning within
an incremental framework. The Incre-Trans method transfers the style of historical dis-
aster images to the current post-disaster style and applies incremental learning using the
transferred data on the pre-trained stage 1 model to obtain an improved stage 2 model.
In contrast, our SELF method utilizes pre-disaster knowledge and post-disaster samples
instead of image styles to improve the accuracy and efficiency of emergency response.
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In addition to the Incre-Trans method, our proposed approach was compared with
two existing deep learning change detection methods, BDANet [8] and ChangeOS [3], in
the Yushu case. Both BDANet and ChangeOS require paired pre- and post-disaster images
for their operation. However, in the Turkey case, we did not have access to pre-disaster
sub-meter images during the emergency situation. This also reflects the limitations of
damage detection methods that rely on pre-disaster imagery.

As shown in Table 5, the Kappa coefficient of our method in the Yushu case reaches
0.8267, which is higher than that of the Incre-Trans method, indicating that using post-
disaster samples for self-training can improve the accuracy of emergency recognition more
effectively than transferring the style of images. Most metrics of the SELF method are
significantly higher than that of the two other change detection methods because the
generalization performance of the existing model is poor when it is directly applied to the
non-preset location, so it is necessary to improve the results according to the characteristics
of disaster areas. In the Turkey case, our proposed SELF method achieves a slightly higher
Kappa coefficient compared to the Incre-Trans method. Overall, the proposed SELF method
can indeed deliver more reliable building damage results.

Table 5. Building damage extraction accuracy in test areas predicted by the pre-trained model (stage
1 model) and the incrementally learned model (stage 2 model) using selected samples.

Cases Methods Kappa OA PA UA

Yushu

SELF 0.8267 0.9676 0.9021 0.7998
Incre-Trans 0.7521 0.9508 0.8468 0.7617

BDANet 0.5819 0.9365 0.4752 0.4350
ChangeOS 0.4672 0.8926 0.3487 0.4785

Turkey SELF 0.7688 0.9880 0.8387 0.2852
Incre-Trans 0.7582 0.9814 0.8694 0.2829

Different types of methods have their advantages and limitations. As shown in Table 6,
both the SELF and Incre-Trans are based on the post-classification comparison framework,
which allows them to use single-temporal building datasets to train models. In contrast,
BDANet and ChangeOS require paired pre- and post-disaster images, which may limit
their accuracy due to dataset availability. As shown in Figure 13, the direct application of
the BDANet and ChangeOS models does not perform well in the Yushu scene. Specifically,
BDANet misidentifies some intact buildings as the collapsed category. The results of
ChangeOS show a large area of adhesion, mainly because the object-level change detection
approach used in ChangeOS tends to group multiple densely distributed buildings as
a single object. As a result, the individual collapsed areas within the group cannot be
effectively detected. The advantage of the two change detection models lies in their
optimization of the network structure, which can enhance the accuracy of building damage
identification. However, they lack specific strategies to quickly improve the recognition
effect in emergency response scenarios, such as utilizing incremental learning. The SELF
method has the potential to serve as an alternative to Incre-Trans, as the selected samples
already contain post-disaster style information. Hence, there is no need to transfer the style
of historical disaster images.

Table 6. Characteristics of different methods.

Methods Type Incremental Learning Required Images Result Level

SELF
Post-classification comparison Yes

Post-disaster
Pixel level

Incre-Trans
Pre- and post-disasterBDANet Change detection No Object level

ChangeOS
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6.2. Other Sample Selection Methods

In the entropy-based sample selection methods, the top n% pixels with the highest
confidence are usually selected as samples for self-supervised training. Furthermore, Hu
et al. [14] employed the top 10% of the most certain pixels in probability maps predicted
by a building identification model as the post-disaster samples for transfer learning. Our
method utilizes the building distribution maps to guide the selection of samples. In order to
make an objective comparison, we also added the building distribution maps on the basis
of the method of Hu et al. [14], and realized the following sample selection approach as a
benchmark: for the probability maps predicted by the stage 1 model, the top n% of the post-
disaster pixels corresponding to the building category pre-disaster are selected as positive
samples, the top n% of the post-disaster pixels corresponding to the background category
pre-disaster are selected as negative samples, and the remaining pixels are ignored.

The proportion of selected samples has an important impact on the effect of transfer
learning [44]. Therefore, we conducted experiments when n was equal to 50, 70, 90 and 99,
respectively. For example, if n = 50, the first 50% of the pixels with the highest confidence
are effective samples, and the remaining pixels are invalid. If n = 99, most of the pixels are
indiscriminately employed as effective samples, that is, the pixels of the building category
pre-disaster are almost all selected as positive samples of post-disaster, and the same is true
for the background category. We denote the above sample selection approaches as Top 50%,
Top 70%, Top 90%, and Top 99%, respectively, and compare them with the proposed K-SS
method in two aspects: (1) qualitative comparison and analysis of the selected samples,
and (2) under the same parameter settings, we compare the application effect of the stage
2 models optimized after incremental learning using the selected samples, that is, the
accuracy of post-disaster building recognition and building damage extraction.
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6.2.1. Different Numbers of Selected Samples

In order to obtain as many post-disaster samples as possible, we should reserve
pixels with high confidence. At the same time, the pixels with low confidence should
not be labeled as wrong categories. Figure 14 shows the samples obtained from different
proportions and the methods presented in this paper. It can be seen that if a small proportion
of high-confidence samples (Top 50% and Top 70%) are selected, many pixels in the Yushu
urban area are invalid, and many buildings and their nearby background are missed.
As the proportion of effective samples increases, more background pixels are selected.
At the same time, the cases of collapsed buildings being wrongly selected as positive
samples are also increasing. If the pre-disaster building distribution data are applied to
post-disaster images almost without filtering (Top 99%), many collapsed buildings are
selected as positive samples and other buildings are negative samples, which leads to a lot
of incorrect information.
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the area.
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Our method ignores these hard-to-judge buildings and collapsed pixels, which is
acceptable. By utilizing the contrast of probability values, the K-SS method can select
negative samples around building objects. These samples close to the classification bound-
ary are beneficial for the model to learn effective features and prevent overfitting. The
characteristics of the proposed method is that it fully combines the pre-disaster knowledge
and the recognition ability of the model to design specific methods for different situations,
which can provide accurate, diverse, and critical post-disaster samples.

6.2.2. Overfitting

The number of iterations required for model training is related to the number of
samples. We evaluated the IoU of post-disaster building recognition when the above
methods were trained to several different epochs using the selected samples in the Yushu
case, as shown in Figure 15. The training process was performed based on stage 1 through
the EGB-A incremental framework. It can be seen that if a small number of samples are
selected (Top 50% and Top 70%), it only takes a few epochs to stop iterations, and too many
training epochs are prone to over-fitting and lead to a decrease in accuracy. Using more
samples can indeed lead to higher accuracy after sufficient training. The IoU value of our
method is always at a higher position.
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numbers of samples are trained to different epochs.

The detailed comparison of post-disaster building recognition accuracy among the
methods with the highest IoU is presented in Table 7. Our method stands out by achieving
the most reliable results, as indicated by the IoU and F1 metrics. When selecting 70% of
the reliable samples, the method achieves the highest recall value, primarily due to the
misidentification of some collapsed buildings as not collapsed, leading to a relatively lower
precision. In contrast, using 99% of the reliable samples achieves the lowest recall, which
may be due to the confusion of wrong samples that makes it more difficult to correctly
identify post-disaster buildings.

Table 7. Comparison of post-disaster building recognition accuracy in the Yushu case.

Methods Epoch IoU F1 Score Recall Precision OA

Top 50% 5 0.4698 0.6393 0.7853 0.5391 0.9467
Top 70% 5 0.4845 0.6528 0.8104 0.5465 0.9482
Top 90% 100 0.4877 0.6556 0.7807 0.5651 0.9507
Top 99% 80 0.4813 0.6499 0.5339 0.8301 0.9654

Ours 100 0.5686 0.7249 0.7108 0.7397 0.9676
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The damage is obtained by comparing with the pre-disaster building distribution
maps, and the evaluation results are shown in Table 8. Similarly to the post-disaster
recognition results, the lowest producer accuracy was achieved when selecting 70% reliable
samples. This is because there are fewer negative samples around the buildings, making
the post-disaster recognition results more prone to crossing the classification boundary
and misclassifying background pixels around the buildings. Conversely, lower recall for
post-disaster buildings leads to lower user precision for collapsed buildings. Overall, our
method achieved more accurate damage extraction results and reached a Kappa coefficient
of 0.8267, which depends on the sample selection methods we designed at the object level.

Table 8. Comparison of building damage accuracy in the Yushu case.

Methods Epoch Kappa OA PA UA

Top 50% 5 0.7431 0.9467 0.7923 0.8299
Top 70% 5 0.7509 0.9482 0.7860 0.8420
Top 90% 100 0.7585 0.9507 0.8044 0.8236
Top 99% 80 0.8051 0.9654 0.9548 0.7152

Ours 100 0.8267 0.9676 0.9021 0.7998

6.3. Timeliness Analysis

The efficiency of building damage extraction is also crucial for emergency response.
We evaluate the time required by the proposed SELF framework for the complete pipeline
in the Yushu case, as shown in Figure 16. The timeliness estimation starts from the moment
when the post-disaster images are obtained. First, the stage 1 model is used to predict the
probability maps, and then the K-SS method is employed to select post-disaster samples,
which takes about half an hour in total. Subsequently, the samples will be used for incre-
mental learning to obtain an optimized stage 2 model. This process takes 5 h for 100 epochs
of training. Finally, the stage 2 model is applied to complete the final building damage
extraction. Overall, the proposed method can provide optimized damage results within 6
h, which is better than the timeliness of the method proposed by Ge et al. [6], which takes
about 8 h to complete a similar emergency task.
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This efficiency evaluation result was calculated under the hardware conditions of the
NVIDIA Tesla K80 GPU with 12G video memory and the software environment of the
TensorFlow-GPU version 1.12.0. Additionally, when using the selected samples to train
the stage 2 model, the parameters of the stage 1 model are used for initialization to speed
up the convergence. The timeliness of this method can meet the needs of the emergency
period (24 h after the earthquake) with the main goal of rescuing the buried people [45].
In actual rescue missions, better hardware conditions are expected to further reduce time
consumption.

6.4. Performance in Other Natural Disasters

In order to evaluate the effect of the SELF method in a broader range of disaster
scenarios besides earthquakes, this section selects the wildfire, tornado, and tsunami
disasters from the xBD dataset [46] for verification. The post-disaster images of the three
disaster cases have sub-meter spatial resolutions and RGB bands, and their details are
shown in Table 9.
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Table 9. Details of the disaster cases.

Cases Event Date Country

Joplin, MO Tornado 22 May 2011
AmericaSanta Rosa Wildfires 8–31 October 2017

Palu Tsunami 18 September 2018 Indonesia

The experimental results are shown in Table 10. It can be seen that after the self-
incremental learning, the Kappa coefficient of building damage identification for different
disaster types has been improved to a certain extent in stage 2. Among them, the Kappa
value increased the most in the tornado disaster, reaching 4.78%, while it only increased
by 1.98% in the wildfire disaster. It is worth noting that the common feature of these
three cases is that the PA values in stage 2 have decreased to varying degrees, while
other metrics have increased. Combined with the visualization results in Figure 17, this
phenomenon can be explained by the self-incremental learning of the post-disaster samples
significantly increasing the pixels of the intact building, which may misclassify some
collapsed buildings. In the case of the Palu tsunami, due to the dense distribution of
buildings, the recognition results of stage 2 are somewhat adhesions. Overall, the proposed
SELF method can effectively improve the emergency identification results of building
damage in multiple hazards.

Table 10. Building damage extraction accuracy of the disaster cases predicted by the pre-trained
model (stage 1 model) and the incrementally learned model (stage 2 model) using selected samples.

Cases Stages Kappa OA PA UA

Joplin, MO Tornado Stage 1 0.7444 0.9559 0.8794 0.3915
Stage 2 0.7922 0.9618 0.8290 0.5587

Santa Rosa Wildfires
Stage 1 0.7419 0.9706 0.8969 0.4008
Stage 2 0.7617 0.9707 0.8910 0.5224

Palu Tsunami
Stage 1 0.6530 0.9151 0.8395 0.2325
Stage 2 0.6936 0.9177 0.7969 0.3634
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Figure 17. Comparison of building damage identification results before optimization (stage 1) and
after optimization (stage 2). The first to third rows are the Joplin MO Tornado, Palu Tsunami, and
Santa Rosa Wildfires, respectively. The white boxes indicate noteworthy details. (a) Post-disaster
image; (b) stage 1; (c) stage 2; (d) ground-truth; (e) post-disaster image; (f) stage 1; (g) stage 2;
(h) ground-truth; (i) post-disaster image; (j) stage 1; (k) stage 2; (l) ground-truth.

7. Conclusions

This paper proposes a novel solution to address the challenges of limited recognition
accuracy in building damage extraction due to the restricted generalization capability
of pre-trained models and the difficulty in obtaining a large number of labeled disas-
ter area samples in a short period after disasters. The main contributions of this paper
are as follows, enabling rapid enhancement of collapsed building extraction for disaster
emergency response:

(1) The proposed SELF framework can rapidly enhance the building recognition ability
of the pre-trained model through self-training by using automatically selected post-
disaster samples. The experimental results on the Yushu earthquake and Turkey
earthquake show that the Kappa accuracy of the building damage extracted by the
optimized model is increased by 6.48% on average compared with the initial stage.
In terms of efficiency, the framework can complete the entire process within 6 h and
provide a more reliable building damage distribution map.

(2) The K-SS sample selection method can automatically select high-quality post-disaster
image samples with the assistance of pre-disaster building distribution map. The
designed sample selection modules are based on the probability maps and the Otsu
segmentation method, which realizes the targeted screening of collapsed buildings,
not collapsed buildings, and other buildings. Compared with other similar sample
selection methods, using the samples provided by K-SS can achieve a more significant
improvement in accuracy.

(3) The experimental results demonstrate that leveraging the difference in activation val-
ues between buildings and their surrounding backgrounds is an effective strategy for
selecting key samples for self-training. The building location and shape information
provided by the pre-disaster building distribution maps can realize more accurate
judgment of the sample category from the object level.

The method presented in this paper does have certain limitations. Firstly, the effective-
ness of the selected samples relies on the quality and availability of building distribution
data, while, currently, high-quality building footprint or roof outline products are still
missing in some regions. Secondly, the SELF framework has been verified on earthquakes
and three other natural disasters, while the application to man-made hazards remains to
be explored.
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