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Abstract: A single receptive field limits the expression of multilevel receptive field features in point
cloud registration, leading to the pseudo-matching of objects with similar geometric structures
in low-overlap scenes, which causes a significant degradation in registration performance. To
handle this problem, a point cloud registration network that incorporates dense graph convolution
and a mutilevel interaction Transformer (GCMTN) in pursuit of better registration performance
in low-overlap scenes is proposed in this paper. In GCMTN, a dense graph feature aggregation
module is designed for expanding the receptive field of points and fusing graph features at multiple
scales. To make pointwise features more discriminative, a multilevel interaction Transformer module
combining Multihead Offset Attention and Multihead Cross Attention is proposed to refine the
internal features of the point cloud and perform feature interaction. To filter out the undesirable
effects of outliers, an overlap prediction module containing overlap factor and matching factor is
also proposed for determining the match ability of points and predicting the overlap region. The
final rigid transformation parameters are generated based on the distribution of the overlap region.
The proposed GCMTN was extensively verified on publicly available ModelNet and ModelLoNet,
3DMatch and 3DLoMatch, and odometryKITTI datasets and compared with recent methods. The
experimental results demonstrate that GCMTN significantly improves the capability of feature
extraction and achieves competitive registration performance in low-overlap scenes. Meanwhile,
GCMTN has value and potential for application in practical remote sensing tasks.

Keywords: graph convolution; transformer; point cloud registration; low overlap registration

1. Introduction

With the popularity of 3D scanning devices and high-precision sensors [1], the rapid
development of 3D point cloud analysis has been promoted in many applications. Point
cloud registration plays an important role in 3D vision as it aims to convert point cloud data
from two or more camera coordinate systems to the world coordinate system and complete
the stitching process. It is now widely used in various fields such as 3D reconstruction, high-
precision mapping and localization [2], pose estimation [3], and Simultaneous Localization
And Mapping (SLAM) [4,5], as well as in remote sensing applications. Due to significant
pose variations and the potential for extensive occlusions, point cloud registration remains
a challenging problem in practical applications. Additionally, practitioners aim to minimize
the number of scans and maintain only a small overlap in order to reduce work costs while
still achieving accurate matching. Hence, studying low-overlap point cloud registration has
become an important topic receiving increasing attention in current research. To solve the
point cloud registration problem, the following four steps are usually followed: (1) detecting
the salient key points; (2) computing the feature descriptors of the key points; (3) matching
features based on the feature descriptors to determine correspondences between the key
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points; and (4) estimating the rigid transformation matrix based on the correspondences,
usually using Random Sample Consensus (RANSAC).

Traditional point cloud registration methods, represented by Iterative Closest Point
(ICP) [6] and its variants [7–10], have been widely used in various fields. However, most of
these methods are sensitive to noise, outliers, low-overlap, and initial poses. To improve
this, Rusu et al. [11,12] and Salti et al. [13] designed artificially encoded features for global
registration. These methods usually count geometric properties such as spatial coordi-
nates, curvature, and normal vectors to obtain histograms, and then manually encode
them to obtain geometric features. This approach is susceptible to noise, outliers, and
inefficient feature matching. In the real-world point cloud data acquisition process, there
is a lot of noise, outliers, and low overlap, which bring great challenges to the traditional
registration methods.

In recent years, deep learning has received increasing attention in the field of point
cloud registration and achieved acceptable results. A pioneering work is PointNetLK [14],
which extracts the features of point cloud using PointNet [15]. In addition, the Lucas
Kanade (IC-LK) [16] algorithm is applied to align point clouds, but such methods are not
effective in the registration problem of low-overlap point clouds. Predator [17] is first
proposed as a low-overlap point cloud registration solution that enabled the interaction of
information between the source and target point clouds, focusing attention on the overlap
region and thus achieving robust registration with low overlap. Motivated by Predator, a
series of related works [18–20] were proposed, while Transformer [21] was introduced to
feature learning and obtained potential results.

Although current deep learning-based works have improved the registration accuracy
to some extent, it still faces the following difficulties. On the one hand, there is the
extraction of key point features, which is believed to directly affect the efficiency and
accuracy of registration results. Most of the existing methods have the shortcomings of a
single receptive field and low resolution in feature extraction, which will aggravate the
probability of mismatching objects with similar geometric structures in low-overlap scenes.
On the other hand, in the determination of the overlap region, most methods have the
problems of serious edge information loss and inaccurate prediction, which will greatly
limit the search for accurate correspondences, resulting in matching with a high error rate.
There is still much potential for improvement in the accuracy and robustness of existing
point cloud registration methods.

To address the aforementioned problems, a point cloud registration network named
GCMTN is proposed in this paper, which incorporates dense graph convolution and a
multilevel interaction Transformer to improve registration accuracy in low-overlap scenes.
A densely connected graph convolution is introduced to expand the receptive field of
points and extract depth graph features. Taking inspiration from Transformer [21] in natu-
ral language processing and computer vision, the aim is to make the pointwise features
more discriminative. A multilevel interactive Transformer structure is utilized, contain-
ing Multihead Offset Attention (MOA) and Multihead Cross Attention (MCA), to refine
features within the point cloud. Additionally, information interaction between the source
and target point clouds is facilitated. It is believed that not all points within the predicted
overlap region are favorable for matching. Hence, an overlap prediction module is pro-
posed, encompassing overlap factor and matching factor, to prevent the formation of false
matching by points located in smooth areas or corners. By focusing attention on the overlap
region, the aim is to enhance the accuracy of point cloud registration in low-overlap scenes.
Specifically, the main contributions of this work are as follows:

• A Dense Graph Feature Aggregation (DGFA) module based on densely connected
graph convolution is proposed to expand the receptive field of point clouds. In this
module, the k-NN algorithm is used to update graph features with different scale
neighborhoods in each layer, thus aggregating graph features at multiple scales.

• A Multilevel Interaction Transformer (MIT) module is introduced, which includes
Multihead Offset Attention (MOA) and Multi-head Cross Attention (MCA). MOA
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carries out feature refinement inside the point cloud to extract features between point
pairs, while MCA makes the feature information of source and target point clouds
interact. The multilevel structure can refine the features of overlap region and generate
pointwise features that contain the structural information.

• An overlap prediction module is proposed, which includes overlap factor and match-
ing factor. The overlap factor is used to calculate the probability of the superpoints
of source and target point clouds lie in the overlap region, and the matching factor is
used to determine whether a point is favorable for matching, thereby predicting the
distribution of the overlap region while avoiding the negative impact of unfavorable
points on the registration accuracy.

The rest of this paper is organized as follows: Related work on point cloud registration
is reviewed in Section 2. GCMTN network architecture is given in Section 3. Experiments
and results are performed in Section 4. The research limitations are discussed in Section 5.
Finally, conclusions are drawn in Section 6.

2. Related Work
2.1. Traditional Registration Methods

Most traditional point cloud registration methods aim to perform an initial trans-
formation and find the local optimal solution near the initialization. One of the most
representative methods is ICP [6], which tries to find the nearest point as the initial corre-
spondence and find an optimal transformation matrix through least square iteration. ICP
and its variants [7–10] tend to converge to local optimality, and the effect of its registration
depends on good initialization. When the point cloud registration requires a large rotation
translation, it is often unable to obtain good registration results.

To handle this, many works attempt to improve ICP registration performance when
the initial transformation is poor, and some methods convert the point cloud to a probability
distribution. Gaussian mixture models GMM [22] and HGMR [23] regard the registration
problem as the matching of two probability distributions, and use the network to predict
the corresponding probability of any two point pairs without finding the corresponding
relationship and transformation matrix of the points. However, such methods use noncon-
vex objective functions, so good initialization is still needed to avoid convergence to local
optimal values. Recently, a series of global optimization methods based on BnB have been
proposed, such as Go-ICP [24], GOGMA [25], GOSMA [26], GoTS [27], etc., but the compu-
tational complexity is too high to be applicable to more complex scenes. Another work is
that researchers try to establish correspondence directly to avoid the initial transformation,
usually by extracting key features, matching features to find potential correspondence,
and then using RANSAC methods to remove noise and outliers. Fast Global Registration
(FGR) [28] relies on optimizing the global objective function to align two point clouds
without updating the correspondence, achieving advanced performance in the correspon-
dence based point cloud registration. In addition, handmade local features [11–13], such
as Fast Point Feature Histograms (FPFH), are also designed to establish correspondence
through feature matching. However, the registration based on correspondence is sensitive
to the registration of partially overlapping point clouds, and there is a large proportion of
false correspondence.

Overall, traditional point cloud registration methods have become the fundamental
mainstreams with careful feature design and pipeline optimization, however, the lack of
good initialization, large number of outliers, and partially overlapping point cloud registra-
tion problems remain huge challenges for traditional point cloud registration methods.

2.2. Learing-Based Registration Methods

The success of deep learning in point cloud processing has stimulated interest in
applying deep learning in point cloud registration. At the early stage, the proposal of
PointNet [15] and PointNet++ [29] promotes the development of point cloud deep learning,
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which can directly extract the features of point cloud without transforming the point cloud
into other types for processing.

PointNetLK [14] pioneered the application of deep learning in the field of point cloud
registration using PointNet [15] to extract the features of point clouds and applying the Lu-
cas Kanade [16] algorithm to align the point clouds. PointNetLK Revisited (PNetLKR) [30]
used analytical Jacobi to circumvent the numerical instability of PointNetLK and improve
the registration accuracy. However, because PointNet cannot aggregate information from
two point clouds, it is not suitable for registration of partial point clouds. The deep Gaus-
sian mixture model DeepGMR [31] relies on neural networks to predict GMM parameters
and restore optimal transformations. IDAM [32] integrates the iterative distance-aware
similarity convolution module into the matching process, which can overcome the short-
coming of using the inner product to obtain pointwise similarity. RPM-Net [33] combines
Sinkhorn’s method with deep learning to build soft correspondence from mixed features,
thereby enhancing robustness to noise. Soft correspondence can improve robustness, but
they will lead to a decrease in registration accuracy.

These deep learning-based methods can improve the accuracy of point cloud regis-
tration to a certain extent with flexible features extraction, but it is difficult to generate
information interaction between source and target point clouds, so it cannot be directly
applied to the registration of low-overlap point clouds.

2.3. Transformer-Based Registration Methods

Inspired by the successful applications of Transformer [21] in NLP and computer
vision, researchers attempt to apply Transformer to point cloud processing to extract
contextual information and some representative methods have been developed, such as
Deep Closest Point (DCP) [34], Predator [17], REGTR [18], RGM [35], DIT [36], etc.

Deep Closest Point (DCP) [34] uses DGCNN [37] to extract features and applies Trans-
former to aggregate contextual information. In order to promote the information interaction
between source point cloud and target point cloud to solve the registration problem of
low-overlap point clouds. Predator [17] proposed the overlap attention module, which
enables early information exchange between latent encodings of point clouds, focuses at-
tention on overlap region, and prioritizes salient points in this region, thus enabling robust
registration with low overlap. RGM [35] proposed to use of depth map matching to solve
the point cloud registration problem and used node features and structure information of
the graph to establish correspondence, so as to better solve the problem of outliers. In the
registration of point clouds with low overlap, the self-attention and coattention mechanisms
in Transformer are used to establish better correspondences for overlap region. DIT [36] is
a complete point feature Transformer framework for point cloud registration, which uses
a deep–narrow Transformer to establish comprehensive correlations. The richness of the
feature representation is improved, and the discriminative power of the extracted features
is improved by facilitating the interaction of the depth information. REGTR [18] applies
multiple Transformer layers to predict clear point correspondences directly, and rigid trans-
formation can be estimated from correspondences without further nearest neighbor feature
matching or RANSAC steps. VPRNet [38] designs a self-supervised virtual point genera-
tion network (VPGnet), which utilizes the Transformer mechanism to fuse the geometric
information of two local point clouds and generates missing points in combination with a
Generative Adversarial Network (GAN) structure. COPRNet [39] introduces a Transformer-
based feature interaction module, which combines spatial structural information to encode
unique geometric embeddings, greatly enhancing feature perception. RoITr [40] proposes a
rotation-invariant Transformer network for handling pose variations in point cloud match-
ing tasks. It significantly improves feature extraction capability through the construction of
a new attention-based encoder–decoder.

The Transformer-based methods have presented promising results in terms of feature
extraction and ability to interact with information in point clouds, however, in the registra-
tion task in low-overlap scenes, a thorough way of feature representation and interaction is
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rarely investigated. For this category, there is still potential for improvement in terms of
accuracy and robustness.

3. Method
3.1. Problem Statement

Given two partially overlapping point clouds X =
{

xi ∈ R3
∣∣i = 1, ..., N

}
and

Y =
{

yj ∈ R3
∣∣j = 1, ..., M

}
in 3D space, the point cloud registration problem is to find

an optimal rigid transformation T = {R, t}, such that X is aligned with Y after a transfor-
mation of T, where the 3D rotation parameter R ∈ SO(3) and the 3D translation parameter
t ∈ R3. This transformation can be solved by the following formula:

min
R,t

∑(x*
i ,y*

j )∈C*

∣∣∣∣∣∣Rx*
i + t− y*

j

∣∣∣∣∣∣22, (1)

where x∗i ∈ X, y∗j ∈ Y denotes the true set of correspondences between X and Y. ||·||2
denotes the Euclidean norm. Since C∗ is unknown in reality, but it is necessary to establish
the correspondence between two point clouds and then estimate the rigid transformation.
The focus of this study shifts to the determination of overlap region in order to facilitate
the search for the correct match.

3.2. Network Architecture

The proposed GCMTN is a dual-stream encoder–decoder network, as shown in
Figure 1. In the encoder part, the input source point cloud X and the target point cloud
Y are extracted and downsampled by the backbone network with KPConv, and the point
cloud is encoded into a group of superpoints with associated features. In order to further
expand the receptive field of point clouds, a Dense Graph Feature Aggregation (DGFA)
module is proposed to construct the superpoints and extract the depth graph features.
In order to enrich the context information of the point cloud and enable the information
interaction between the source and target point clouds, a Multilevel Interaction Trans-
former (MIT) module containing Multihead Offset Attention (MOA) and Multihead Cross
Attention (MCA) is proposed. MOA carries out feature refinement inside the point cloud
to extract features between point pairs, while MCA can make the feature information of
source and target point clouds interact to predict the overlap region. The purpose of using
a multilevel structure is to perform feature refinement and generate pointwise features
containing structural information. In order to predict the distribution of overlap region,
the proposed overlap prediction module is used to extract the overlap factor and matching
factor of superpoints. In the decoder part, the output of the overlap prediction module and
the pointwise features are concatenated and decoded into feature representation, overlap
score, and matching score.

3.2.1. Encoder to Sample Superpoint

In the encoder stage, the superpoint sampling module follows [17,18,41] to use Kernel
Point Convolution (KPConv) [42] for initial feature extraction and downsampling. The
KPConv backbone uses a series of ResNet-like residual blocks and strided convolutions to
convert the source point cloud X ∈ RN×C and target point cloud Y ∈ RM×C into a group
of simplified superpoints X′ ∈ RN′×3, Y′ ∈ RM′×3, and their associated initial features
FX′ ∈ RN′×C, FY′ ∈ RM′×C. The extracted features are used in subsequent processes and
applied to the upsampling process to extract feature descriptors for the original point cloud
resolution. The structure of the encoder is shown in Figure 2, which is mainly composed of
two convolution layers, seven residual blocks and three downsampling residual blocks.
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Figure 1. (a) GCMTN network architecture. GCMTN uses KPConv convolutional backbone to encode
the input point cloud into a set of superpoints and their features, which are then fed into three key
modules, namely: (b) Dense Graph Feature Aggregation (DGFA) Module, (c) Multilevel Interaction
Transformer (MIT) Module, and (d) Overlap Prediction Module. The output of the overlap prediction
module is concatenated with the pointwise features for decoding. MOA: Multihead Offset Attention.
MCA: Multihead Cross Attention.
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Figure 2. Structure and connection of encoder and decoder. Based on the KPConv backbone, the
encoder uses a series of ResNet-like residual blocks and strided convolutions to transform the source
point cloud into sparse point clouds (superpoints) with associated features. The input of the decoder
contains pointwise features of the superpoints, overlap factor, and matching factor. Based on skip link
concatenations and performing multiple stages of nearest neighbor upsampling and MLP operations
propagate the superpoint feature descriptors back to the original point cloud.
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3.2.2. Dense Graph Feature Aggregation Module

More discriminative point features will affect the determination of overlap region.
For the superpoints and initial features obtained at the encoder stage, in order to further
expand the receptive field of the point cloud and enrich the context information, the Dense
Graph Feature Aggregation (DGFA) module is proposed to construct the graph of the
superpoints and extract the depth graph features.

Graph convolution [37] operations are performed on the source and target point
clouds, respectively. Specifically, considering the points in the superpoints as the vertices
of the graph. According to the Euclidean distance in 3D space, the edges of the graph are
generated around the vertices using k-NN algorithm, which completes the construction of
the initial graph. The features of layer l + 1 can be iteratively expressed as:

xl+1
i = max{hl

θ

[
cat
(

xl
i , xl

j − xl
i

)
, ∀j ∈ Ni

]
}, (2)

where l denotes multiple levels, xi denotes the initial feature of vertex i, Ni denotes the
neighbourhood points of vertex i in the graph, hl

θ denotes Multilayer Perceptron (MLP)
linear operation with convolution layer, instance normalization layer, and LeakyReLU
activation function, and max denotes max pooling operation in dimension.

In static graphs, vertex features can only be captured according to the spatial distribu-
tion of local neighborhoods, so a single graph convolution operation will limit the receptive
field information of vertices. This carries the risk of missing local geometry information,
resulting in wrong matching. In order to explain this phenomenon more intuitively, the
relevant schematic diagram is given in Figure 3. The inputs are two point cloud regions
with partial overlap, namely Input 1 and Input 2. The Input 1 contains Patch1, Patch2,
and Patch3, where Patch2 and Patch3 have highly similar geometric structures. Input 2
contains Patch4 and Patch5. In the process of matching, if the local receptive field of the
scene is small, it is easy to regard Patch3 and Patch5 as the same object in the overlap region,
which may cause wrong matching. If the receptive field in the scene is expanded, Patch1
and Patch4 will be judged to be the same object in the overlap region, as will Patch2 and
Patch5, thus producing a correct matching. Therefore, the expanded receptive field is more
conducive to the generation of correct matching relations.

In order to expand the receptive field of points, the graph features are updated at each
layer using the k-NN algorithm with different scale neighborhoods in the feature space.
To make the extracted pointwise features more discriminative to contain distinguishing
structural information, this study refers to the structure of [43] and proposes a densely-
connected graph convolution to aggregate graph features at multiple scales. This module is
named Dense Graph Feature Aggregation (DGFA), and its structure is shown in Figure 1a.

The multilayer graph convolution is composed of a cascaded way, and each layer of
graph convolution has different scales of neighborhood, and the range of the front and back
neighborhood is gradually expanded. The input of DGFA is the original graph features
composed of superpoints, and the output is obtained by aggregating graph features at
multiple scales. The features obtained by each layer of graph convolution in DGFA can be
expressed as:

xl+1
i = Gl

k

{
cat
[

x0
i , x1

i , ..., xl
i

]}
, (3)

where Gl
k denotes the lth-layer graph convolution operation with the number k as the

neighborhood query point at different scales, and cat denotes the concatenation operation
of the output of each previous layer in dimension. Then, the output of DGFA can be
expressed as:

FG
X = hθ

{
cat
[

x0
i , x1

i , ..., xl+1
i

]}
, (4)

where hθ denotes the MLP linear operation with convolutional layer, instance normalization
layer, and LeakyReLU activation function. DGFA improves the flow of structural infor-
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mation, avoids the problem of gradient disappearance in neural networks, and integrates
multilevel receptive field information based on different resolution point sets.
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the generation of correct matching relationship.

3.2.3. Multilevel Interaction Transformer Module

In the above step, the multiscale graph features of the source and target point clouds
are extracted, respectively, but there is no information interaction between the source
and target point clouds before, and the prediction of potential overlap region can only be
calculated with the mixed features of the source and target point clouds. In order to enrich
the context information of the point cloud and enable the information interaction between
the source and target point clouds, a Multilevel Interaction Transformer (MIT) module
containing Multihead Offset Attention (MOA) and Multihead Cross Attention (MCA) is
proposed. MOA carries out feature refinement inside the point cloud to extract features
between point pairs. MCA can make the feature information of source point cloud and
target point cloud interact to predict the overlap region. The purpose of using a multilevel
structure is to enable overlap region to perform feature refinement and generate pointwise
features containing structural information.

Inspired by PCT [44], when Transformer is applied to the point cloud, the Self-
Attention (SA) can be replaced by Offset Attention (OA) to achieve better network perfor-
mance. Therefore, this study uses Multihead Offset Attention (MOA) for feature refinement
inside the point cloud to extract features between point pairs. The OA layer computes the
offset between the attention feature AF and the input feature by calculating subtraction
between elements, as shown in Figure 4 (left). The output of OA is defined as:

FOA = OA(Q, K, V) = MLP(so f tmax(
QKT
√

dk
)V)− Fin) + Fin. (5)
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The output of MOA is defined as:

MOA(Q, K, V) =
(

headOA
1 ⊕ ...⊕ headOA

i

)
WO, (6)

headOA
i = OA

(
FQWQ

i , FKWK
i , FVWV

i

)
, (7)

where ⊕ denotes concatenation operations in channel dimensions, WQ
i ,WK

i , and WV
i rep-

resent learnable projection matrices used to project FQ, FK, and FV to Q, K, and V; WO is
a projection matrix for feature concatenation, where h denotes the amount of attention
performed in parallel and dk denotes the dimension of K.

In addition, Multihead Cross Attention (MCA) is used to interact the features of the
source and target point clouds. The internal structure of Cross Attention (CA) is shown in
Figure 4 (right), where Q comes from one point cloud, K and V come from another, and the
output of CA is defined as:

FCA = CA(Q, K, V) = MLP(so f tmax(
QKT
√

dk
)V). (8)

The output of MCA is defined as:

MCA(Q, K, V) =
(

headCA
1 ⊕ . . .⊕ headCA

i

)
WO, (9)

headCA
i = CA

(
FQWQ

i , FKWK
i , FVWV

i

)
. (10)

The superpoint features of source point cloud and target point cloud are output by
DGFA to obtain the multi-scale graph features FG

X and FG
Y , respectively. Firstly, MLP is used

for feature normalization to obtain Fin
X and Fin

Y . In MOA, Q, K, and V come from the same
point cloud. MOA operations are performed on the normalized features Fin

X and Fin
Y of

source and target point clouds, respectively, which can be expressed as:

FMOA
X = MOA

(
Fin

X , Fin
X , Fin

X

)
, (11)
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FMOA
Y = MOA

(
Fin

Y , Fin
Y , Fin

Y

)
. (12)

In MCA, Q comes from one point cloud, K and V come from another. Performing
MCA operations on FMOA

X and FMOA
Y can be expressed as:

FMCA
X = MCA

(
FFOA

X , FFOA
Y , FFOA

Y

)
, (13)

FMCA
Y = MCA

(
FFOA

Y , FFOA
X , FFOA

X

)
. (14)

From this, one level of output features in the MIT module can be obtained. If this
feature continues to repeat the MOA and MCA operations. MIT allows overlap region to
be feature refined and generate pointwise features containing structural information.

3.2.4. Overlap Prediction Module

The superpoints located in the overlap region are an important source of computing
transformation parameters. Most of existing methods generate feature descriptors for
the superpoints in the overlap region and then perform matching. Huang et al. [17]
proposed that the distribution of overlap region should be determined first, which would
lead to a higher probability of matching in the case of low overlap. In the proposed
overlap prediction module, the distribution of overlap region is also estimated firstly.
Considering the multilevel interaction features extracted from source point cloud X and
target point cloud Y are named ψX and ψY, respectively, in the MIT module, the overlap
region prediction can obtain source from them directly. An overlap factor is proposed to
calculate the probability of the superpoints of the source and target point clouds lying in
the overlap region, also a matching factor is proposed to determine whether a point is
favorable for matching.

Firstly, MLP operations are performed on ψX and ψY, respectively, to obtain the normal-
ized multilevel interaction features φX ∈ RN′×C′ and φY ∈ RM′×C′. The MLP[C,1] operation
is performed for φX and φY, respectively, and the results can be used to characterize the
overlap factor between the source and target point cloud superpoints, i.e.:

oX = MLP[C′ ,1](φX), (15)

oY = MLP[C′,1](φY), (16)

where oX and oY denote the probability that the superpoints of the source and target point
clouds lie in the overlap region, respectively.

Inspired by GLORN [45], not all predicted points located in the overlap region are
conducive to matching. Some superpoints may be located in smooth regions or corners,
which will affect the generation of the best transformation parameters. Therefore, the
matching factor is used to calculate the matching score of superpoints to determine whether
a point is favorable for matching, so as to avoid the influence of points with low matching
score on the registration result.

The idea of calculating matching factors is given as follows. Usually there are two
conditions for two points to be highly matched, one is that both points are located in the
overlap region, and the other is that the features of the two points are highly similar. For
the superpoints X′ and Y′ of the source and target point clouds, then the matching factor of
all points in X′ is related to all points in Y′, denoting the point in X′ as xi and the point in
Y′ as yj. If the overlap factor of xi is high, when the features of yj are highly similar to those
of xi, and yj is distributed in the overlap region, then yj will provide a high matching factor
for xi. When the similarity between the features of yj and xi is low, but yj is distributed in
the overlap region, then yj can only provide a low matching factor for xi. When yj is not in
the overlap region, the matching factor will be the lowest regardless of whether the feature
of yj is similar to the feature of xi.
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For the normalized multilevel interaction features φX and φY, the similarity matrix is
calculated as:

SC(φX , φY) = softmax(φX ⊗ φY
T). (17)

The matching factor for superpoints X′ and Y′ is calculated as:

mX = SC(φX , φY)⊗ oX , (18)

mY = [SC(φX , φY)]
T ⊗ oY, (19)

where ⊗ denotes matrix multiplication. mX and mY represent the degree of influence of the
superpoints of source and target point clouds on matching, respectively. A larger value
indicates that the point is more favorable for matching.

After obtaining the overlap factor and matching factor of superpoints, the point-
wise feature fX of superpoints is obtained by concatenating the output of the third Res-
Block_Strided and the output of the MIT module in the encode stage, which can be referred
to in Figure 2 for details. Finally, the pointwise features, overlapping factors, and matching
factors of the superpoints are concatenated, and the following output is obtained:

ξX = concat[ fX , oX , mX ], (20)

ξY = concat[ fY, oY, mY]. (21)

3.2.5. Decoder to Generate Descriptors

In overlap prediction module, the overlap factor and matching factor are designed for
the superpoints extracted by the encoder process. For all the points in the point cloud, more
detailed feature descriptors are still needed. Therefore, the purpose in decoder stage is to
generate feature descriptors of all points. The structure of decoder is shown in Figure 2,
where the features of encoder are passed to decoder through skip link concatenations.
Then, the nearest neighbor upsampling is performed to gradually obtain the pointwise
features of the original points, and the MLP is used for processing. After many similar
operations, the final output is an N-dimensional vector, where the first N-2 dimensions
represent pointwise features, and the last two dimensions represent overlapping scores
and matching scores, respectively.

3.3. Loss Function

GCMTN adopts the end-to-end training strategy, and the total loss function is com-
posed of three independent loss parts:

Loss = LF + LO + LM, (22)

where LF is used to measure feature loss, LO denotes overlap loss, and LM denotes matching loss.

3.3.1. Feature Loss

Regarding feature loss, relevant criteria have been established, wherein the feature
similarity between matched point pairs is higher, whereas the feature similarity between
unmatched point pairs is lower. To monitor the descriptors of pointwise features, some
methods [17,41,45] employ circle loss [46] to extract the feature descriptors of superpoints
via metric learning. But the circle loss ignores the differences between positive samples
and weights them equally, so it is difficult to match the regions with relatively low overlap.
To address this issue, circle loss has been improved by referring to [19], and a feature loss
has been designed. Specifically, the source point cloud X and the target point cloud Y are a
partially overlapping point cloud with registration. For point xi ∈ X located in the overlap
region, there is one or more points in Y corresponding to it. The set of corresponding points
in the circle with radius rc is defined as εx, and the set of noncorresponding points outside
the circle with radius rn is defined as εn. The aim is for the features of xi to be similar to the
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features in εx while exhibiting significant differences from the features in εn. The feature
loss for source point cloud X can be calculated as:

LX
F =

1
nx

∑nx
i=1 log[1 + ∑j∈εx

eλ
j
i β

i,j
pos(d

j
i−∆pos)∑k∈εn

eβi,k
neg(∆neg−dk

i )], (23)

where nx denotes a randomly selected point in the overlap region of X. dj
i = || fxi − fyj ||2

denotes Euclidene distance in the feature space, λ
j
i = (oj

i)
1
2 denotes the overlap ratio

of X and Y, ∆pos and ∆neg are used to define the positive and negative boundaries, and

β
i,j
pos and βi,k

neg represent the weights of positive and negative samples, calculated by the
following formula:

β
i,j
pos = γ(|| fxi − fyj ||2 − ∆pos), (24)

βi,k
neg = γ(∆neg − || fxi − fyk ||2), (25)

where the value of the edge hyperparameter is set to ∆pos = 0.1, ∆neg = 1.4, and γ is a
predefined constant. The feature loss LY

F for the target point cloud Y can be calculated using
a similar function. The total feature loss is LF =

(
LX

F + LY
F
)
/2.

3.3.2. Overlap Loss

The relevant guidelines have been established for overlap loss. The overlap factor
approaches 1 at the point located in the overlap region and approaches 0 outside the overlap
region. Therefore, the estimation of overlap probability is regarded as a binary classification
problem, and the overlap loss for source point cloud X can be calculated by the following
binary cross entropy loss function:

LX
O = − 1

N ∑N
i=1 [o

label
xi

log(oxi ) +
(

1− olabel
xi

)
log(1− oxi )], (26)

where the overlap factor of point xi is mapped to the ground truth label olabel
xi

, defined
as follows:

olabel
xi

=

{
1,
∣∣∣∣TY

X(xi)− NN
(
TY

X(xi), Y
)∣∣∣∣2 < ro

0, otherwise
, (27)

where ro denotes the overlap threshold, and the overlap loss LY
O for the target point cloud

Y can be calculated using a similar binary cross entropy loss function. The total overlap
loss is LO =

(
LX

O + LY
O
)
/2.

3.3.3. Matching Loss

Regarding the matching loss, relevant criteria have also been established. For correctly
matched points, the matching factor approaches 1 and for mismatched points, the matching
factor approaches 0. Therefore, the estimation of matching probability can also be regarded
as a binary classification problem, and the ground truth label is generated dynamically.
The matching loss for source point cloud X can be calculated using the following binary
cross entropy loss function:

LX
M = − 1

N ∑N
i=1 [m

label
xi

log(mxi ) +
(

1−mlabel
xi

)
log(1−mxi )], (28)

where the matching factor of point xi is mapped to the ground truth label olabel
xi

, defined
as follows:

mlabel
xi

=

{
1,
∣∣∣∣TY

X(xi)− NN(xi, Y)
∣∣∣∣2 < rm

0, otherwise
, (29)
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where rm denotes the matching threshold, and the matching loss LY
M for the target point

cloud Y can be calculated using a similar binary cross entropy loss function. The total
match loss is LM =

(
LX

M + LY
M
)
/2.

4. Experiments and Results
4.1. Datasets and Platforms
4.1.1. Datasets

Extensive experiments were conducted in this part to evaluate the registration perfor-
mance of GCMTN. Firstly, GCMTN was compared with other related registration methods
in the publicly available datasets ModelNet [47] and ModelLoNet [17]. Comparative
experiments were carried out using the 3DMatch [48] and 3DLoMatch [17] datasets on
the real indoor scenes, and GCMTN was evaluated in large outdoor scenes using the
odometryKITTI [49] dataset. Furthermore, ablation studies were conducted to verify the
effectiveness of the proposed modules in GCMTN. Table 1 summarizes the datasets used
for the experiments and the dataset partitioning settings.

Table 1. Datasets used in the experiments and their partitioning settings.

Datasets
Dataset Partition

Training Set Validation Set Testing Set

ModelNet and ModelLoNet 5112 samples 1202 samples 1266 samples
3DMatch and 3DLoMatch 46 scenes 8 scenes 8 scenes

OdometryKITTI sequence 00–05 sequence 06–07 sequence 08–10

4.1.2. Experimental Parameters

Table 2 presents the experimental parameters of the proposed method. L represents
the number of graph convolution layers used for cascading in the DGFA module, and
N represents the number of times the MOA and MCA operations are repeated in the
MIT module. nx, γ, ∆pos, and ∆neg are parameters for the feature loss, while rc and rn

represent the thresholds for corresponding point sets and noncorresponding point sets,
respectively. ro denotes the overlap threshold in the overlap loss, and rm stands for the
matching threshold in the matching loss.

Table 2. Experiments parameters for the proposed method.

Datasets DGFA
L

MIT
N

Loss Function

nx γ ∆pos ∆neg rc rn ro rm

ModelNet 3 3 384 64 0.1 1.4 0.018 0.06 0.04 0.04
3DMatch 3 3 256 24 0.1 1.4 0.036 0.13 0.036 0.04
odometryKITTI 3 3 512 48 0.1 1.4 0.21 0.72 0.43 0.28

4.1.3. Implementation Details

In the experiment, the Adam optimizer is used to train for 200 epochs on ModelNet,
40 epochs on 3DMatch, and 120 epochs on odometryKITTI, with a batch size of 1. The
weight decay for all training is set to 1 × 106, and the initial learning rate is set to 1 × 104.
The learning rate is decayed by 0.05 for every step on ModelNet and 3DMatch, and by 0.05
for every four steps on odometryKITTI. The experimental platform is 2.0 GHz Intel CPU,
48 GB RAM, NVIDIA GeForce RTX 2080Ti, and Linux/Ubuntu 64-bit PC. The programming
environment includes Anaconda 5.0.1 (Python 3.6), PyTorch1.8.0, and so on.

To investigate the characteristics of the proposed GCMTN, a comparison was also
made between it and the related state-of-the-art algorithms, such as DCP-v2 [34], RPM-
Net [33], Predator [17], REGTR [18], PerfectMatch [50], FCGF [51], D3Feat [41], SpinNet [52],
3DFeat-Net [53], and GLORN [45]. The parameters of these methods were adopted as the
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original papers reported. It was noticed that the tasks of these compared methods are not
identical, so not all of them were compared in all experiments.

4.2. Experiments on ModelNet40
4.2.1. Dataset and Evaluation Metrics

ModelNet40 [47] contains 12,311 CAD models of man-made objects in 40 different
categories. Among them, 5112 samples are used for training, 1202 samples for validation,
and 1266 samples for testing. Partial scans were generated according to [17]; in addition
to ModelNet with an average of 73.5% pairwise overlap, ModelLoNet with a low average
overlap rate (53.6%) was also generated following [17], which was used to verify the point
cloud registration performance of GCMTN under low overlap ratio. This study follows [17]
to evaluate the performance of the registration network using three metrics: Relative
Rotation Error (RRE), Relative Translation Error (RTE), and Chamfer Distance (CD).

4.2.2. Registration Results

GCMTN is compared with some recent methods based on direct registration, such
as DCP-v2 [34], RPM-Net [33], Predator [17], and REGTR [18], etc. Table 3 reports the
quantitative results in three metrics. It can be seen that for ModelNet with high overlap,
although GCMTN is inferior to REGTR on RRE, it performs best on RTE and CD compared
with other comparison methods. For ModelLoNet with low overlap, although GCMTN is
inferior to REGTR on RRE and CD, it performs best on RTE compared to other comparison
methods. In order to visually demonstrate the registration effect of GCMTN, it is depicted
in Figure 5. By randomly clipping the point cloud data in ModelNet and downsampling, the
input source point cloud and target point cloud are generated, and only keep a low overlap.
As can be seen from the figure, the registration result is basically close to the ground
truth. It can be seen that GCMTN performs better on the synthetic dataset ModelNet with
low overlap.

Table 3. Evaluation results on ModelNet and ModelLoNet.

Methods
ModelNet ModelLoNet

RRE RTE CD RRE RTE CD

DCP-v2 [34] 11.975 0.171 0.0117 16.501 0.300 0.0268
RPM-Net [33] 1.712 0.018 0.00085 7.342 0.124 0.0050
Predator [17] 1.739 0.019 0.00089 5.235 0.132 0.0083
REGTR [18] 1.473 0.014 0.00078 3.930 0.087 0.0037

GCMTN (ours) 1.532 0.013 0.00075 4.531 0.085 0.0056

To re-evaluate whether GCMTN is focusing on overlap regions, 8862 test pairs were
extracted by changing the integrity of the input point cloud from 70% to 30%. Figure 6
shows the comparison results of GCMTN and Predator at different overlap ratios. With the
decrease in overlap ratio, the values of RRE and RTE increase, but the values of GCMTN
in RRE and RTE are lower than those of Predator. It can also be proved that GCMTN has
excellent registration performance when dealing with low overlap.
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4.3. Experiments on 3DMatch
4.3.1. Dataset and Evaluation Metrics

The 3DMatch [48] dataset is a typical indoor scene cloud dataset, consisting of sixty-
two indoor real scenes collected by RGB-D, in which the data of forty-six scenes are used for
training, eight scenes are used for validation, and the other eight scenes are used for testing.
Each scene contains overlapping fragments and ground truth transformation. Preprocessed
data from the sampling point cloud containing the voxel grid in [17] was used. Scan pairs
with more than 30% overlap are only considered in the official 3DMatch dataset. To verify
the validity of GCMTN on the registration task with a low overlap ratio, scan pairs with
an overlap between 10% and 30% (3DLoMatch) were considered following [17]. As a
result, comparative experiments were conducted on the 3DMatch and 3DLoMatch datasets,
respectively. This study follows [17,19] to evaluate the performance of the registration
network using three metrics: Inlier Ratio (IR), Feature Match Recall (FMR), and Registration
Recall (RR).

4.3.2. Registration Results

GCMTN is compared with more recent methods such as PerfectMatch [50], FCGF [51],
D3Feat [41], Predator [17], SpinNet [52], and REGTR [18]. It takes the whole point cloud as
input and reports the results with different numbers of correspondences, which are 5000,
2500, 1000, 500, and 250. As shown in Table 1, it presents the quantitative results for three
evaluation metrics: FMR, IR, and RR.

For FMR, although the performance of GCMTN is close to REGTR on 3DMatch, its
performance on 3DLoMatch is significantly better than other methods, which verifies the
effectiveness of the submodule designed in GCMTN for finding the corresponding in the
case of low overlap. For IR, GCMTN is superior to other methods under different numbers
of correspondences. For 3DLoMatch data in particular, this shows that GCMTN is capable
of producing reliable correspondence in low-overlap scenes. This is related to the overlap
prediction module. The coarse to fine registration strategy reduces the probability of false
matching. In contrast, the performance of final registration is often of more concern and
can be evaluated by the RR. The quantitative results in Table 4 show that GCMTN achieves
the best performance compared with other methods on 3DLoMatch, which also indicates
that GCMTN can handle low overlap registration tasks well. In order to show the reliability
of the method more intuitively, Figure 7 shows some visualization results. The first three
lines of input point cloud are from 3DMatch, and the last two lines are from 3DLoMatch.
The first and second columns represent the input source and target point clouds, the third
column denotes the overlap region estimated by GCMTN, the fourth column shows the
registration result of GCMTN, and the last column denotes the ground truth. By comparing
the registration results with the ground truth, it can be seen that GCMTN achieves excellent
registration performance.

Table 4. Evaluation results on 3DMatch and 3DLoMatch.

#Samples
3DMatch 3DLoMatch

5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑
PerfectMatch [50] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2

FCGF [46] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [41] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [52] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [17] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
REGTR [18] 97.8 97.4 96.9 96.1 95.6 74.3 74.4 74.2 73.8 72.9

GCMTN (ours) 97.2 97.3 97.0 96.8 96.6 79.9 79.4 78.6 78.5 77.9
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Table 4. Cont.

#Samples
3DMatch 3DLoMatch

5000 2500 1000 500 250 5000 2500 1000 500 250

Inlier Ratio (%) ↑
PerfectMatch [50] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8

FCGF [46] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [41] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [52] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [17] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
REGTR [18] 57.3 55.2 53.8 52.7 51.1 27.6 27.3 27.1 26.6 25.4

GCMTN (ours) 63.0 64.1 61.8 60.1 58.2 36.8 37.4 36.6 36.2 35.7

Registration Recall (%) ↑
PerfectMatch [50] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0

FCGF [46] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [41] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [52] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [17] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
REGTR [18] 92.0 91.2 89.7 90.6 90.4 64.8 64.4 64.2 62.3 59.7

GCMTN (ours) 91.2 91.6 91.0 90.6 90.0 65.6 65.9 66.0 65.1 63.2
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4.4. Experiments on OdometryKITTI
4.4.1. Dataset

OdometryKITTI [49] contains 11 lidar scanned sequences of outdoor driving scenes.
The sequence 00–05 is used for training, the sequence 06–07 is used for validation, and the
sequence 08–10 is used for testing. The provided ground truth pose is further refined using
ICP, as suggested by [17,41], and is evaluated by only considering point cloud pairs that
are up to 10m away from each other.

4.4.2. Registration Results

GCMTN is compared with 3DFeat-Net [53], FCGF [51], D3Feat [41], Predator[17] and
GLORN [45], and evaluated on three metrics: RTE, RRE, and RR. The proportion of point
cloud pairs where both RRE and RTE are below a certain threshold (RRE < 5◦, RTE < 2 m).
Table 5 shows the quantitative results of GCMTN in three metrics. It can be seen that,
compared with other methods, although GCMTN is inferior to GLORN in RTE index, its
performance in RRE and RR is better than that of other comparison methods. Figure 8
shows the visualization result of registration on odometryKITTI, where the input point
cloud comes from the sequence 08–10, the first and second columns represent the source
and target point clouds, respectively, and the third column shows the registration result of
GCMTN, which shows that GCMTN can well align and match the input point clouds. It
can be proved that GCMTN has good applicability on large-scale outdoor scene datasets.

Table 5. Evaluation results on odometryKITTI.

Method RTE [cm] ↓ RRE [◦] ↓ RR ↑
3DFeat-Net [53] 25.9 0.57 96.0
FCGF [51] 9.5 0.30 96.6
D3Feat [41] 7.2 0.30 99.8
Predator [17] 6.8 0.27 99.8
GLORN [45] 6.2 0.27 99.8
GCMTN (ours) 6.7 0.25 99.8
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4.5. Ablation Study

Ablation studies were conducted on 3DMatch and 3DLoMatch to verify the effective-
ness of the proposed submodules, and the results are shown in Table 6. There are three key
submodules of GCMTN: Dense Graph Feature Aggregation (DGFA) module, Multilevel
Interaction Transformer (MIT) module, and Overlap Prediction (OP) module. When all the
submodules are unused, it means that GCMTN is compared to the baseline model [17],
where the metrics are lowest, with RR of 89% and 59.8% on 3DMatch and 3DLoMatch,
respectively. When only the DGFA module is used, the RR is 89.1% and 60.9%; when DGFA
and MIT modules are used, the RR is 89.5% and 62.8%; and when DGFA and OP modules
are used, the RR is 89.6% and 64.2%. When all modules are used, the RR is 89.6% and 64.2%,
respectively, which is an increase of 2.2% and 5.8% compared to the baseline model. It can
be seen that the proposed submodule has certain validity, and GCMTN performs well in
the low-overlap point cloud registration task.

Table 6. Validity verification of key submodules.

Key Module 3DMatch 3DLoMatch

DGFA MIT OP FMR (%) IR (%) RR (%) FMR (%) IR (%) RR (%)

× × × 96.7 58.0 89.0 78.6 26.7 59.8√
× × 96.6 59.9 89.5 78.7 30.8 60.9√ √

× 96.8 61.4 90.3 79.2 33.6 62.8√
×

√
97.0 62.1 90.7 79.5 34.9 64.2√ √ √
97.2 63.0 91.2 79.9 36.8 65.6

5. Discussion

From the above metrics and visualization results of a large number of experiments,
GCMTN has great advantages in dealing with low-overlap point cloud registration prob-
lems. This part will mainly be discussed from the following aspects: the validity analysis
of submodules, the performance and practicality analysis of GCMTN, the limitations of
GCMTN, and the future improvement directions.

5.1. Validity Analysis of Submodules

There are three key submodules of GCMTN, namely DGFA, MIT, and OP. According
to the results of ablation studies, the design of these three submodules has a positive impact
on the performance of GCMTN. This is due to the fact that DGFA can effectively expand the
receptive field of the point cloud, helping the network to distinguish objects with similar
structures in the scene. MIT can refine features inside point clouds and promote feature
interactions between point clouds to generate more resolution pointwise features, which
will help to predict overlap region in the future. The overlap factor and matching factor
proposed in OP are used to generate the overlap score and matching score, respectively,
which are used to filter the adverse effects of outliers and generate reliable correspondence.
The registration strategy from coarse to fine helps the network to predict the overlap region
more accurately. When the three modules work together, the best registration performance
can be achieved, which verifies the validity of the proposed submodules.

5.2. Performance and Practicality Analysis of GCMTN

The experiments were conducted on the synthetic dataset ModelNet, the indoor
scene dataset 3DMatch, and the outdoor scene dataset odometryKITTI. According to
the experimental results, GCMTN has achieved excellent performance on ModelNet and
ModelLoNet with low overlap ratio. For 3DMatch and 3DLoMatch, GCMTN showed great
improvement in FMR, IR, and RR compared with the baseline model. In addition, GCMTN
also achieved excellent performance on odometryKITTI. At the same time, in order to
visually demonstrate the practicability and feasibility of GCMTN, the registration results
of the three datasets were visually displayed, respectively. It can be seen that GCMTN
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can not only handle the registration task of high overlap scenes, but also perform well in
low-overlap scenes. Overall, GCMTN has value and potential for application in practical
remote sensing tasks. Additionally, GCMTN helps reduce the number of scans performed
by high-precision sensors in industrial settings, thereby lowering industrial costs and
driving the development of social productivity and technological transformation.

5.3. Limitations of GCMTN and Future Improvement Directions

Several extensive experiments have shown that GCMTN has achieved high robustness
and accuracy in low-overlap scene registration tasks, but there are some shortcomings.
Firstly, due to the introduction of dense connection in DGFA modules, this feature learning
approach brings a large amount of computation, which increases the complexity of the
model. In the future, it can be improved by introducing dilated graph convolution.

Secondly, a rotational invariant convolution strategy can be introduced to improve the
generalization ability of the model. In addition, although GCMTN shows better registration
results in synthetic datasets ModelNet and ModelLoNet, indoor scene datasets 3DMatch
and 3DLoMatch, and outdoor scene dataset odometryKITTI, these data come from open
datasets. It is not possible to demonstrate its applicability to real data scanned by sensors
in real industrial sites. Therefore, the potential of GCMTN to handle registration in real
industrial scenes can be explored in the future.

6. Conclusions

In this paper, a point cloud registration network combining dense graph convolution
and multilevel interaction Transformer (GCMTN) is proposed to realize point cloud regis-
tration tasks in low-overlap scenes. The proposed DGFA module in GCMTN expands the
receptive field of point clouds and performs well when dealing with objects with similar
geometric structures in the scene. In addition, the proposed MIT module uses Multihead
Offset Attention and Multihead Cross Attention to refine features inside the point cloud
and generate interactive features, which is directly related to the quality of subsequent
registration. Finally, the proposed overlap prediction module can effectively remove the
adverse effects of outliers and predict the overlap region. Multiple experiments on syn-
thetic datasets ModelNet and ModelLoNet, indoor scene dataset 3DMatch and 3DLoMatch,
and outdoor scene dataset odometryKITTI show that GCMTN can significantly improve
the capability of feature extraction and perform well in low-overlap registration tasks. It
has the value and potential to be applied to practical remote sensing tasks in the future.
It is expected that GCMTN will be able to expand into a more diverse range of remote
sensing-related application fields.
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