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Abstract: Spaceborne interferometric synthetic aperture radar (InSAR) techniques are important
for landslide detection and monitoring; however, several limitations and uncertainties, such as
the unique north–south flying direction and side-look radar observing geometry, currently limit
the ability of InSAR to credibly detect landslides, especially those related to high and steep slopes.
Here, we conducted experimental and statistical analysis on the feasibility of time-series InSAR
monitoring for steep slopes using ascending and descending SAR images. First, the theoretical
(TGNSS), practical (PGNSS), and terrain (Hterrain) (T-P-H) indices for sensitivity evaluations of the
slope displacement monitoring results from time-series InSAR were proposed for slope monitoring.
Subsequently, two experimental and statistical studies were conducted for the cases with and without
Global Navigation Satellite System (GNSS) monitoring data. Our experimental results of two high
and steep open-pit mines showed that the defined theoretical and practical sensitivity indices can
quantitatively evaluate the feasibility of ascending and descending InSAR observations in steep-slope
deformation monitoring with GNSS data, and the terrain sensitivity index can qualitatively evaluate
the feasibility of landslide monitoring results from ascending and descending Sentinel-1 satellite data
without GNSS data. We further demonstrate the generalizability of these proposed indices using
four landslide cases with both public GNSS and InSAR monitoring data and 119 landslide cases with
only InSAR monitoring data. The statistical results indicated that greater indices correlated with
higher reliability of the monitoring results, suggesting that these novel indices have wide suitability
and applicability. This study can help to improve the practice of slope deformation monitoring using
spaceborne InSAR, especially for high and steep slopes.

Keywords: InSAR; landslide; deformation monitoring; slope of open-pit mine; sensitivity evaluation

1. Introduction

Landslides are complex and common geohazards that can lead to global property
damage and casualties [1–3]. Landslides in open-pit mines occur as a result of slope
destabilization due to slope damage, which is caused by a variety of factors in the man-
made mining process. The landslide types occurring in open-pit mines are mainly rotational
landslide, translational landslide, block slide, topple, and composite landslides, and their
prevention requires effective and early detection, monitoring, and warning techniques [4,5].
Currently, in situ measurements and remote sensing methods are widely used for landslide
monitoring, including total station monitoring, measurement robot monitoring, GNSS
real-time monitoring, laser scanner monitoring, high-resolution optical image monitoring,
thermal infrared monitoring, and spaceborne InSAR monitoring [6]. Spaceborne InSAR
is typically precise and has high resolution and continuous space coverage, while being
capable of continuous all-weather operation [7,8]. Initially, the differential InSAR (D-InSAR)
method was used to carry out deformation monitoring. However, the complex topographic
environment, dense vegetation cover, and severe atmospheric influence in the landslide
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monitoring region of an open-pit mine, result in the D-InSAR method more seriously
affected by temporal and spatial decoherence and atmospheric delay, etc. In addition, due
to the unique flight mode of SAR satellites (north–south flight), the monitoring capability
of D-InSAR for north–south deformation is weak, and these shortcomings lead to the
relatively low-precision deformation monitoring results of D-InSAR technology in the
open-pit mine [9]. In 2002, small baseline subset differential interferometry (SBAS-InSAR)
technology was proposed and used to obtain the time-series surface deformation of the
Campi Flegrei crater and Naples city. This method has been shown to accurately estimate
time-series deformations [10]. Compared with persistent scatterer synthetic aperture radar
interferometry (PS-InSAR) technology [11], SBAS-InSAR uses a short baseline combination
for interferometry, which overcomes the poor coherence of interferograms that PS-InSAR
suffers from by using long spatial or temporal baselines, the necessity of a large-scale
number of SAR images (typically > 20), and low operation efficiency [12]; therefore, SBAS-
InSAR has improved the accuracy of deformation monitoring of time-series InSAR in
open-pit mine regions [13,14]. Furthermore, some studies have shown that SBAS-InSAR
technology is more suitable for deformation monitoring in field areas with more rapid
surface motion than PS-InSAR technology [15,16]. This study utilized SBAS-InSAR to
monitor the slope deformation in the Qidashan and Yabaling open-pit mines and obtained
the time-series deformation and displacement rates of the slopes.

Owing to the side-looking radar imaging geometry and unique north–south flying
direction of the satellite SAR system, the surface deformation monitored by InSAR is only
one-dimensional deformation that is along the line of sight (LOS) direction, rather than
the actual three-dimensional deformation of the surface in the up–down, east–west, and
north–south directions [17,18]. Additionally, an abundance of SAR images are used for
time-series InSAR, rendering it is beneficial to assess the monitoring sensitivity of InSAR
prior to heavy and abundant data processing; therefore, many scholars have studied the
feasibility of InSAR monitoring. For example, Cascini et al. [19] pioneered the concept of
using “visibility maps” for landslides, but did not consider the geometric distortion caused
by terrain factors including shadow, layover, and foreshortening. The “R-Index” was later
proposed by Notti et al. [20], which estimates the feasibility of InSAR based on terrain
geometry, and a series of improved studies were subsequently conducted [21–23]. Recently,
the “P-NG” method was proposed to determine the magnitude of geometric distortion as it
can distinguish more types of geometric distortion [24,25]; however, these studies did not
consider landslide deformation patterns [26], especially those high and steep landslides,
for example, the slope height greater than 200 m and slope angle greater than 42 degrees.

Overall, few studies have quantitatively evaluated the reliability of time-series InSAR
displacement monitoring results for high and steep slopes based on the sensitivity of
different SAR orbits, which restricts the effective application of the time-series InSAR
method in landslide monitoring of large open-pit mines. The displacement along the sliding
direction can be used as the benchmark parameter to quantitatively evaluate the reliability
of landslides monitored by time-series InSAR because the slope gradient of a high and steep
open-pit is a critical factor causing landslides, and the slope is highly consistent with the
sliding angle. Combined with InSAR monitoring results and high-precision digital elevation
model (DEM) data, we defined the theoretical sensitivity index (TGNSS) and practical
sensitivity index (PGNSS) of slope monitoring sensitivity based on GNSS monitoring results,
which were used as the reliability evaluation index for the quantitative evaluation of
InSAR slope displacement monitoring results. For the scenario without GNSS monitoring
results, we further defined the terrain sensitivity index (Hterrain) by combining the geometric
characteristics of slope displacement with the relationship between slope displacement and
SAR observation geometry. Finally, using the Qidashan and Yabaling open-pit mines as
experimental cases, we analyzed and verified the availability and effectiveness of Sentinel-1
satellite data to identify and monitor landslides. Then, using four landslide cases with GNSS
monitoring data and 119 landslide cases without GNSS monitoring data, we statistically
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analyzed the proposed sensitivity indices for slope monitoring in all cases and proved the
general adaptability of the new indices.

2. Locations and Datasets of Two High and Steep Slopes
2.1. Location and SAR Datasets of the Qidashan Open-Pit Mine Landslide

First, we considered the high and steep slope of the Qidashan open-pit mine, the
largest open-pit metal mine in Asia, located in the northeast of Anshan City, Liaoning
Province, China, as an experimental study. This metal mine is composed of an open pit
and several tailing reservoirs covering 1121 hectares, and the open-pit mine is 3400 m
long, 1000 m wide, and 230 m deep (Figure 1). Long-term, high-intensity, and large-scale
continuous mining makes slopes extremely unstable, which leads to increasing landslide
disasters. Rapid and accurate monitoring and timely and effective early warnings are
crucial for mine disaster prevention and reduction.
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and Figure 1c shows the high-precision DEM data of the Qidashan open-pit mine gener-
ated from point cloud data obtained using a three-dimensional laser scanning system. 
Sentinel-1 SAR data from European Space Agency were utilized in this study, and the 
detailed parameters are listed in Table 1. Additionally, three continuously operating GNSS 
monitoring stations, noted by the black flags in Figure 1c, were installed in the region with 
a large deformation in the northeastern part of the open-pit mine. From left to right, these 
monitoring stations are QK01, QK02, and QK03, respectively. Three-dimensional high-
precision deformation data from these GNSS stations were obtained. The horizontal accu-
racy was better than 2 mm and the vertical accuracy was better than 4 mm for the three 
GNSS sites. 

Figure 1. Location map of Qidashan open-pit mine. (a) Study region, the red and blue quadrangles
are Sentinel-1A and -1B satellites coverage areas, respectively. (b) Boundary map of Liaoning
province, China. (c) DEM of Qidashan open-pit mine derived from Lidar (d–f) field investigations
and monitoring of the landslide area.

Slope deformation monitoring of the Qidashan open-pit mine was conducted by
combining the SBAS-InSAR and GNSS real-time monitoring techniques. The red and
blue quadrangles in Figure 1a are the coverage areas of the ascending and descending
orbit radar satellite images after clipping, and the green area in Figure 1a is the study
area of the Qidashan open-pit mine. Figure 1b shows a topographic map of Liaoning
Province, and Figure 1c shows the high-precision DEM data of the Qidashan open-pit
mine generated from point cloud data obtained using a three-dimensional laser scanning
system. Sentinel-1 SAR data from European Space Agency were utilized in this study, and
the detailed parameters are listed in Table 1. Additionally, three continuously operating
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GNSS monitoring stations, noted by the black flags in Figure 1c, were installed in the region
with a large deformation in the northeastern part of the open-pit mine. From left to right,
these monitoring stations are QK01, QK02, and QK03, respectively. Three-dimensional
high-precision deformation data from these GNSS stations were obtained. The horizontal
accuracy was better than 2 mm and the vertical accuracy was better than 4 mm for the
three GNSS sites.

Table 1. Detailed parameters of the Sentinel-1 satellite data for the slope deformation monitoring of
the Qidashan open-pit mine.

Satellite Orbit Incidence
Angle (◦)

Heading
Angle (◦) Period Number

of Scenes

Maximum
Spatial

Baseline (m)

Resolution
Azimuth × Range

(m2)

Sentinel-1A Ascending 33.7 −13.54 22 October 2018–14 May 2019 18 83.4 5 m × 20 m
Sentinel-1B Descending 36.1 166.37 26 October 2018–18 May 2019 17 135.6 5 m × 20 m

We processed two datasets of 18 Sentinel-1A ascending SAR images and 17 Sentinel-1B
descending SAR images of the C-band in interferometric wide swath mode. The ascending
data span from 22 October 2018 to 14 May 2019, with a maximum spatial baseline of 83.4 m
and an average spatial baseline of 19.27 m. The time interval of descending data was
from 26 October 2018 to 18 May 2019, the maximum spatial baseline was 135.6 m, and the
average spatial baseline was 21.93 m.

2.2. Location and SAR Datasets of the Yabaling Open-Pit Mine Landslide

The second case was that of the Yabaling open-pit mine, which is also located in
the eastern part of Anshan City, Liaoning Province, China. A landslide occurred on
25 November 2019 in the Yabaling open-pit mine, as shown in Figure 2. Owing to long-
term continuous mining, the Yabaling open-pit mine has turned into deep concave open-pit
mining, forming many landslide-prone hazard areas.
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In this study, Sentinel 1A/B TOPS C-band SAR images were used to map the time-
series deformation of the slopes of the Yabaling open-pit mine. Overall, 29 SLC images of
ascending orbit (including two orbits: T25 and T98) in interferometric wide mode were
collected from 7 June 2019, to 22 November 2019, and 15 SLC images of descending orbit
(T105) in interferometric wide mode were collected from 6 June 2019 to 21 November 2019.
Detailed information on the Sentinel-1 SAR data is presented in Table 2.

Table 2. Detailed parameters of the Sentinel-1 data.

Satellite Orbit Incidence Angle (◦) Heading Angle (◦) Period Number of Scenes

Sentinel-1A Ascending1 (T25) 38.87 −13.53 7 June 2019–22 November 2019 14
Sentinel-1A Descending (T98) 38.86 −13.53 12 June 2019–15 November 2019 15
Sentinel-1B Descending (T105) 39.02 166.42 6 June 2019–21 November 2019 15

3. Definition of Sensitivity Indices for Slope Monitoring

Over the past two decades, time-series InSAR has become capable of reducing tempo-
ral and geometrical decorrelations using multiple SAR images. SBAS-InSAR is a widely
used time-series InSAR method that has high coherence of interferograms and mitigation
of irregular atmospheric delays and can focus on coherent radar targets instead of the
ensemble of image pixels [27]. Therefore, we utilized this method to process all relevant
available SAR images. First, we selected the appropriate spatio-temporal baseline thresh-
olds to combine image pairs from multiple SAR images arranged chronologically covering
the study area [28]. Then, according to the connection relationship, all the image pairs
were processed by interferometric, flattening, filtering, and phase unwrapping to obtain
the interferogram. The topographic and residual phases were then estimated and corrected
by introducing external DEM data and ground control points (GCP) [29], the selection of
which in the open-pit mining areas were not located in the residual terrain phase of high
frequency, deformation phase, and break phase, and were located in a relatively stable
nondeformed region [30]. The interferogram was then reflected and refined. Next, the
minimum-cost flow method was used for phase unwrapping [31], and the time-series sur-
face displacement was estimated using the singular-value decomposition method. Finally,
geocoding was performed to obtain the cumulative surface deformation and deformation
rates in the WGS-84 coordinate system.

The visibility of the surface of the Earth to radar satellite sensors depends on the
parameters of the satellite and the terrain geometry; therefore, in different parts of the same
SAR image, the change in the detectability sensitivity depends on the local incident angle,
which is determined by the aspects of the local terrain slope. Considering these effects,
slant-range geometrical distortions can be classified as layover, foreshortening, and shad-
ows [32], and the existence of geometrical distortions considerably limits the application
of InSAR [33]; therefore, prior knowledge is required to determine the detectability of the
study area. Based on the multi-orbit datasets, combined with obtained terrain information,
the most appropriate SAR monitoring data were evaluated to ensure that the study area
can be sufficiently monitored to save a lot of time and cost and achieve efficient monitoring.

As shown in Figure 3, the deformation directly observed by InSAR is not the deforma-
tion of the ground, but the deformation along the LOS direction, which is the superposition
of deformation projections in the north–south (N), east–west (E), and up–down (U) dis-
placements. Sentinel-1 is a near-polar-orbiting satellite; therefore, it is not sensitive to
north–south deformation [34].

By combining InSAR displacements from two imaging geometries, that is, one ascend-
ing and one descending geometry, the three-dimensional InSAR surface displacement was
calculated. The InSAR LOS displacement derived from ascending orbit data SA

Los consists
of a ground vector DR (LOS projection in the horizontal direction) and a vertical vector DU,
as follows:

SA
LoS = DU · cos θA + DR · sin θA (1)
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where θA represents the incidence angle of ascending orbit image.
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The ground displacement vector DR consists of the eastern displacement vector DE
and southern displacement vector DN as follows:

DR = DE ·
(
−sin

(
γA − 3π/2

))
+ DN ·

(
−cos

(
γA − 3π/2

))
(2)

where γA is the orbit azimuth angle of the ascending orbit image, which is the angle
between the north and satellite flight directions (clockwise). Substituting Equation (2)
into Equation (1), the relationship between the LOS direction deformation vector and the
three-dimensional surface deformation vector for the ascending orbit data is obtained
as follows:

SA
LOS = DU · cos θA − DE · sin θA · cos γA + DN · sin θA · sin γA (3)

Similarly, the relationship between the LOS direction displacement vector and the
three-dimensional surface displacements vector for the descending orbit data is as follows:

SD
LOS = DU · cos θD − DE · sin θD · cos γD + DN · sin θD · sin γD (4)

By setting X = −sin α·cos β; Y = sin α·sin β; and Z = cos α, Equations (3) and (4) were
rewritten into the following matrix:

[
SA

LOS
SD

LOS

]
=

[
XA YA ZA
XD YD ZD

]DE
DN
DU

 (5)

where
[
X Y Z

]
is called the vector projection of InSAR LOS in the three-dimensional

directions of ENU [35,36]. Superscripts A and D denote ascending and descending
orbits, respectively.

3.1. Definition of Theoretical and Practical Sensitivity Indices Based on GNSS Data

When GNSS deformation monitoring data of the open-pit mine slope were available,
the displacements of the slope in three-dimensional directions were provided by the GNSS
real-time monitoring station. Subsequently, the geometric parameters of the ascending
and descending orbit satellites are substituted into Equation (5) to calculate the LOS defor-
mation of the open-pit mine slope displacement vector under ascending and descending
orbit conditions.

Landslides are generally displaced along the slope direction, so it is necessary to con-
vert the displacement in the three-dimensional direction to the slope direction, and combine
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the two parameters of slope angle (ϕ) and aspect angle (α) to establish the expression of
slope direction displacement (SSlope) as follows:

SSlope = DU · sin ϕ− DE · sin α · cos ϕ− DN · cos α · cos ϕ (6)

To quantitatively evaluate the reliability of InSAR deformation results in open-pit
mine slope monitoring, the theoretical sensitivity index (TGNSS) and practical sensitivity
index (PGNSS) slope monitoring were defined by combining aspect angle (α) and slope
angle (ϕ), and the calculation formulae were as follows:[

TA
GNSS

TD
GNSS

]
=

[
SA

LOS/SSlope
SD

LOS/SSlope

]
× 100% (7)

[
PA

GNSS
PD

GNSS

]
=

[
IA
LOS/SSlope

ID
LOS/SSlope

]
× 100% (8)

where SA
Los and SD

Los are the LOS projection deformations of GNSS under the conditions
of ascending and descending orbits, respectively; SSlope is the deformation of GNSS in
the slope direction; and IA

Los and ID
Los are the LOS deformations obtained by InSAR for

ascending and descending orbits, respectively.

3.2. Definition of Terrain Sensitivity Index through Satellite and Terrain Information

The high cost of GNSS monitoring equipment and the uncertainty of which areas are
potential landslide regions can make it difficult to obtain GNSS deformation monitoring
data; therefore, we could not obtain the true slope-slip deformation. To accommodate these
problems, we defined the terrain sensitivity index by combining the imaging geometry
of the SAR satellite with local terrain parameters. Publicly available high-precision DEM
data were used to obtain terrain information such as slope and aspect, and the two study
areas involved in this study have LiDAR point cloud data from which slope and aspect
information can be accurately obtained.

Generally, the deformation along the LOS direction derived from InSAR is insufficient
for reflecting the deformation of the slope [37,38]. Figure 4 shows the typical imaging
geometry of the ascending orbit, where ϕ is the slope angle, α is the aspect angle, and β is
the angle between vector SA

Los and vector DSlope. We decomposed vector DSlope into three
directions, that is, N, E, and U [39], and the decomposition result is expressed as a matrix
in Equation (9). DU

DN
DE

 = DSlope

 sin ϕ
cos ϕ · cos α
cos ϕ · sin α

 (9)
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When there is a shadow in the radar image, the monitoring result is not credible, and
its corresponding Hterrain value is 0. The shadowed area in the radar image can be identified
in advance based on high-precision DEM data and satellite geometry. By introducing
Equation (9) into Equations (3) and (4), the terrain sensitivity indices HA

terrain and HD
terrain of

the ascending and descending orbits can be obtained as follows:

HA
terrain =

 sin ϕ · cos θA + cos ϕ · sin α · sin θA · cos γA − cos ϕ · cos α · sin θA · sin γA
{

α ∈
(
π + γA, 2π + γA), ϕ ∈

(
π/2− θA, π/2

)
α ∈ (0, 2π), ϕ ∈

(
0, π/2− θA)

0 α ∈
(
0, π + γA) ∪ (2π + γA, 2π

)
, ϕ ∈

(
π/2− θA, π/2

) (10)

HD
terrain =

 sin ϕ · cos θD + cos ϕ · sin α · sin θD · cos γD − cos ϕ · cos α · sin θD · sin γD
{

α ∈
(
π − γD, 2π − γD), ϕ ∈

(
π/2− θD, π/2

)
α ∈ (0, 2π), ϕ ∈

(
0, π/2− θD)

0 α ∈
(
0, π − γD) ∪ (2π − γD, 2π

)
, ϕ ∈

(
π/2− θD, π/2

) (11)

3.3. Slope Angle and Aspect Angle Dependences of Terrain Sensitivity Index (Hterrain)

To describe the slope angle and aspect angle dependences of the terrain sensitivity
index intuitively, we simplified Equations (10) and (11) by introducing typical parameters
of ascending and descending Sentinel-1 satellites. Generally, the average value of the
incident angle for Sentinel-1 satellites is 35◦, and the average values of the heading angle
for ascending and descending Sentinel-1 orbits are –13.5◦ and 166.5◦, respectively. By
substituting these values into Equations (10) and (11), we obtained Equations (12) and (13)
of the terrain sensitivity index of the Sentinel-1 ascending and descending orbits, which only
contain two unknown parameters of the slope and aspect angles. Notably, the slope angle
(ϕ) and aspect angle (α) of any points on the slope can be obtained through high-precision
DEM data.

HA
terrain = cos β = 0.819sin ϕ + 0.558cos ϕ · sin α + 0.134cos ϕ · cos α (12)

HD
terrain = cos β = 0.819sin ϕ− 0.558cos ϕ · sin α + 0.134cos ϕ · cos α (13)

To analyze the effects of topographic information, we plotted three-dimensional im-
ages of the terrain sensitivity index (Hterrain) of the Sentinel-1 satellite for all possible
scenarios in the ascending and descending modes. Negative Hterrain values indicate that
the direction of slope displacement is opposite that of satellite LOS. The higher the abso-
lute value of Hterrain, the higher the monitoring sensitivity and probability of monitoring
landslide displacement using Sentinel-1 data. When the slope was parallel to the LOS, the
terrain sensitivity index was approximately 1. Additionally, it is important to consider
unmeasurable problems caused by radar shadowing. In the ascending mode, when the
aspect angle is within the range of α ∈ (0◦, 166.5◦) ∪ (346.5◦, 360◦) and the slope angle
is ϕ > 55◦, radar shadowing will occur, which makes the observation results unusable.
Similarly, in the descending mode, when the aspect angle is within the range of α ∈ (0◦,
13.5◦) ∪ (193.5◦, 360◦) and the slope angle is ϕ > 55◦, the radar shadowing phenomenon also
emerges. The black-shaded portion in Figure 5 shows the values of Hterrain corresponding
to the radar shadowing.

Figure 6 shows the change of Hterrain caused by the slope and aspect angles for the
ascending and descending orbit modes, respectively. Figure 6a shows the α-Hterrain curves
for different slope angles (ϕ) in ascending mode. The Hterrain of different slope angles
reached its maximum when the slope angle (α) was 75◦ (red dashed line), which indicated
that the projection of slope displacement in the LOS direction reached its maximum. If
Hterrain = 1, the slope displacement direction coincided with the LOS direction; thus, we
could obtain the best sensitivity and result using time-series InSAR. Notably, only the slope
angle (ϕ) was 60◦, and the best observation condition of Hterrain = 1 was satisfied. As the
aspect angle (α) increased, the curve decreased to lower values, and when the aspect angle
(α) was 255◦ (green dashed line), the Hterrain of different slope angles reached its minimum,



Remote Sens. 2023, 15, 3906 9 of 27

and the Hterrain corresponding to the four curves from 0◦ to 30◦ were negative values, which
indicated that the direction of the slope displacement was back to the sensor, and the active
layover occurred. Similar regularity for the descending mode is shown in Figure 6b.
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Figure 6. The effect of slope angle and aspect angle on Hterrain in the ascending and descending
modes. (a) The red (75◦) and green (255◦) dashed lines represent the locations where the trend
changes in the ascending mode. (b) The red (105◦) and green (285◦) dashed lines represent the
position where the trend changes in the descending mode. (c) Hterrain for different aspect angle as
the slope angle changes in ascending mode. (d) Hterrain for different aspect angle as the slope angle
changes in descending mode.

Figure 6c shows the ϕ-Hterrain curves for different aspect angles (α) in the ascending
mode. As the slope angle (ϕ) increased, Hterrain gradually increased and approached
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a constant of 0.81 for different aspect angles (α). The curves with 75◦ and 255◦ as the
symmetry axes showed approximately the same trajectory. Notably, when the slope angle
was 0◦, the direction of displacement was horizontal, that is, the aspect angle was the same
as the displacement direction. When the slope angle was 90◦, the direction of displacement
was vertical; in this case, the value of Hterrain was 0.81, so the application of Sentinel-1 data
to monitor the vertical displacement of the plane had a high sensitivity, which explains
why the application of different orbital Sentinel data makes it very easy to monitor the
vertical displacements generated by various horizontal surfaces. A similar regularity for
the descending mode is shown in Figure 6d, with symmetry axes of 105◦ and 285◦.

4. Results and Analysis
4.1. Case Study of the Qidashan Open-Pit Mine Landslide
4.1.1. Deformation Monitoring Results of Qidashan Open-Pit Mine Slope Derived from
SBAS-InSAR

Based on the spatial baseline threshold of 1.5%, which is relative to the maximum
spatial baseline, and the time baseline threshold of 72 d, 69 and 63 image pairs were selected
for the ascending and descending orbit data, respectively. The wide coverage of Sentinel-1
IW data was achieved by employing the terrain observation by the progressive scans
(TOPS) acquisition mode; however, the non-stationarity of the squint angle during this
TOPS acquisition produced a linear variation in the Doppler centroid frequency of the
SAR data, resulting in the interferometric processing of the TOPS data to require stringent
azimuth registration accuracy (0.001 of the pixel spacing). Therefore, the precise orbit of the
Sentinel-1 satellite was used for initial registration, and then the enhanced spectral diversity
(ESD) algorithm was used to eliminate the residual geometric offsets of different bursts
after the initial registration to obtain the required fine azimuth co-registration accuracy.

Subsequently, we used the Goldstein method to perform interferogram filtering and
applied the minimum cost flow (MCF) method to unwrap the phases. The GCP was
then used as the stable reference point for orbit refinement and reflattening. The constant
residual phase and phase ramp were corrected using GCPs. Finally, we calculated the
deformation rate and time-series displacements using the singular value decomposition
(SVD) method by removing the influence of the residual DEM error, atmospheric noise,
and orbit errors through high-pass filtering in the time domain and low-pass filtering in
the frequency domain [40].

The LOS cumulative displacements and deformation rates of the descending and
ascending orbits in the Qidashan open-pit mine during the study period are shown in
Figures 7–9, respectively. As shown in Figure 7, there are three local areas with clear defor-
mation characteristics east of the mine, represented by three solid red rectangles, and the
maximum deformation rates in these three areas were −78.1, −56.65, and −117 mm/year,
respectively. The negative values are far from the satellite, and the positive values are close
to the satellite. Figure 8 shows the deformation monitoring results from the ascending orbit
data, which show that there is a clear deformation area west of the mine, represented by
the dashed red circle, with a maximum deformation rate of −69 mm/year.

Figure 9 shows the deformation rate of descending and ascending orbits in the study
area. The annual average deformation rates monitored by InSAR at three GNSS monitoring
stations were−7.7,−20.5, and−47.6 mm/year in descending orbits, while they were−13.2,
−34.4, and −105.5 mm/year in ascending orbits. By comparing the LOS deformation rate
results from the ascending and descending orbits, a difference between the deformation
region monitored by the ascending and descending orbit data is evident, which is consistent
with the cumulative deformation results. Next, we quantitatively evaluated the deformation
monitoring results of the ascending and descending orbits using theoretical and practical
sensitivity indices.
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4.1.2. Quantitative Evaluation of InSAR Results from Qidashan Open-Pit Using Theoretical
and Practical Sensitivity Indices

First, the projection of slope slip in the LOS direction was calculated by substituting
GNSS three-dimensional observation data and satellite geometric parameters of ascending
and descending orbits, represented by the red line in Figure 10. Assuming that the slip
magnitude in the north–south direction of the slope was 0, only the two-dimensional data
in the east–west and up–down directions were used to obtain the projection magnitude of
the slope sliding deformation in the LOS direction, represented by the blue line in Figure 10.
The results of Figure 10 show that regardless of whether in ascending or descending
orbits, the results of LOS projection deformation calculated by three- and two-dimensional
deformation information are quite close, which indicates that the influence of north–south
deformation on the monitoring results of LOS projection deformation obtained by the
Sentinel-1 satellite is small in this case, accounting for only 12% and 13% for ascending and
descending orbits, respectively.

We compared the LOS deformation derived from GNSS for ascending and descending
modes, represented by the red line in Figure 10, with the LOS deformation obtained from
SBAS-InSAR, represented by the black stars and points for ascending and descending
in Figure 10, respectively. According to Equation (5), the east–west deformation is the
main factor affecting the calculation results of the LOS deformation; therefore, considering
the different levels of the east–west deformation magnitude, GNSS monitoring stations
with trivial east–west sliding magnitudes (i.e., approximately 10 mm/year), such as the
QK01 monitoring station (the up–down, east–west, and north–south deformations were
−8.9, −10.4, and −2.5 mm, respectively), the LOS deformation results obtained by SBAS-
InSAR matched well with the projection value of the practical sliding magnitude in the
LOS direction under both ascending orbit and descending modes. The results from the
QK02 monitoring station (the up–down, east–west, and north–south deformation are−26.4,
−25.1, and −13.4 mm, respectively), which had a slightly larger deformation magnitude
(approximately 30 mm/year) in the east–west direction, were consistent under an ascending
orbit mode but deviated slightly between them under a descending orbit mode. When the
east–west deformation had a considerable magnitude (approximately 90 mm/year), such
as at the QK03 monitoring station (the up–down, east–west, and north–south deformations
were −96.9, −86.2, and −60.9 mm, respectively), it only deviated slightly in the ascending
orbit mode, but it deviated considerably in the descending orbit mode. However, northeast
of the Qidashan open-pit mine slope, the conformity was reasonable under an ascending
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orbit due to the sharp reduction in the post-projection deformation caused by the projection
transform coefficients of the ascending orbit, which made the LOS deformation of the
ascending orbit obtained by SBAS-InSAR be only 20% of the practical up–down and
east–west deformations. Given a descending orbit, the deviation between them increased
gradually with the increase in deformation, but compared with the monitoring results of
the ascending orbit, the monitoring results of the descending orbit were more consistent
with the practical landslide situation, and the LOS deformation of the descending orbit was
approximately 50–70% of the practical up–down and east–west deformations.
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Considering the differences in slope sliding directions of different open-pit mines, we
used the practical sliding deformation of the open-pit mine as the benchmark parameter
for quantitative evaluation of the reliability of landslides monitored by time-series InSAR.
The practical sliding of an open-pit mine along the slope direction was calculated using the
three-dimensional GNSS deformation results. Combined with the slope deformation vector
and satellite imaging geometry, we defined theoretical and practical sensitivity indices for
InSAR slope monitoring to quantitatively evaluate the reliability of time-series InSAR in
the application of open-pit mine landslide monitoring.

Table 3 shows the theoretical and practical sensitivity indices of slope monitoring
calculated using Equations (7) and (8), the three-dimensional slip obtained by GNSS
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monitoring, and the LOS slip obtained by InSAR monitoring. The calculation results of the
theoretical sensitivity index of slope monitoring showed that the TD

GNSS of the descending
orbit (average ~ 96%) was significantly better than that of the ascending orbit (average
~ 15%); therefore, the monitoring results of the descending orbit were more reliable than
those of the ascending orbit in this study area. Furthermore, the practical InSAR LOS
deformation monitoring results were used to calculate the practical sensitivity index of
slope monitoring, and the PD

GNSS of the descending orbit (average ~ 40%) was significantly
better than that of the ascending orbit (average ~ 15%), which is consistent with the
theoretical calculation results. Even with the large-angle sliding of high and steep slopes
in the open-pit mine, the monitoring results of the descending orbit can obtain 40% of
the slope slip. Generally, when the measurement error meets specific requirements, the
theoretical sensitivity indices were larger than the practical sensitivity indices in ascending
and descending orbits, indicating that it is difficult to achieve theoretical monitoring
accuracy with practical InSAR monitoring because of the comprehensive influence of
various errors. Practically, the greater the slope indices (including theoretical and practical
sensitivity indices), the higher the reliability of the monitoring results, which has more
significance for the identification and monitoring of open-pit mine landslides and can be
used as reference data for landslide monitoring and early warning in local regions.

Table 3. GNSS and InSAR displacements and the theoretical and practical indices for slope
monitoring sensitivity.

GNSS Site Method

Three-Dimensional Sliding
Magnitude (mm)

LOS Sliding
Magnitude (mm) Slope Slip

(mm)
TA

GNSS
(%)

PA
GNSS
(%)

TD
GNSS
(%)

PD
GNSS
(%)

U E N Ascending Descending

QK01 GNSS −8.9 −10.4 −2.5 −1.5 −13.5 −13.1 11.5 16.0 103.0 43.5
InSAR −2.1 −5.7

QK02 GNSS −26.4 −25.1 −13.4 −6.7 −37.5 −36.2 18.5 17.4 103.6 47.0InSAR −6.3 −17

QK03 GNSS −96.9 −86.2 −60.9 −26.2 −136.0 −139.9 18.7 14.2 97.2 35.7InSAR −19.9 −50

4.1.3. Influence of Topographical Factors on Time-Series InSAR Monitoring Results from
Different Orbit Datasets

In the Qidashan open-pit mine case, the point cloud data obtained by LiDAR scanning
were used to generate a high-precision DEM of the open-pit mine (Figure 1c), which was
used to calculate the accurate slope and aspect angles of the three GNSS monitoring points
in the landslide area, as shown in Table 4. The slope gradients of the three GNSS stations
were greater than 40◦, which were in landslide sensitive areas, and the slope and aspect
angles were between 202.5◦ and 337.5◦; therefore, the landslide direction of the slope
was southwest.

Table 4. The landslide angle, slope, aspect value and Hterrain of the GNSS station.

GNSS Site Landslide Angle (◦) Slope (◦) Aspect (◦)
Hterrain

Ascending Descending

QK01 50.13 53.25 234.9 0.46 0.86

QK02 47.14 41.37 213.3 0.47 0.62
QK03 47.44 53.33 225.6 0.53 0.79

Based on the GNSS monitoring results in the north–south, east–west, and up–down
directions, the landslide angles of the three GNSS monitoring stations were calculated. The
resulting practical sliding angles and slopes of the three stations were relatively close. In
the slope monitoring practice of the Fushunxi [38] and Anqian Yabaling open-pit mines [41]
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among other large open-pit mines, we found that the landslide angles and gradients of
high and steep open-pit mines were highly consistent. Therefore, for high and steep open-
pit mines, when there was no or missing GNSS observation data in the study area, we
calculated the terrain sensitivity index using Equations (12) and (13) from the slope and
aspect angles obtained from the high-precision DEM data. Here, we considered QK01,
QK02, and QK03 as examples. The theoretical sensitivity indices of the ascending and
descending orbit of the QK01 station were 10.5% and 97.1%, respectively, while those
of the QK02 station were 17.2% and 96.8%, respectively, and those of the QK03 station
were 18.3% and 95.0%, respectively, as shown in Table 4. The terrain sensitivity index of
Hterrain of the ascending and descending orbit modes of the QK01 station were 0.46 and 0.86,
respectively, while those of the QK02 station were 0.47 and 0.62, respectively, and those of
the QK03 station were 0.53 and 0.79, respectively, as shown in Table 4. The Hterrain of the
descending orbit was greater than that of the ascending orbit at all three GNSS stations;
therefore, the proposed method can also quantitatively evaluate the reliability of InSAR
monitoring results under different orbit conditions when there is an absence of or missing
GNSS observation data.

Affected by the complex fluctuation terrain of open-pit mine, time-series InSAR is
considerably affected by the slope gradient in the surface deformation monitoring of the
open-pit mine. When the slope angle is large, geometric distortion (shadow and layover)
occurs in the SAR image [42]. When the radar was in an ascending orbit, the topographic
slope angle was greater than the radar incident angle (α > θ) and the layover was formed;
however, when the radar was in descending orbit, the layover area was formed when the
angle of the topographic slope on the back slope of the radar incident was greater than the
residual angle of the radar incident angle (α > π/2− θ).

Considering the practical situation of the QK01 monitoring station as an example,
during an ascending orbit, the sliding direction was the same as the radar LOS. According to
Table 3, the slope angle of this station was greater than the radar incidence angle; therefore,
it is difficult for InSAR to obtain useful phase information in the layover area. Combined
with the calculation results of Equation (6), the monitoring magnitude of the InSAR LOS
under an ascending orbit was found to be small; therefore, we determined that layover
occurred during SAR imaging. In contrast, during a descending orbit, the sliding direction
is opposite that of the radar LOS. As shown in Table 4, the angle of the terrain slope of
the station on the back slope of the radar incidence was less than the residual angle of the
radar incidence angle; therefore, we determined that no layover area is formed during SAR
imaging (i.e., QK02 and QK03 were similar to QK01).

Therefore, when monitoring the landslide in the surrounding area of the three GNSS
stations of the Qidashan open-pit mine, the layover phenomenon was not conducive to
landslide monitoring by the InSAR technique, which affected the accuracy of landslide
identification and monitoring; however, no observation error was caused by the descending
orbit images during the imaging process of the study area. According to the calculated val-
ues of ascending and descending orbits at three GNSS monitoring stations, the monitoring
magnitude of the ascending orbit was smaller than that of the descending orbit; therefore,
estimating the landslide deformation by using the monitoring results of the descending
orbit was more accurate than using the ascending orbit when applying InSAR to identify
and monitor landslides in the study area.

4.2. Case Study of the Yabaling Open-Pit Mine Landslide
4.2.1. Deformation Monitoring Results of Yabaling Open-Pit Mine Slope Derived from
SBAS InSAR

We processed the datasets from three different orbits using the SBAS-InSAR technique
and obtained three results of LOS time-series deformation in the study area, as shown in
Figure 11. Figure 11a,b shows the monitoring results of the ascending dataset for the T25
and T98 orbits, respectively. Figure 11c shows the monitoring results of the descending
dataset for the T105 orbit. Negative values (red) indicate ground motion away from the
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satellite, while positive values (blue) indicate ground motion toward the satellite. The
InSAR monitoring results obtained from the two ascending orbit datasets indicated that
there was an anomalous deformation on the southwest slope of the Yabaling open-pit mine
(where the landslide occurred); however, the deformation information was insensitive to
the monitoring results obtained from the descending orbit dataset.
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4.2.2. Evaluation of Monitoring Results for Three Different Orbital Datasets Using Hterrain

For the three different orbital datasets, only the two ascending datasets obtained the
effective deformation of the landslide area before the landslide, whereas the descending
dataset had low sensitivity to the deformation region and failed to effectively monitor
the deformation information of the landslide area. We selected the location with the
largest deformation, which is indicated by the red dot on Figure 2, as the study point, and
according to the global 12.5 m DEM data provided by the ALOS satellite, the slope angle of
this point was 39.95◦ and the aspect angle was 49.82◦. Bringing these two parameter values
into Equations (12) and (13), we calculated the values of Hterrain under the two ascending
(T25 and T98) and the descending orbit (T105) datasets as 0.90, 0.93, and 0.07, respectively,
and it is clear that the sensitivity of the descending orbit dataset to the deformation of
this study area was very low and could not be monitored. Therefore, if the Hterrain value
could be calculated using known DEM data before InSAR data processing, a dataset with a
high-monitoring sensitivity could be selected using a priori knowledge. For this case, only
datasets with high Hterrain values were selected as the data source, which greatly improved
the efficiency of landslide monitoring using InSAR.
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4.3. Statistical Analysis of the Sensitivity Evaluation Indices

Different landslide events have shown that the types, sizes, geological conditions,
mechanical parameters, and trigger factors of landslides differ. To verify whether the in-
dices proposed in this study are widely applicable, we performed a statistical study on the
theoretical, practical, and terrain sensitivity indices. Although landslides are complex geo-
logical disasters, we demonstrate that it is possible to quantitatively describe the credibility
of landslide monitoring for high and steep slopes using this time-series InSAR technique.

4.3.1. Statistical Analysis of Landslide Cases with Both GNSS and InSAR Monitoring Data

To statistically prove the generalizability of the theoretical and practical sensitivity
indices, we needed landslide cases with both GNSS and InSAR monitoring data. How-
ever, we reviewed over 300 papers on InSAR landslide monitoring, and only four typical
landslide cases were found with both GNSS and InSAR monitoring data to perform sta-
tistical analysis. We calculated the theoretical and practical sensitivity indices of 15 GNSS
monitoring stations for these landslide events (Table A1 in Appendix A). Table 5 shows
the calculation results of the theoretical and practical sensitivity indices of representative
GNSS monitoring sites in each landslide case (the results for all GNSS sites are shown in
Table A2 in Appendix A). The statistical results show that all the theoretical sensitivity
indices showed a strong correlation with the practical sensitivity index; that is, the larger
the theoretical sensitivity index, the larger the practical sensitivity index, indicating higher
feasibility of using time-series InSAR for landslide monitoring. Furthermore, the theoretical
and practical sensitivity indices were only applicable to the Sentinel-1 satellite data used in
this study and TerraSAR satellite data.

Table 5. Theoretical and practical sensitivity indices of different landslides.

No. Authors Satellite
Mission

Area of
Study Methodology Study Time

Number
of

Stations

Typical
Station TGNSS PGNSS

Case 1 [43] Sentinel-1 Northern
Apennines PS-InSAR March 2015–May 2019 1 PATG 76.6% 54.7%

Case 2 [44] Sentinel-1 Bosmatto SqueeSAR April 2014–April 2016 4 A-06 92.8% 68.3%

Case 3 [45] TerraSAR Shananxi
Province CR-InSAR April 2011–August 2011 6 DJ-08 88.0% 64.4%

Case 4 [46] Sentinel-1 Uttarakhand MT-InSAR November 2015–August 2017 4 GPS4 99.8% 135.9%

According to the definitions of the theoretical and practical sensitivity indices, the
theoretical sensitivity index should be larger than the practical sensitivity index; however,
we found that the practical sensitivity index of some monitoring stations was larger than
the respective theoretical sensitivity index, such as in monitoring points DJ05 and DJ06
from Case 3 (Table A2 in Appendix A) and all four monitoring points from Case 4. Under
the assumption that the GNSS monitoring data were relatively accurate, this is caused
by the InSAR measurement errors; for example, the displacement along the north–south
direction and the low-precision DEM data. This indicates that the theoretical and practical
sensitivity indices can be jointly used to assess the accuracy of the InSAR measurements.

We further performed a statistical analysis for the correlations between the five vari-
ables of the 15 GNSS monitoring stations from these studies: TGNSS, PGNSS, slope sliding
magnitude, InSAR, and GNSS sliding magnitude along the LOS. As shown in Figure 12,
we calculated the Pearson correlation coefficients between each two variables, and the * in
the figure indicates a significant correlation between these two variables (p < 0.05). The
correlation between TGNSS and the other four variables was poor, while the other variables
were significantly correlated with each other. This was also caused by a measurement
error of the InSAR itself; therefore, we can directly assess the feasibility and accuracy of
InSAR monitoring according to the TGNSS and PGNSS indices when the deformation values
monitored by GNSS were relatively accurate. (1) When TGNSS was small, the deformation
of the monitoring station was not easily monitored by InSAR, and its feasibility was low.
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(2) When PGNSS > TGNSS, there were errors in the InSAR monitoring results, and the relia-
bility of the InSAR monitoring results was low. (3) When TGNSS > PGNSS and TGNSS were
sufficiently large, both the TGNSS and PGNSS could be utilized to evaluate the sensitivity of
time-series InSAR monitoring results.
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4.3.2. Statistical Analysis of Landslide Cases Monitored by InSAR without GNSS Data

We found 119 global cases of successful landslide monitoring by applying InSAR [47–50]
and calculated the terrain sensitivity index (Hterrain) of them, and the detailed data of all
calculations are shown in Tables A3–A6 in Appendix A. Notably, the calculated Hterrain
values were between approximately –1.0 and 1.0, according to which the visibility of a
certain region monitored by InSAR could be evaluated: (1) if Hterrain was greater than or
equal to sin ϕ (Hterrain ≥ sin ϕ), the region has good visibility; (2) if Hterrain was between
0 and sin ϕ (0 < Hterrain < sin ϕ), the region has medium visibility and is a foreshortening
region; and (3) if Hterrain was less than or equal to 0 (Hterrain ≤ 0), the area had poor visibility
and was an active layover layer.

As shown in Figure 13, our statistical results showed that the medium visibility
and above areas (classifications (1) and (2) above) accounted for 98% of all landslide
cases successfully monitored using InSAR technology, indicating that 119 landslide cases
could be determined by calculating the Hterrain value to determine whether they could be
monitored using InSAR, and two landslide cases (2%) showed an active layover area with
poor visibility but were still monitored by InSAR. This demonstrated the high accuracy of
our proposed terrain sensitivity index in satellite visibility analysis (98% of all landslide
cases). Thus, the statistical results showed that the visibility of landslides monitored using
the SAR dataset can be reasonably assessed by calculating the Hterrain value before InSAR
data processing, thereby greatly improving the efficiency of InSAR monitoring.
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5. Discussion

SAR satellites usually fly in a polar orbit with a flight path close to a north–south
direction, which results in InSAR being insensitive to north–south deformation monitoring.
In this study, for the case of a landslide in the Yabaling open-pit mine, we found significant
variability in the results monitored by SAR datasets of different orbits for the same study
area. For large deformations in the area, no useful deformation information was monitored
by the descending dataset, indicating that different orbit datasets have different sensitivities
for this study area. To further demonstrate the effectiveness of the proposed terrain
sensitivity index Hterrain for studying such a small-scale area in the mining region, as shown
in Figure 14, we plotted the distribution of the terrain sensitivity index Hterrain for the
Yabaling open-pit mine based on the geometric parameters of three different orbiting
satellites and topographic influences (slope and aspect angles), which was used to illustrate
the sensitivity of the different orbiting datasets to monitor the sensitivity of the Yabaling
open-pit mine.
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Figure 14. (a) Satellite image map of the small-scale area of the Yabaling open-pit mine, the area
within the red circle is where the deformation occurs; (b) slope and (c) aspect information from
the 12.5 m DEM provided by ALOS satellite; and (d–f) Hterrain distribution maps of different orbit
datasets of (d) the ascending dataset with orbit number T25, (e) the ascending dataset with orbit
number T98, and (f) the descending dataset with orbit number T105.
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In Figure 14d–f, the blue region represents Hterrain > sin ϕ, which is monitored with
high sensitivity (good satellite visibility, no layover and foreshortening effect), and the red
and light blue regions represent the layover and foreshortening effect, respectively. As
the maximum slope angle of the study area was 40◦ (Slopemax < π/2 − ϕ), there was no
shadow in this area. By comparison, in the deformation area (red ellipse in Figure 14a),
the blue (high sensitivity) area of the ascending orbit 2 (T98) dataset was the largest,
whereas the descending orbit (T105) dataset was the least, which reasonably explained
the variability of the monitoring results (Figure 11) for the three different orbit datasets.
Simultaneously, these three maps show the approximate outline location of the mine area
with some color mutations. The main reason for this situation is that the spatial resolution
and elevation accuracy of the DEM data used is insufficient, that is, the 12.5 m external
DEM data provided by the ALOS satellite are still not fine enough for the small-scale area
of the mine area. In large-scale areas, this color mutation phenomenon was weaker than in
small-scale areas. In the future, we will try to acquire finer DEM data (e.g., up to a 25 cm
spatial resolution LiDAR dataset), which will help us further investigate the problem.

To further demonstrate that the index proposed in this study has advantages in small-
scale regions, we compared the Hterrain index with the R-index in our study areas, with the
results shown in Table 6. In the landslide case of the first Qidashan open-pit, the calculated
results of the R-index showed a low sensitivity for both the ascending and descending
datasets, whereas the calculated results of the Hterrain showed that the sensitivity index
of the descending dataset was approximately two to three times higher than that of the
ascending dataset, and the descending dataset had a high sensitivity in this region and can
monitor significant deformation, which is consistent with the actual situation. In the second
case of the landslide at the Yabaling open-pit, we calculated the R-index and Hterrain at the
point of the maximum deformation (red dot in Figure 2). The results showed that both
indices were good indicators of the high sensitivity of the ascending orbit datasets, with
the Hterrain index showing somewhat higher sensitivity; however, for the descending orbit
dataset, a significant difference was observed. The calculated R-index indicated that the
descending orbit dataset had a high sensitivity in this region, while the calculated Hterrain
showed that the descending orbit dataset had a very low sensitivity, in the range of not
being monitored. The monitoring results show that the descending orbit dataset failed to
monitor the effective deformation information in this region, indicating that the calculated
Hterrain results were consistent with the actual deformation results.

Table 6. Comparison between R-index and Hterrain for two landslide cases.

Landslides GNSS Site/
SAR Datasets Slope (ϕ) Aspect (α)

R-Index Hterrain

Ascending Descending Ascending Descending

Qidashan
open-pit mine

QK01 53.25 234.9 −0.03 −0.27 0.34 0.99

QK02 41.37 213.3 0.34 0.06 0.25 0.86
QK03 53.33 225.6 0.09 −0.21 0.38 0.95

Yabaling
open-pit mine

Ascending1 (T25)
39.95 49.82

0.81 0.90
Ascending2 (T98) 0.89 0.93
Descending (T105) 0.97 0.07

Notably, the existing studies on sensitivity indices mainly assess and analyze the
visibility of a large study area [20,23], and the sensitivity index Hterrain proposed in this
paper has been experimentally and statistically proven to be applicable to assess the
feasibility of satellite monitoring in both large and small regions; however, if there are
GNSS monitoring stations, the proposed theoretical and practical sensitivity indices can be
used for quantitative evaluation. We searched a substantial number of published studies on
landslide deformation monitoring, from which we found cases with both GNSS and InSAR
monitoring results and analyzed them to verify the proposed theoretical and practical
sensitivity indices. The 15 GNSS monitoring stations in the four landslide cases (Table A2 in
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Appendix A) can prove that our proposed sensitivity index can be used for the quantitative
evaluation of the reliability of InSAR monitoring results, but a considerable number of cases
are still needed for additional validation in the future, and we hope that more scholars will
publicize the GNSS and InSAR datasets used for landslide studies for subsequent studies.

Additionally, we found a case study on landslide monitoring that supports the idea
that the terrain sensitivity index proposed in this paper has a better discriminative effect for
applications. Some scholars monitored two landslides in Indonesia using the MT-InSAR
technique based on ascending and descending orbit datasets [51], but only the pre-landslide
deformation information was monitored in the ascending orbit dataset. Based on the R-
index calculation method [52], they calculated an R-index of 0.82 and 0.71 for the ascending
and descending orbit datasets, respectively, indicating that the deformation information
of the study area can be obtained for both the ascending and descending orbit datasets;
however, the monitoring results show that no deformation information was monitored
in the descending orbit dataset, indicating that the R-index overestimated the monitoring
capability of the descending orbit dataset in this area. By applying the terrain sensitivity
index proposed in this study, the results show that the Hterrain of the ascending orbit dataset
is 0.81, which has high monitoring sensitivity, whereas the Hterrain of the descending orbit
dataset is 0.49, which is in the perspective shrinkage range and has poor monitorability
(Table A7 in Appendix A). The sensitivity of the ascending orbit dataset to the study area
was approximately twice as high as that of the descending orbit dataset. Therefore, the
Hterrain proposed in this study has a better differentiation effect in quantitatively describing
the monitoring sensitivity of satellite data.

6. Conclusions

Large open-pit mines are characterized by large and steep slopes and complex terrain.
The LOS deformation obtained by the time-series InSAR method has certain limitations in
landslide monitoring of open-pit mines. In this study, the reliability and applicability of the
InSAR monitoring results of the Qidashan and Yabaling open-pit mines were quantitatively
studied. Based on the deformation variables of the landslides along the LOS direction of
the open-pit mines and combining the InSAR monitoring results, GNSS monitoring results,
high-precision DEM data, and geometric parameters of satellites, evaluation indices of the
reliability of the slope displacement results based on time-series InSAR monitoring were
proposed, that is, theoretical, practical, and terrain sensitivity indices, for slope monitoring.

When the theoretical and practical sensitivity indices for slope monitoring were signif-
icant, it was easier to monitor small-scale landslide deformation, which can be used as a
priori knowledge for monitoring landslides in open-pit mines using InSAR technology. In
the two experimental cases of this study, the theoretical and practical sensitivity indices
of the first Qidashan open-pit mine from the descending orbit dataset were two to three
times higher than those of the ascending orbit dataset; therefore, the descending orbit
dataset was more suitable for landslide monitoring of the northeast slope of the Qidashan
open-pit mine. However, the terrain sensitivity index of the ascending orbit dataset was
significantly larger than that of the descending orbit dataset in the second Yabaling open-pit
mine. Therefore, the ascending orbit dataset was more suitable for landslide monitoring in
the Yabaling open-pit mine.

Numerous landslide examples, that is four landslide cases with GNSS monitoring
data and one hundred nineteen landslide cases without GNSS monitoring data, statistically
verified that the sensitivity index proposed in this study has universal applicability and
can quantitatively evaluate the reliability of InSAR monitoring results of different orbits,
which is of great significance for the identification and monitoring of local landslides for
high and steep slopes in small regions. Additionally, the calculation method based on
the Sentinel-1 sensitivity index proposed in this study can be easily extended to other
satellite constellations.
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Appendix A

The following are supplementary data to list the calculation results of theoretical,
practical, and terrain indices for all the statistical cases.

Table A1. Landslide events with both public GNSS and InSAR data.

No. Authors Landslide
Name Landslide Territory Methodology Study Time Number

of Images
Satellite
Mission

Case 1 [43] Patigno
landslide Northern Apennines, Italy PS-InSAR March 2015–May 2019 200 Sentinel-1

Case 2 [44] Bosmatto
landslide Northwestern Alps, Italy SqueeSAR October 2014–February 2018 130 Sentinel-1

Case 3 [45] potential
landslide Shananxi Provice, China CR-InSAR April 2011–August 2011 4 TerraSAR

Case 4 [46] Sirobagarh
landslide Uttarakhand, India MT-InSAR November 2015–August 2017 10 Sentinel-1

Table A2. Theoretical and practical sensitivity index of different landslides of four cases.

No.
Incidence
Angle (◦)

Azimuth
Angle (◦)

GNSS Deformation
(mm)/Rate (mm/Year)

InSAR LOS
Deformation

(mm)/Rate (mm/Year)

Slope Slip
(mm)/Rate
(mm/Year)

Station
TGNSS

(%)
PGNSS

(%)
VN VE VU

Case 1 40.31 −80.73 −33.5 12.2 −3.2 9.0 16.5 PATG 76.6% 54.7%

Case 2 43.12 280.49

−4.3 −7.4 −6.1 −8.5 A-05 97.4% 71.6%
−18.8 −8.5 −13.9 −20.4 A-06 92.8% 68.3%
−33.2 −28.8 −35.8 −43.6 M-05 99.7% 82.2%
−26.3 −14.9 −21.1 −29.9 M-06 95.8% 70.8%

Case 3 35.00 −7.44

−2 −3 −6 −0.8 −6.6 DJ-02 46.3% 12.1%
−3 0 −7 −3.5 −5.6 DJ-04 97.6% 62.0%
0 −1 −2 −2.9 −1.9 DJ-05 54.9% 148.8%
−4 −2 −10 −11.7 −10.1 DJ-06 67.2% 116.3%
−3 3 −15 −9.1 −13.9 DJ-07 98.6% 65.2%
4 −6 −34 −18.1 −28.1 DJ-08 88.0% 64.4%

Case 4 35.00 −13.5

14.2 3.2 −219.0 −334.1 −220.1 GPS1 83.2% 156.7%
36.1 19.4 −220.9 −575.6 −449.8 GPS2 43.7% 128.8%

264.0 47.0 −296.2 −407.6 −304.8 GPS4 99.8% 135.9%
12.7 12.9 252.1 −252.7 −265.2 GPS6 81.2% 140.7%

https://scihub.copernicus.eu/dhus/
https://earthexplorer.usgs.gov
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Table A3. Terrain sensitivity index calculation results of landslides along the Jinsha river, China [48].

No. Landslide Name Slope Min Slope Max Average Slope Aspect HA
terrain

1 Dangdi No. 1 28 38 33 60 0.90
2 Dangdi No. 2 26 44 35 16 0.70
3 Dangdi No. 3 23 40 31.5 51 0.86
4 Ningkang 10 42 26 118 0.74
5 Redangong 22 38 30 27 0.73
6 Aiguo 18 44 31 113 0.81
7 Aibai 20 39 29.5 92 0.88
8 Gaina 16 39 27.5 30 0.72
9 Woda 16 40 28 19 0.65

10 Moga 27 42 34.5 117 0.82
11 Tange 22 45 33.5 67 0.92
12 Duolai 18 36 27 108 0.80
13 Shadingmai 15 40 27.5 117 0.76
14 Adong 19 39 29 51 0.84
15 Xiaomojiu 21 42 31.5 50 0.86
16 Xiongba No. 1 15 46 30.5 23 0.71
17 Xiongba No. 2 15 51 33 133 0.71
18 Xiongba No. 3 20 40 30 215 0.05
19 Semai 10 40 25 273 −0.13
20 Wadui 16 40 28 107 0.81
21 Gongba 15 39 27 112 0.78
22 Maiba No. 1 24 42 33 243 −0.01
23 Maiba No. 2 34 46 40 222 0.18
24 Shangquesuo 18 37 27.5 131 0.67
25 Shangde 16 37 26.5 28 0.70
26 Decun 20 40 30 112 0.80
27 Suoxue 20 38 29 346 0.40
28 Chutigang No. 1 19 44 31.5 162 0.47
29 Chutigang No. 2 24 48 36 20 0.74
30 Caodigong 20 49 34.5 47 0.87
31 Suoduxi 11 30 20.5 124 0.64
32 Sarongxue 24 45 34.5 134 0.72
33 Nanagong 10 40 25 44 0.78
34 Diwu 10 30 20 217 −0.12
35 Namu 16 35 25.5 111 0.77
36 Linong 15 64 39.5 95 0.94
37 Dagu 18 56 37 142 0.68
38 Qinbei 10 16 13 107 0.67
39 Dongan No. 1 10 33 21.5 12 0.53
40 Dongan No. 2 12 33 22.5 21 0.61
41 Hongguang 21 36 28.5 64 0.88
42 Fangjiapo 27 43 35 128 0.76
43 Nawudu 16 45 30.5 11 0.62
44 Shangyingwo 16 51 33.5 113 0.84
45 Yazishou 15 36 25.5 190 0.15
46 Xincun 15 45 30 25 0.72
47 Zhongwushan 10 55 32.5 78 0.92
48 Xiaoshuijing 24 44 34 185 0.31
49 Jinpingzi 10 40 25 141 0.57
50 Dadi 10 51 30.5 171 0.38
51 Yangpengzi 34 51 42.5 144 0.72
52 Luogazhi 13 47 30 104 0.85
53 Yeniuping 29 45 37 178 0.40
54 Hejialiangzi 14 30 22 230 −0.17
55 Damuchun 14 40 27 209 0.03
56 Dashannao 17 51 34 178 0.36
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Table A3. Cont.

No. Landslide Name Slope Min Slope Max Average Slope Aspect HA
terrain

57 Yezhutang 11 41 26 61 0.86
58 Huangtian 13 28 20.5 62 0.80
59 Jiashantian 14 34 24 121 0.70
60 Zengjiawanzi 14 46 30 308 0.10
61 Yizi 10 22 16 290 −0.23
62 Ximaxi 10 50 30 98 0.87
63 Yanwan 20 42 31 77 0.91
64 Ribucu 29 42 35.5 25 0.77
65 Shangshawa 10 38 24 145 0.53
66 Nongle 10 60 35 106 0.88
67 Xianglushan 13 31 22 150 0.46
68 Wufutang 10 30 20 40 0.719
69 Guanghui 10 23 16.5 216 −0.19

Table A4. Terrain sensitivity index calculation results of landslides in Gongjue county, Tibet,
China [49].

No. Landslide Name Slope Min Slope Max Average Slope Aspect HA
terrain HD

terrain

70 Laduoting 22 43 32.5 342 0.38 0.47
71 Shadong 15 38 26.5 75 0.87 −0.29
72 Sela 15 51 33 125 0.78 −0.02
73 Geguo 18 42 30 215 0.78
74 Majue 20 38 29 70 0.89 −0.24
75 Guoba 14 36 25 75 0.86 −0.32
76 Gongba 10 35 22.5 91 0.83 −0.35
77 Shangquesuo 20 40 30 140 0.66 0.06
78 Shangde No. 1 15 34 24.5 60 0.83
79 Shangde No. 2 15 32 23.5 45 0.76 −0.23
80 Decun 14 34 24 350 0.34 0.29
81 Suoxue No. 1 18 44 31 90 0.90 −0.21
82 Suoxue No. 2 22 38 30 349 0.37

Table A5. Terrain sensitivity index calculation results of landslides in Baihetan reservoir, China [47].

No. Landslide Name Slope Min Slope Max Average Slope Aspect HA
terrain HD

terrain

83 H01 23 30 26.5 80 0.91
84 H02 25 45 35 5 0.61 0.30
85 H03 22 34 28 48 0.85
86 H04-2 28 46 37 340 0.41 0.54
87 H05 34 54 44 162 0.60
88 H07 30 40 35 88 0.95
89 H08 28 46 37 173 0.41
90 H09 40 56 48 38 0.90
91 H11 28 40 34 73 0.95
92 H12 40 58 49 320 0.40 0.78
93 H13 40 60 50 22 0.83 0.37
94 H14 16 40 28 318 0.10 0.64
95 H15-2 40 50 45 323 0.38
96 H16 15 50 32.5 258 0.94
97 H17 25 46 35.5 208 0.78
98 H18 16 54 35 270 0.94
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Table A6. Terrain sensitivity index calculation results of landslides in Danba, Sichuan, China [50].

N0. Slope Min Slope Max Average Slope Aspect HA
terrain HD

terrain

99 15 25 20 105 0.80
100 15 25 20 100 0.83
101 15 25 20 90 0.87
102 25 40 32.5 130 0.70
103 30 45 37.5 266 0.96
104 20 45 32.5 130 0.70
105 30 45 37.5 177 0.56
106 20 40 30 200 0.68
107 15 30 22.5 50 0.87
108 20 35 27.5 236 0.87
109 15 20 17.5 227 0.75
110 20 35 27.5 200 0.66
111 15 30 22.5 310 0.64
112 20 25 22.5 290 0.77
113 25 30 27.5 260 0.91
114 15 25 20 307 0.64
115 25 30 27.5 280 0.86
116 15 35 25 300 0.74
117 25 35 30 60 0.95
118 20 25 22.5 40 0.82
119 20 40 30 130 0.69

Table A7. Terrain sensitivity index calculation results of Ciloto landslide [51].

No. Landslide Name Average Slope Aspect Min Aspect Max Aspect HA
terrain HD

terrain

120 Puncak Pass 60 130 160 135 0.81 0.50
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