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Abstract: Grassland degradation is widespread and increasing globally, which is closely related to
the sustainable development of the ecosystems and the well-being of human life in pastoral areas.
Quantifying the factors influencing grassland ecosystems, specifically climate change and human
activities, is of great significance for grassland restoration. However, due to the unpredictability
of human activities, further research is still needed to distinguish and identify the factors affecting
grasslands. In this study, we examined the changes in the gross primary productivity (GPP) of
grassland cover in 10 provinces (autonomous regions) of China from 2000 to 2018 and selected three
representative climate factors (temperature, precipitation, solar radiation) and six factors covering
socioeconomic (primary industry production and population), animal husbandry (large livestock
and sheep populations), and national policies (grazing areas, rodent, and pest control) to characterize
human activities; then, we quantified the effects and contribution of climate and human factors
using three analysis methods (partial correlation analysis, geographical and temporal weighted
regression model, and Lindeman Merenda Gold method). The results indicated that the GPP of
grassland presented an obvious uptrend (4.75 g C m−2 yr−1, p < 0.05). Among the nine factors, sheep,
precipitation, and temperature were the primary factors affecting grassland dynamics. Additionally,
the GPP dynamics of grassland were mainly dominated by human activities in seven provinces
(autonomous regions). These findings provide decision support for protecting grassland ecosystems
and implementing ecological restoration policies in China.

Keywords: grassland; gross primary productivity; socialeconomic index; climate factors; geographical
and temporal weighted regression (GTWR)

1. Introduction

Grasslands, as an irreplaceable ecosystem, account for approximately 25% of the global
terrestrial area and are universally located in arid, semi-arid, and semi-humid areas [1,2].
Grasslands have invaluable ecological functions and economic value in terms of protecting
biodiversity, conserving water resources, maintaining ecosystem balance, and promoting
regional economies [3–5]. With global warming and unreasonable anthropogenic behaviors
(overgrazing, over-reclamation, and overexploitation), grassland degradation is widespread
and increasing globally. To date, more than 45% of grassland areas have shown different
extents of degradation, and this degradation has seriously impacted the livelihood of the
local population and threatened sustainable ecological development in the region [6,7].
Therefore, monitoring grassland dynamics and quantifying driving factors are significant
for grassland restoration and ensuring local residents’ well-being.

Attributing the long-term, large-scale, and high-resolution characteristics of remote
sensing, terrestrial ecosystem research can be realized at regional, continental, and even
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global scales. Gross primary productivity (GPP), as a physical measure of the rate of photo-
synthesis, reflects the amount of carbon dioxide converted into organic carbon via plant
photosynthesis, and this indicator is widely used for grassland dynamic monitoring [8,9].
Many researchers have chosen GPP to detect grassland variation. Liang [4] indicated that
the GPP of grassland had a significant upward trend globally at annual and seasonal scales
during 1982–2011. In China, He [10], based on model simulations and remote sensing satel-
lites, reported that more than 80% of the area in Chinese grassland had a sharply increasing
trend. However, although a consistent growth trend has emerged, the phenomenon of
grassland degradation is still hidden in the context of overall restoration. Nearly 23%
of the area of grassland in China has experienced significant grassland degradation [11],
especially in Inner Mongolia [10,12]. Grassland variation is mainly affected by climate
change and human activities [13–15]. In previous studies, statistical methods [16,17], model
simulations [18,19], and observational experiments [20] have been used to assess how
climate and human factors affect grassland ecosystems. According to previous research re-
sults, grassland variation generally has positive or negative correlations with precipitation
(PRE) and temperature (TEM) in most areas of China [14,21]. In addition, human activities,
including overgrazing, socioeconomics, and regional policy, have profound impacts on the
sustainable development and biodiversity of grassland ecosystems [22–24]. Nevertheless,
as climate exhibits spatiotemporal heterogeneity and human activities are immeasurable,
their impact on grassland dynamics still needs further clarification.

In China, grasslands cover an area of approximately 400 million ha and occupy more
than 40% of the national land area [25,26]. Grasslands are the main ecosystem, especially in
North China, and play an irreplaceable role in windbreaks and sand fixation, forage supply,
economic development, and ecological security. The sharply increasing population and
unreasonable land use have been accompanied by the serious degradation of grasslands
in China in recent years [27]. To curb grassland degradation and promote grassland
restoration, many grazing managerial actions have been effectively implemented to increase
the sustainability of grassland ecosystems worldwide [6]. The Chinese government has
invested in policies that support ecosystem services and the recovery of degraded grassland
since 2000, such as the “returning grazing land to grassland” policy, the Beijing and Tianjin
Sandstorm Source Control Program, and “Grassland Transfers” [28,29]. Additionally, the
use of grazing intensity management as a significant government measure (e.g., yearlong
continuous and seasonal grazing exclusion) has been extensively implemented [30]. Liu [31]
indicated that human activities have an impact on GPP of over 70% in China, and ecological
restoration efficiently promotes the increase in GPP, whereas overgrazing has the opposite
effect [31–33]. Previous [34,35] studies have broadly discussed how human activities have
impacted grasslands, but there is still a lack of quantitative studies to evaluate the different
types of human activity impact intensity.

Therefore, to address these knowledge deficiencies and gaps, we used mainstream
GPP remote sensing dataset products, three major climatic factors (PRE, TEM, and solar
radiation (RAD)), and six human activity indicators, including socioeconomics (primary
industry production and population), animal husbandry (large livestock and sheep stock)
and national policies (area of forbidden grazing and rodent and pest control) to analyze
grassland dynamics and dominant factors in China during 2000–2018. The objectives
were to (1) detect the spatiotemporal trends regarding grassland in China during the past
two decades, (2) analyze how climate and human activities affect grassland ecosystems,
and (3) conduct a quantitative assessment of the impact intensity of climate and human
activities on grassland and identify the main driving factors. This research contributes
to a theoretical foundation for the evaluation of national policies and is critical for the
recent implementation of grassland management practices, regional livestock economy
development, and ecological environment protection.
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2. Materials and Methods
2.1. Study Area

Grasslands are widely distributed in northern and northwestern China and are mainly
distributed in Hebei (HB), Shanxi (SX), Inner Mongolia (IMG), Sichuan (SC), Tibet (TB),
Shaanxi (SAX), Gansu (GS), Ningxia (NX), Qinghai (QH) and Xinjiang (XJ) provinces (au-
tonomous regions). The climate types of grasslands are mainly dominated by arid and semi-
arid climates and alpine climates, and nearly 80% of these grasslands belong to arid and
semi-arid climate regions. Grasslands are classified into five types: meadow, slope grass-
land, plain grassland, desert grassland, alpine, and sub-alpine meadow (Figure 1a) [36].
China’s grasslands are widely distributed in plateau areas, including the Inner Mongolian
Plateau, the Loess Plateau, and the Qinghai–Tibet Plateau. These grasslands are not only
important resources for the local development of animal husbandry but also provide irre-
placeable ecosystem services such as wind prevention, sand fixation, and soil and water
conservation for the stability of regional and even national ecosystems. The area of grass-
land in this study was extracted from the grassland areas where no land use conversion
occurred in the period of 2000–2018 based on the land use types of the China Land Cover
Dataset (CLCD) dataset (Figure 1b).
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Figure 1. Land use types (a) and main grassland areas (b) in the study area.

2.2. Data
2.2.1. Remote Sensing Data

The GPP data in this study were provided by the Global Land Surface Satellite (GLASS)
dataset, which was downloaded from the National Center for Earth System Science Data
(data source: http://www.geodata.cn/index.html, accessed on 8 October 2022) [37]. The
GLASS dataset has high accuracy and combines multi-source ground observation data
with remote sensing data [38]. This dataset is a global-scale remote sensing data product
with the longest time series, of which the temporal resolution is 1982–2018 and the spatial
resolution is 0.05◦ [37]. In addition, the GLASS GPP product was calculated based on the
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Eddy Covariance–Light Use Efficiency model and has better accuracy than the moderate
resolution imaging spectroradiometer (MODIS) GPP product [39,40]. The GIMMS dataset
widely serves for vegetation dynamic monitoring and climate change studies and land
surface models driven at global, continental, and regional scales.

The TEM, PRE, and RAD were downloaded from the China Meteorological Forcing
Dataset (CMFD) [41], which is a regional high spatial and temporal resolution surface
meteorological dataset. This CMFD dataset is a set of gridded near-surface meteorological
datasets, assimilated remote sensing products, and meteorological station observation
datasets. In addition, this dataset spans nearly 40 years, ranging from 1979 to 2018, with a
spatial resolution of 0.1◦, and it has seven climate variables, including 2 m air temperature,
precipitation, shortwave and longwave downward radiation, and so on. Based on the
above advantages, the CMFD dataset has been widely used in hydrological models, climate
models, and data assimilation. The land use dataset was obtained from the CLCD dataset,
which has a long temporal period (from 1985 to 2020), a high spatial resolution (30 m), and
a high accuracy compared to common land use datasets, such as the moderate resolution
imaging spectroradiometer (MODIS) land cover product (MCD12Q1) and global land
cover datasets at 30-meters resolution (GlobeLand30), [42]. To unify the spatial resolution
of multi-source data, the climate factor data and land use data were resampled to 0.05◦,
which was consistent with the GPP data, using the “bilinear” and “majority” interpolation
methods, respectively.

2.2.2. Human Activity Data

According to previous studies [43–46], we have collected six categorical indicators to
characterize human activities, covering socioeconomics, animal husbandry, and national
ecological policies. The six representative indicators, including large livestock, sheep, pop-
ulation, primary industry, forbidden grazing, and rodent and pest control, were obtained
from 10 major grassland-covered provinces (autonomous regions) over 2000–2018 through
the Statistical Yearbook and websites. A detailed description of the six indicators, including
large livestock, sheep, population, primary industry, grazing prohibition, and rodent and
pest control, is shown in Table 1.

Table 1. Introduction of socioeconomic indicators.

Indicators Description Sources

Large livestock Year-end inventory of large livestock
China Animal Husbandry Yearbook and Web of SOSHOO

(https://www-soshoo-com-cn.webvpn.xju.edu.cn:
8040/index.do, accessed on 12 December 2022)

Sheep Year-end inventory of sheep (sheep and goats) China Animal Husbandry Yearbook and Web of SOSHOO

Population Year-end inventory of population China Statistical Yearbook and Web of SOSHOO

Primary industry Output value of the primary industry China Statistical Yearbook and Web of SOSHOO

Forbidden grazing Area of grazing prohibition, rest, and rotation China Grassland Statistical Yearbook and Web of SOSHOO

Rodent and pest control Area of rodent and pest control China Grassland Statistical Yearbook and Web of SOSHOO

2.3. Methods
2.3.1. Sen-Mann–Kendall (Sen-MK) Trend Analysis

The Sen-MK trend analysis method combines the Theil–Sen (T–S) median trend anal-
ysis and the Mann–Kendall (M–K) test. The T–S median trend analysis method is used
for detecting the trend of the variables, and the method exhibits insensitivity to measure-
ment error and discrete data and is not easily affected by outliers. Therefore, this method
effectively avoids the interference of outliers on the internal trend of monitoring data and
is widely used to detect the trend of variables [47,48]. The M–K test is a nonparametric
statistical test for testing the significance of the trend [35]. Similar to the T–S median trend
analysis method, in the M–K test, the monitored variables do not have to show a normal

https://www-soshoo-com-cn.webvpn.xju.edu.cn:8040/index.do
https://www-soshoo-com-cn.webvpn.xju.edu.cn:8040/index.do
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distribution and linear trend, and the result of the test is also insensitive to missing and
abnormal values of the monitored variables [49]:

Slope = Median
[(

xj − xi)/(j− i
)]

, ∀ j > i (1)

where Slope is the value of the trend detected using the T–S median; i and j represent the
time series; and x represents the variable’s value.

The M–K test can be calculated using the following formulas:

Zmk =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0
(2)

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
(3)

f
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(4)

var(S) =
n(n− 1)(2n + 5)

18
(5)

where Zmk is the test statistic, and when |Zmk| < 1.96, the detected variables display
significance at the level of 0.05; n is the variable length, and x represents the variable’s value.

2.3.2. Partial Correlation Analysis

The partial correlation analysis method was used to investigate how climate affects
grassland vegetation from spatiotemporal perspectives. This method can efficiently elimi-
nate the influence of other factors from detection factors when calculating the correlation
between multiple factors and one variable [50].

R =
∑n

i=1 [(xi − x)(yi − y)]√
∑n

i=1 (xi − x)2∑n
i=1 (yi − y)2

(6)

where R is the correlation coefficient, n is the sequential year, xi represents the variables in
year i, x represents the mean value of the variable during the study period, and yi and y
represent the influence factor in year i and the mean value of the influence factor during
the study period, respectively.

2.3.3. Geographical and Temporal Weighted Regression (GTWR) Model

Spatiotemporal models provide a basic framework for the spatial and temporal anal-
ysis of human activities, social events, and environmental processes. Geographical and
temporal weighted regression (GWR) serves as a spatial statistical method widely used for
modeling spatially heterogeneous processes. As the temporal extension of the GWR model,
the GTWR incorporates temporal effects into the GWR model, and thus, it can effectively
describe the quantitative relationship between the dependent variable and independent
variable in time and space [51,52]. The coefficient represents the regression coefficient for
each independent variable. Each independent variable has a corresponding coefficient
that measures its impact on the dependent variable in the model [53]. The GTWR can be
displayed as follows:

Yj = β0
(
uj, vj, tj

)
+

d

∑
k=1

βk
(
uj, vj, tj

)
xjk + ε j (7)
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where β0
(
uj, vj, tj

)
is the spatiotemporal geographic coordinate of the variable at point j,

Yj is the dependent variable, xjk is the kth independent variable, and εj is the error term. In
this study, we used the GTWR model to measure the impact of six anthropogenic indicators
on grassland GPP. The implementation of the GTWR model in this study is mainly based
on ArcGIS 10.7 software, using the GTWR plugin made by Huang [54], and the bandwidth
is optimized using AIC (Akaike Information Criterion) settings.

2.3.4. Lindeman Merenda Gold (LMG) Method

This study adopted the LMG method for quantifying the contribution of climate
and multiple human activities to the GPP of grassland. The LMG method can quantify
the direct contribution of each factor to variables in multifactor influence analysis. This
method effectively overcomes the difference in the contribution rate caused by the order of
influencing factors when inputting into the model [55]. The formula for LMG is as follows:

LMG(xk) =
1
n! ∑

r−premutation
seqR2({xk}|r) (8)

seqR2
(
{xk}
Sk(r)

)
= R2({xk} ∪ Sk(r))− R2(Sk(r)) (9)

where n! refers to the factorial of the number of variables, R2 denotes the regression model
goodness, and seqR2({ xk} |r ) is the increase in R2 after the variable xk was added into the
model by the order r. Therefore, to quantify the contributions of climate and anthropogenic
impacts on grassland in China, we used the LMG model to calculate the contribution rate.

Overall, firstly, the S-M–K method was used to detect the variation of grassland GPP.
Then, the correlation between climate factors and grassland GPP was analyzed using partial
correlation analysis. Furthermore, the impact of human activities was measured using
the GTWR method. Finally, the LMG model was used to quantify the contribution of
climate factors and human activities to grassland dynamics. The workflow in this study is
demonstrated in Figure 2.
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3. Results
3.1. Spatiotemporal Variation in GPP in Chinese Grassland

The spatiotemporal trend of annual GPP from 2000 to 2018 in China’s main grassland-
covered provinces (autonomous regions) was detected using the Sen-MK method
(Figures 3 and 4). Accordingly, the GPP in the study area clearly increased by 4.75 g C m−2 yr−1,
and approximately 14.03% of the areas were significant, mainly distributed in northern SAX,
middle NX, and eastern GS. The mean significant upward trend was 10.15 g C m−2 yr−1, espe-
cially in northern SAX, and the increasing trend was as high as 15.64 g C m−2 yr−1. Contrary to
the increase, only 3.21% presented a significant downward trend, spatially distributed in XJ, TB,
and IMG, and the average decreasing trend was−8.50 g C m−2 yr−1.
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Among the 10 provinces (autonomous regions), 6 provinces, including HB, SX, SAX,
GS, QH, and NX, had a significant increasing trend in GPP during 2000–2018. Among
them, QH and SX had the lowest and highest increasing trends of 3.00 g C m−2 yr−1 and
14.00 g C m−2 yr−1, respectively. However, while most provinces (autonomous regions)
showed an uptrend for GPP, XJ showed a decreasing trend of−0.22 g C m−2 yr−1. Although
this trend was not significant, it should not be ignored.
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3.2. The Effects of Climate Factors on Grassland GPP

PRE, TEM, and RAD, as the main climatic factors, had significant effects on grassland
change. The Sen-MK trend detection results showed that the temporal trends of PRE, TEM,
and RAD in the whole region had no significant trend during 2000–2018. Spatially, over
9.04% of the study area presented an obvious increasing trend of 9.38 mm yr−1, mostly
distributed in the middle, northeast, and southwest of the study area (Figure 5a). In con-
trast, approximately 7.53% of the area showed the opposite trend (−11.48 mm yr−1), and
these areas were concentrated in the northwest of the study area. Similar to PRE, nearly
9.71% and 7.61% of the study area had significant uptrends and downtrends, respectively
(Figure 5c). Moreover, in the southwest of the study area, the central QH and SC experi-
enced significant increases. Compared with PRE and RAD, only 9.48% of the study area
had a significant downtrend, and most had an increasing trend (Figure 5e). Individual
provinces (autonomous regions), including SX (5.73 mm yr−1), SAX (8.20 mm yr−1), GS
(3.40 mm yr−1), SC (0.04 ◦C yr−1), and QH (0.04 ◦C yr−1), showed significant trends for
PRE and TEM.
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Based on the partial correlation analysis, the relationships between GPP and PRE,
TEM, and RAD during 2000–2018 were identified (Figure 5b,d,f). Overall, among the three
main climate factors, PRE played a major role in affecting GPP dynamics, with a positive
correlation greater than 0.59, and these areas occupied nearly 13.79% of the study area,
mainly in the middle and northeast regions. Moreover, the spatial distribution of the
positive and negative effects of TEM and RAD on GPP was relatively consistent; an obvious
positive correlation was found in the middle of the study area, that is, at the junction of QH,
TB, and SC, and the negative effect was most significant in the northeast of the study area.
The partial correlation analysis results of each province showed that, except for SC, TB, and
QH, the GPP of grassland in seven provinces showed a significant positive correlation with
PRE. However, only three provinces (autonomous regions), including SC, GS, and QH, had
a significant positive correlation with TEM. In addition, there was no significant partial
correlation between RAD and GPP at the provincial (autonomous regions) level.
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3.3. The Effects of Human Activities on Grassland GPP

Human activities can also contribute to grassland variation. In the past 20 years, the
social and economic factors have experienced considerable changes, and the variations
in six socioeconomic factors are shown in Figure 6. The large livestock in all provinces
(autonomous regions) showed an increasing trend before 2005 or 2006 and a decreasing
trend after 2005 or 2006, except in IMG, QH, and NX. For sheep, the same trend as that of
large livestock was shown in HB, SX, TB, SAX, and QH provinces (autonomous region), and
an obvious increasing trend was shown in IMG, SC, GX, and NX provinces (autonomous
regions). In addition, increases in both large livestock and sheep were observed in IMG
and NX provinces (autonomous regions). The population and primary industry showed
a relatively consistent growth trend. In addition, the area of forbidden grazing showed a
rapid increase followed by a downward fluctuating trend in recent years. Furthermore, the
area of rodent and pest control fluctuated greatly.
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To reveal the effects of human activities on grassland vegetation variation, the GTRW
method was used to detect the qualitative and quantitative effects of human activities on
grassland GPP. The model fitted using GTWR had good performance, with R2 = 0.97. The
temporal variation during 2000–2018 and spatial distribution of the multi-year mean of the
coefficients are shown in Figures 6 and 7, respectively. In general, the positive and negative
effects of each socioeconomic factor on grassland were obviously different. Large livestock
had a negative relationship with grassland GPP in most provinces (autonomous regions).
Therefore, the coefficient showed an obvious weakening trend, with the number of large
livestock decreasing in HB, SX, SC, and GS provinces and increasing in IMG, QH, and
NX provinces (autonomous regions). The relationship of sheep with grassland GPP was
mainly positive, consistent with the relationship of large livestock, and the coefficient of
sheep showed a consistent weakening trend in many provinces (autonomous regions). The
relationship between population and grassland GPP exhibited a positive correlation in all
provinces. However, it weakened in HB, SX, and NMG and strengthened in SC, SAX, GS,
QH, and NX provinces (autonomous regions). Moreover, there was an obvious fluctuation
in TB and XJ, but the magnitude change at the beginning and end of the study was not
significant. Furthermore, in provinces (autonomous regions) such as HB, SX, and IMG,
the relationship between primary industry and grassland GPP shifted from positive to
negative. In contrast, in SAX, GS, QH, NX, and XJ provinces (autonomous regions), this
relationship transitioned from negative to positive. In most provinces, there was a negative
correlation between forbidden grazing and grassland GPP. The negative correlation showed
a weakening trend from approximately 2005 to 2015, but in recent years, this trend has
rebounded. The relationship between pest and rodent control and grassland GPP was
intricate, with alternating positive and negative impacts. Nevertheless, in SC and SAX
provinces, this relationship notably transitioned from positive to negative.
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3.4. The Contribution of Climate Factors and Human Activities to GPP

The contribution of climate and human activities to controlling changes in grass-
land GPP in each province (autonomous region) was calculated based on LMG methods
(Figure 8). The variation in the GPP of grassland in China was dominated by human activi-
ties; seven provinces (autonomous regions) had a human activity contribution greater than
50%, especially on the Loess Plateau, including GS, SX, and SAX. However, the provinces
(autonomous region) of SC (77.60%), QH (59.58%), and IMG (53.83%) were dominated by
climate factors.
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In terms of the overall impact of the three climate factors and six human activities,
the effects of climate and human activities on grassland variation in different provinces
(autonomous regions) were significantly different, as shown in the radar chart (Figure 9).
Generally, sheep, PRE, and TEM were the primary factors affecting grassland dynamics, and
they had the highest contribution to grassland dynamics in most provinces. Therefore, the
sheep factor, which played a leading role in SAX, GS, NX, and SX provinces (autonomous
regions), was most important on the Loess Plateau, and the contribution was greater than
50%. PRE and TEM were the dominant climate factors that played a dominant role in
arid and semi-arid regions (including XJ, IMG, and HB provinces (autonomous region)
and so on) and the Qinghai Tibet Plateau region (including TB, QH, and SC provinces
(autonomous regions)), respectively. However, compared to sheep, PRE, TEM, RAD, large
livestock, population, primary industry, forbidden grazing, and rodent and pest control
contributed less. Moreover, the RAD, population, primary industry, forbidden grazing, and
rodent and pest control factors contributed as the secondary contributing factors distributed
in SC, SX, and SAX, TB and GX, XJ, and QH provinces (autonomous regions), respectively.
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4. Discussion

The vegetation index is widely used to detect vegetation dynamics. Previous research
has indicated that GPP is a more effective measure of the carbon sequestration capacity
of vegetation, whereas the leaf area index (LAI) or the normalized difference vegetation
index (NDVI) tends to signify the vegetation’s greenness [56,57]. Therefore, in this study,
we used GPP as the vegetation indicator to research grassland variation. The results
indicate that the degradation of Chinese grasslands has been effectively reversed in the
past 20 years. The GPP of the grassland has shown a significantly increasing trend during
2000–2018 in most provinces (autonomous region), especially in SX, SAX, GS, and NX
provinces (autonomous region), located on the Loess Plateau. These results are consistent
with previous research based on remote sensing data such as the NDVI, LAI, and net
primary productivity (NPP) [58,59]. Although an overall trend of grassland recovery in
China was observed, the degradation of grassland in some regions cannot be ignored, such
as in the northeastern region of the IMG autonomous region and the western region of the
XJ autonomous region, where there are patches of grassland degradation. Many previous
studies have confirmed this finding [57,60].

According to previous studies, climate and human activities remarkably impact grass-
land variation. In this study, we selected three climate factors and six socioeconomic
factors as indicators to measure the impact intensity. The results show that the impacts
of climate and socioeconomic factors on grassland in China had obvious spatiotemporal
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heterogeneity. In terms of climate factors, PRE was the primary climatic factor affecting
grassland in China, followed by TEM. Grasslands are mostly in northern China, and this
region is controlled by arid and semi-arid climates and limited by water resources [61,62].
Therefore, PRE is the main factor affecting northern grassland, and PRE was absolutely
dominant in western XJ and parts of IMG and HB provinces (autonomous region). In
recent decades, the amount and frequency of PRE have shown an upward trend [63,64]. In
addition, the grasslands of China distributed on the Qinghai–Tibet Plateau, which has a
high altitude, are controlled by the plateau climate. Previous studies have shown that with
global changes, the TEM on the Qinghai–Tibet Plateau has warmed significantly over the
past few decades, and accelerated warming could alleviate the restriction of microthermal
conditions on the vegetation growth rate [65]. Therefore, the grassland in most areas of
the Qinghai–Tibet Plateau has been shown to be in a state of recovery. However, in the
northern part of the IMG autonomous region, which has a temperate continental climate,
the increasing TEM has an inhibitory effect on grassland restoration in the region, and
previous studies have shown similar results [66,67]. The reason for this phenomenon may
be that the increased TEM leads to increased water evaporation, which accelerates the
drying rate of the soil [68,69].

How human activities affect ecosystems is often difficult to measure, and they are
difficult to express on spatial and temporal scales using specific data [70,71]. In this study,
we chose six socioeconomic factors covering economic, population, livestock, and grassland
conservation measures to reflect human activities, and based on the GTWR model and the
LMG method, we quantified the effects and contribution of the grassland ecosystems. Grass-
lands are a fundamentally important source of food for livestock; however, the relationship
between livestock and grassland is extremely complex. Previous studies have shown that
moderate grazing can maintain a high level of ecosystem diversity in grassland ecosystems,
while low or high grazing can have negative impacts [72]. Our research indicates that in
the early stages of the study, i.e., 2000, there was a strong relationship (including positive
and negative) between livestock (sheep and large livestock) and grassland, while in the late
stages of the study, this relationship showed a weakening trend in most provinces. This
might have occurred because the Chinese government began implementing a large-scale
project of “returning grazing land to grassland” in 2003 to curb the deterioration of grass-
land ecosystems, and a series of measures like grazing prohibition, rotation, and rest were
implemented on grassland [73,74]. It is worth noting that sheep have a higher contribution
to the dynamics of grassland GPP in the Loess Plateau, especially in SAX and GS provinces.
In the Loess Plateau, the main area for the implementation of ecological restoration policies
in China, the scattered animal husbandry method was the main way of raising sheep
before the implementation of ecological restoration policies. However, after the ecological
restoration projects were implemented, the scattered animal husbandry method shifted
to intensive farming, and the proportion of feed usage increased, effectively alleviating
the pressure on the grassland [75,76]. Primary industry has a positive relationship with
grassland GPP in the northwest region of China, such as SAX, GX, NX, QH, and XJ, and
studies by Li [46] and Ren [77] have reached similar conclusions. Livestock husbandry is
an important primary industry that relies on pasture areas. Although primitive grazing
can generate economic income, it can also lead to grassland degradation. In recent years,
with traditional grazing shifted to intensive farming and government ecosystem subsidies
being directly disbursed, the dependence of herdsmen on grasslands for their production
and livelihoods has decreased while their income has increased [78,79]. In addition, the
coefficient of the forbidden grazing effect has had a consistent trend with the area of forbid-
den grazing. Although there was a negative relationship between forbidden grazing and
grassland GPP in this research, when the area of forbidden grazing reached a certain level,
the coefficient then had a positive effect. The area of rodent and pest control was closely
related to the area where rodent and pest diseases occurred that year, so the area of rodent
and pest control was negatively related to the GPP of grassland.
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This study aimed to reveal the impact of human activities on grassland GPP using
various socioeconomic data. However, due to the lack and inconsistency of statistical data
at the county and city levels over many years, the collection of some indicator data has
been limited. Therefore, the characteristics of spatial heterogeneity within the province
cannot be reflected. In future research, we will strive to collect more accurate municipal or
even county-level indicators to reveal the direct or indirect impact of socioeconomic factors
on grassland ecosystems.

5. Conclusions

In this study, based on the GPP (gross primary productivity) and combining the climate
(temperature, precipitation, solar radiation) and human factors (large livestock, sheep,
population, primary industry, forbidden grazing, rodent and pest control), the variation,
influence effects and contribution of grassland in 10 province s (autonomous region) were
explored during 2000–2018. According to the study results, the GPP showed a significant
upward tendency (4.75 g C m−2 yr−1), especially in Shaanxi Province. Furthermore, partial
correlation analysis, the geographical and temporal weighted regression model, and the
Lindeman Merenda Gold method revealed that sheep, as the main type of human activity,
had a higher contribution in Shaanxi, Gansu, Ningxia, and Shanxi Provinces (autonomous
region), located on the Loess Plateau, and temperature and precipitation were the main
climate factors and had a higher contribution in arid and semi-arid regions (including
Xinjiang, Inner Mongolia and Hebei Provinces (autonomous region) and the Qinghai Tibet
Plateau region (including Tibet, Qinghai, and Sichuan Provinces (autonomous region)).
Overall, the grassland in the study area is primarily affected by human activities, with seven
provinces (autonomous regions) having a contribution of human activity greater than 50%.
Therefore, these results indicate that grassland in China has shown a restoration trend, and
human activities, including returning farmland to grassland and grazing prohibition, have
played a positive role in grassland restoration. These findings can support decision-making
for implementing further ecological restoration policies.
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