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Abstract: In recent years, object detection based on deep learning has been widely applied and
developed. When using object detection methods to process remote sensing images, the trade-
off between the speed and accuracy of models is necessary, because remote sensing images pose
additional difficulties such as complex backgrounds, small objects, and dense distribution to the
detection task. This paper proposes YOLO-RS, an optimized object detection algorithm based on
YOLOv4 to address the challenges. The Adaptively Spatial Feature Fusion (ASFF) structure is
introduced after the feature enhancement network of YOLOv4. It assigns adaptive weight parameters
to fuse multi-scale feature information, improving detection accuracy. Furthermore, optimizations
are applied to the Spatial Pyramid Pooling (SPP) structure in YOLOv4. By incorporating residual
connections and employing 1× 1 convolutions after maximum pooling, both computation complexity
and detection accuracy are improved. To enhance detection speed, Lightnet is introduced, inspired
by Depthwise Separable Convolution for reducing model complexity. Additionally, the loss function
in YOLOv4 is optimized by introducing the Intersection over Union loss function. This change
replaces the aspect ratio loss term with the edge length loss, enhancing sensitivity to width and
height, accelerating model convergence, and improving regression accuracy for detected frames.
The mean Average Precision (mAP) values of the YOLO-RS model are 87.73% and 92.81% under
the TGRS-HRRSD dataset and RSOD dataset, respectively, which are experimentally verified to be
2.15% and 1.66% higher compared to the original YOLOv4 algorithm. The detection speed reached
43.45 FPS and 43.68 FPS, respectively, with 5.29 Frames Per Second (FPS) and 5.30 FPS improvement.

Keywords: object detection; speed; accuracy; remote sensing images; balance

1. Introduction

In recent years, remote sensing technology has rapidly developed and its applications
have become increasingly diverse in various fields [1–4], playing an important role in
military, civilian, and other fields. It is an important foundation for applications such as
urban planning, land use, and natural disaster monitoring.

Remote sensing image object detection is one of the most fundamental tasks in satellite
remote sensing image processing, which refers to the use of image processing technology
and relevant computer vision algorithms to determine whether there are target objects
in the acquired remote sensing image. Therefore, how to improve the performance of
remote sensing image object detection to obtain more accurate positioning and detailed
classification recognition has become one of the important research topics in the field of
remote sensing. In traditional feature-based object detection methods, candidate regions are
first extracted from the image, and then handcrafted features are designed for the detected
objects. Finally, a classifier is used to perform the detection task. However, due to the high
resolution and large data volume of remote sensing images, as well as the limitations of
handcrafted feature descriptors in representing diverse features, traditional object detection
algorithms fail to fully exploit the deep semantic information in remote sensing images,
resulting in low efficiency and high computational costs. In recent years, breakthroughs
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have been made in object detection using deep learning compared to traditional approaches.
Deep learning-based object detection algorithms abandon the manual feature engineering
process and instead select discriminative features from massive image samples using con-
volutional neural network structures, leading to more reliable detection results. Therefore,
expanding the application of deep learning-based object detection algorithms in remote
sensing image object detection can achieve more accurate and efficient detection results, as
well as promote the development and application of object detection technology in remote
sensing imagery.

Although the current mainstream object detection algorithms have shown excellent
performance in conventional image detection tasks, their application in remote sensing
images is still challenging due to the characteristics of remote sensing images themselves.
The challenges faced by object detection tasks in remote sensing images can be summarized
as follows. (1) Dense distribution of objects: Remote sensing images often contain large-
scale and densely distributed objects, which can cause interference between objects and
result in positioning errors. The occurrence of missed detection and false detection is also
more likely. (2) Small objects in remote sensing images: Small objects are often present in
remote sensing images, and the existing object detection algorithms already have defects
in detecting small objects in conventional images. Their application in remote sensing
images will further amplify this drawback. (3) Large differences in object characteristics:
Remote sensing images contain rich geographic information, including multiple types of
objects that can greatly vary in size and shape. Object detection algorithms are required
to have high adaptability, which increases the difficulty of object detection. (4) Complex
background of remote sensing images: The complex background of remote sensing images
includes two aspects. One is that the scene itself is complex, and the other is that it is easily
affected by noise and other unrelated factors. This can result in the background information
being more prominent than the object information itself, which can also lead to missed
detection and false detection in the detection task.

To address the challenges of remote sensing image object detection, this paper pro-
poses a YOLO-RS method that improves both the accuracy and speed of object detection.
Our contributions are: (1) To address the problems of small objects, dense distribution,
and complex background in remote sensing images, we introduce ASFF and propose an
improved SPP structure, namely the OSPP structure. (2) In order to make the model more
lightweight and improve detection speed, we propose the Lightnet structure. (3) We use
the EIOU loss function to accurately describe the differences between predicted and true
bounding boxes.

2. Related Work

In recent years, researchers in the fields of remote sensing and computer vision have
collaborated to design numerous object detection algorithms specifically for remote sensing
images.

Some researchers have continued to focus on traditional methods based on classifiers.
Huang et al. [5] proposed a hyperspectral remote sensing image object detection method.
The method first segments the original image using an entropy rate superpixel segmenta-
tion algorithm, and then combines spectral features with radial basis kernels to generate
spectral kernels. By introducing LBP features and weighted average filtering, spatial kernels
are obtained within and between superpixels, effectively avoiding the loss of edge features
during the extraction of superpixel information. Finally, the combined kernels are input
into an SVM classifier to complete the classification task. Huang Hong et al. [6] presented a
multi-scale feature-based object detection method for remote sensing images. The method
extracts three types of multi-scale local features, including improved UFL-SC features,
LBP features, and SIFT features, through dense sampling. The intermediate features of
the image are then extracted using the visual bag-of-words model, and the classification
task is performed using an SVM with a histogram intersection kernel. Zhu et al. [7–9]
utilized traditional machine learning methods for improved image processing performance.
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They introduced the Large Margin Distribution-Supervised Novelty Detection (LMD-SND)
model that enhances the performance of multi-class supervised novelty detection through
margin distribution. Furthermore, they implemented Neighborhood Linear Discriminant
Analysis (nLDA) for better performance when a class contains multiple clusters or sub-
classes. Finally, they improved the Support Vector Ordinal Regression (SVOR) model with
the Relative Margin induced Support Vector Ordinal Regression (RMSVOR) model, which
better accounts for the influence of samples close to the discriminant hyperplane during
learning. Nie et al. [10] proposed a ship recognition method in complex backgrounds. They
combined quaternion Fourier transform localization to construct a novel visual saliency
detection method and used the GrabCut method for candidate region extraction. They
also introduced rotation invariant modified LBP features for ship feature extraction and
completed the classification task using SVM. However, in traditional object detection al-
gorithms, the handcrafted feature representation and descriptor have limited capability,
making it difficult to meet the requirements of complex scene object detection tasks.

However, traditional methods have their limitations. They often require significant
manual effort and expertise for feature design and parameter tuning, leading to increased
development costs. Additionally, these methods may lack generalizability and flexibility
when dealing with diverse types of objects or scenes, necessitating adjustments and op-
timizations for different scenarios. In comparison, deep learning-based object detection
algorithms have shown significant improvements in detection speed and accuracy, making
them the current focus of research. Deep learning-based object detection algorithms can
be divided into two categories: one-stage algorithms based on regression strategies and
two-stage algorithms based on candidate regions. Some researchers have conducted re-
search based on two-stage object detection algorithms. Sha et al. [11] proposed an aircraft
object detection method for remote sensing images based on the Faster R-CNN network.
The method obtains more comprehensive and detailed feature maps through multi-level
fusion strategies and adjusts the scale of candidate regions, thereby improving object local-
ization accuracy and reducing missed detections. Yang et al. [12] developed a landslide
detection method for remote sensing imagery based on the Faster R-CNN network. They
applied gamma transformation and Gaussian filtering for data augmentation, normalized
the batch size to mitigate the influence on the model, and introduced the FPN structure
for multi-scale feature fusion. Experimental results demonstrated significant improve-
ment in detection accuracy. In summary, although two-stage object detection algorithms
based on candidate regions exhibit excellent detection accuracy, they suffer from training
and structural complexity, preventing a balance between detection speed and accuracy.
On the other hand, one-stage object detection algorithms based on regression strategies
eliminate the step of candidate box extraction, directly using a single neural network for
object detection. Wen et al. [13] proposed an improved SSD algorithm for multi-scale object
detection in remote sensing images. By introducing advanced background modeling and
appropriate supervised learning strategies, they improved the performance of multi-scale
object detection in remote sensing images. The algorithm was validated on the COCO
dataset and achieved excellent results. Qu et al. [14] designed a YOLOv3 model with an
auxiliary network to enhance the performance of object detection in remote sensing images.
They employed the CBAM attention mechanism to suppress non-essential information and
focus on critical information. They also used the DIOU loss function to expedite model
training convergence and employed an adaptive feature fusion method to reduce inference
overhead and improve detection speed. Shen et al. [15] enhanced the cross-scale detection
in road object detection tasks using YOLOv3. They utilized the K-means-GIoU algorithm to
create prior boxes and implemented a detection branch for small targets. Further improve-
ments were made with the use of channel and spatial attention modules. The proposed
method led to an increase in mAP value and better detection of small-scale objects

Despite the impressive performance of these methods in specific scenarios, their
effectiveness may wane when balancing speed and accuracy. Moreover, it is not guaranteed
that these methods will yield similar results with remote sensing images. Hence, this paper
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aims to find an approach that can balance detection speed and accuracy in remote sensing
image datasets [16]. YOLOv4, proposed by Bochkovskiy et al. [17], is a classic method
that achieves a balance between detection speed and accuracy. Therefore, this paper takes
YOLOv4 as the baseline, and implements a series of improvements on it, thus enhancing
its exceptional capabilities in handling remote sensing images.

3. Materials and Methods

Leveraging YOLOv4’s exemplary speed-accuracy trade-off in object detection, we
adopt it as our baseline [17]. This research primarily optimizes the YOLOv4 object detection
algorithm by enhancing feature fusion, incorporating lightweight model operations, and
accelerating model convergence speed. Figure 1 illustrates the framework of the optimized
YOLOv4, i.e., YOLO-RS, with the “ASFF”, “OSPP”, and “Lightnet” modules representing
significant enhancements. Further details follow in the subsequent sections. Section 3.1
introduces the Adaptively Spatial Feature Fusion (ASFF) method [18], Section 3.2 presents
the Spatial Pyramid Pooling (SPP) method, Section 3.3 unveils the novel backbone, Lightnet,
and Section 3.4 discusses the optimization of the loss function.
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Figure 1. YOLO-RS network architecture.

3.1. ASFF

The YOLOv4 object detection algorithm utilizes the Path Aggregation Network
(PANet) structure and the SPP structure as feature enhancement networks. These networks
fuse low-level semantic information with high-level semantic information by employing a
bottom-up structure to combine features extracted from three scales in the feature extraction
network. Due to the significant variation in target sizes in remote sensing images, conflicts
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between features at different levels often dominate the feature pyramid. This inconsistency
disrupts gradient computations during training and diminishes the effectiveness of the
feature pyramid. To address this issue, this study introduces the ASFF structure after
the PANet structure, as shown in Figure 2. The ASFF structure integrates multi-scale
feature information by allocating adaptive weight parameters to different feature layers.
This approach effectively improves the scale discrepancy of input features, enabling the
network to adaptively focus on important information, suppress irrelevant interference,
and efficiently combine critical feature information using a more effective feature fusion
method. The ASFF structure enhances the network’s capability to extract image features,
leading to improved detection performance across the entire network.
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Figure 2. Feature enhancement network with ASFF.

Figure 2 illustrates the architecture of the feature enhancement network after intro-
ducing ASFF. The specific process of feature enhancement is as follows: By employing
the CSPDarknet-53 network [17], three different-sized feature maps (C1: 13 × 13 × 1024,
C2: 26 × 26 × 512, C3: 52 × 52 × 256) are extracted. Firstly, the C1 features are fed into
the SPP structure to adjust the channel dimension to 512 while keeping the feature size
unchanged. Subsequently, these three feature maps are passed through the PANet struc-
ture for feature enhancement, resulting in three enhanced feature maps corresponding
to the three levels in the ASFF structure (Level 1: 13 × 13 × 512, Level 2: 26 × 26 × 512,
Level 3: 52 × 52 × 256). Then, ASFF-1, ASFF-2, and ASFF-3 fusion operations are per-
formed on the three levels of feature maps. Finally, image predictions are made on the
fused feature maps at each level. Taking the ASFF-2 operation in Figure 2 as an example,
the specific process of feature fusion can be represented by Equation (1).{

y2 = α2 · X1→2 + β2 · X2→2 + λ2 · X3→2
α2 + β2 + λ2 = 1

(1)

where, y2 is the feature map generated after feature fusion, X1→2, X2→2, and X3→2 are the
feature maps at Level 1, Level 2, and Level 3, which are adjusted to the same size and
channel dimension as the feature maps at Level 2, respectively, and α2, β2, and λ2 express
the weights of X1→2, X2→2, and X3→2, respectively, when feature fusion is performed at
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Level 3. The parameter values are obtained by network adaptive learning and are in the
interval (0, 1), and the sum of the three is 1.

Without the utilization of ASFF, conflicts between features at different levels in remote
sensing images may lead to a decrease in accuracy. The gradient computation formula at
position (i, j) in the unaltered feature map at level 1 of the original YOLOv4 can be obtained
by applying the chain rule:

∂L
∂x1

ij
=

∂y1

∂x1
ij
· ∂L

∂y1
+

∂x1→2
ij

∂x1
ij
· ∂y2

∂x1→2
ij
· ∂L

∂y2
+

∂x1→3
ij

∂x1
ij
· ∂y3

∂x1→3
ij
· ∂L

∂y3
(2)

In Equation (2), the left-hand side variable ∂L
∂x1

ij
represents the derivative of the loss

function L concerning a certain pixel ∂x1
ij in the Level 1 feature map. Variables x1→2

ij

and x1→3
ij represent specific pixels in the feature maps obtained when adjusting the Level

1 feature map to the size and channel dimensions of the Level 2 and Level 3 feature
maps, respectively. The transformations between different levels are achieved through
upsampling or downsampling operations, making x1→2

ij and x1→3
ij fixed values. For ease of

calculation,
∂x1→2

ij

∂x1
ij

and
∂x1→3

ij

∂x1
ij

can be set to 1. Thus, Equation (2) can be expressed as follows:

∂L
∂x1

ij
=

∂y1

∂x1
ij
· ∂L

∂y1
+

∂y2

∂x1→2
ij
· ∂L

∂y2
+

∂y3

∂x1→3
ij
· ∂L

∂y3
(3)

In Equation (3), ∂y2
∂x1→2

ij
and ∂y3

∂x1→3
ij

represent activation and fusion operations, respec-

tively. These operations can be considered as conventional fusion operations, and the
corresponding value is fixed. The fixed value for both ∂y2

∂x1→2
ij

and ∂y3
∂x1→3

ij
can be set to 1. Thus,

Equation (3) can be simplified as follows:

∂L
∂x1

ij
=

∂L
∂y1

+
∂L
∂y2

+
∂L
∂y3

(4)

In this case, if pixel ∂x1
ij contains a positive sample while the corresponding pixel

at position (i, j) in other level feature maps contains a negative sample, it can cause
interference in the gradient information during backpropagation, potentially affecting the
network’s training.

In this study, the ASFF structure is introduced between the original PANet structure
and the YOLO Head prediction module. The gradient equation in this case can be derived
from Equations (1) and (3) and is represented by Equation (5):

∂L
∂x1

ij
= α1 ·

∂L
∂y1

+ α2 ·
∂L
∂y2

+ α3 ·
∂L
∂y3

(5)

From Equation (5), it is evident that the incorporation of ASFF allows for adaptive
weight parameter selection, where the parameter values corresponding to gradients of
negative samples are set to 0. This effectively avoids conflicts between different hierarchical
features in remote sensing images. As a result, the detection accuracy of the model is
significantly improved.

3.2. OSPP

This study proposes a computationally efficient, faster, and more accurate SPP struc-
ture, referred to as OSPP. Firstly, inspired by the residual concept in the Cross Stage Partial
Network (CSPNet) structure [19] of the feature extraction network, the SPP structure incor-
porates the residual connection at the input end. This effectively reduces the complexity of
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the SPP structure. Additionally, 1× 1 convolutional operations are introduced after the four
max pooling operations, further reducing the computational load of the SPP structure. As
a result, the proposed model achieves improved detection accuracy while also enhancing
the speed of the detection process.

3.2.1. Residual Connection

This paper introduces a residual connection at the input of the SPP structure, achieving
lightweight SPP while enhancing the feature enhancement capability. The SPP structure
with the introduced residual connection is shown in Figure 3.
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Figure 3. SPP with the introduction of a maximum residual connection.

From Figure 3, it can be observed that the input features of the SPP structure undergo
two separate processes. One part is treated as a structure similar to a residual connection,
while the other part undergoes the standard SPP processing. These two parts are then
joined together and finally subjected to a regular convolution operation. Similar to the
four max pooling operations in the SPP structure, the max pooling is performed with
kernel sizes of 13 × 13, 9 × 9, 5 × 5, and 1 × 1. The max pooling with a kernel size of
1 × 1 requires no further operation. Similar to the application of CSPNet in common
convolutional neural network models, introducing the maximum residual connection in
the SPP structure reduces the computational complexity of the model while improving the
algorithm’s detection accuracy.

3.2.2. 1 × 1 Convolution

The 1 × 1 convolution operation was first introduced in the NIN (Network In Net-
work) architecture [20]. It is commonly used after regular convolutional operations to
enhance feature extraction and enable cross-channel information integration. In particular,
the 1 × 1 convolution has advantages in improving accuracy. This convolutional operation
allows the network to interact and fuse information between different channels, which
helps the model learn more useful and novel features. Moreover, this process, coupled
with the activation function, introduces nonlinearity to the model, thereby enhancing its
representational capacity and prediction accuracy. Additionally, the 1 × 1 convolution
effectively improves the model’s speed. By reducing the number of channels in feature
maps, the 1× 1 convolution reduces the computational complexity required for subsequent
convolutional operations. This enables the model to perform forward and backward propa-
gation faster, thereby accelerating training and inference speeds. Therefore, to optimize the
SPP structure further, the 1 × 1 convolution operation is applied after each of the four max
pooling operations. This reduces the computational complexity while enhancing detection
accuracy and speed. The resulting structure, i.e., OSPP, is illustrated in Figure 4.
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3.3. Lightnet

Given the significant computational time and resources required for the detection
of complex objects, we propose a method employing Lightnet, aimed at increasing the
processing speed and reducing the computational burden. This study borrows the idea of
the MobileNet series of lightweight networks and uses a depthwise separable convolution,
i.e., DSC [21–25], to replace the conventional convolution approach in the backbone, as
shown in Figure 5.
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Figure 5. Schematic diagram of Lightnet.

Figure 5 illustrates the new backbone architecture, where DSC represents depthwise
separable convolution, and DC refers to channel-wise convolution. Pointwise convolution
denotes the conventional 1 × 1 convolution operation. Since the functionality of the 1 × 1
depthwise separable convolution is equivalent to that of the conventional convolution, we
use a conventional convolution operation in the illustration for the 1× 1 convolution kernel.

Depthwise Separable Convolution consists of two parts: depthwise convolution and
pointwise convolution. As shown in Figure 6, the depthwise convolution operation sep-
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arately extracts the features under each channel for the input features, using the same
number of convolution kernels as the channel dimension of the input features. The channel
dimension of the output features is the same as that of the input features. The process of
pointwise convolution is basically the same as that of regular convolution. However, in
this case, the size of the convolution kernels used in the pointwise convolution operation is
1 × 1. At the same time, the channel dimension of the convolution kernel is the same as the
channel dimension of the output features after the depthwise convolution. Moreover, the
channel dimension of the final output feature is the same as the channel dimension of the
convolution kernel.
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Suppose the depthwise convolution process has a kernel size of K × K, where the
depthwise convolutional kernel is treated as a convolutional kernel with an input channel
of K× K. Additionally, the number of convolutional kernels is equal to the number of input
channels in the feature map. Assuming the input feature map size is F× F×M and the
output feature map size is G× G×M, with M representing the number of convolutional
kernels, the parameter computation for the depthwise convolution operation, denoted by
Fc, can be calculated using Equation (6).

Fc = G× G×M× K× K (6)

In the pointwise convolution process, the features obtained from the depthwise convo-
lution with a spatial dimension of G× G×M are further convolved using 1 × 1 kernels.
The number of channels in these kernels is equal to the output feature channels obtained
from the depthwise convolution, denoted as M, and there are N such kernels. This process
results in the final output feature map of size G× G×M. The parameter computation for
pointwise convolution, denoted as Fd, can be calculated using Equation (7).

Fd = G× G×M× N (7)
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Depthwise separable convolution consists of two parts: depthwise convolution and
pointwise convolution. Therefore, the parameter computation for depthwise separable con-
volution, denoted as F, is the sum of the parameter computations for depthwise convolution
and pointwise convolution, which is shown in Equation (8).

F = Fc + Fd = G× G×M× K× K + G× G×M× N (8)

Figure 6a illustrates the conventional convolution operation, where the input feature
map has a size of F× F×M and undergoes N convolution operations using K× K-sized
kernels. The output feature map has a size of G× G×M. The parameter computation for
the conventional convolution process, denoted as F′, can be calculated using Equation (9).

F′ = G×M×M× N × K× K (9)

Therefore, the ratio of the computational effort between the Depthwise Separable
Convolution operation and the standard convolution operation is shown in Equation (10).

F
F′

=
G× G×M× K× K + G× G×M× N

G×M×M× N × K× K
=

1
N

+
1

K2 (10)

3.4. EIOU

Because the original loss function Complete Intersection over Union (CIoU) can only
reflect the difference in aspect ratio, when the ratio of the predicted box and the ground
truth box are very close, the penalty term of the CIoU loss function almost breaks down.

CIoU = IoU− ρ2(A,Agt)
c2 − βv

IoU = K∩G
K∪G

(11)

In Equation (11), A = (x, y, w, h) represents the predicted box’s position,
Agt =

(
xgt, ygt, wgt, hgt) represents the ground truth box’s position, and ρ2(A, Agt) repre-

sents the Euclidean distance between the center points of the predicted box and the ground
truth box. β is a weight parameter, and v is a parameter measuring aspect ratio consistency.
The expressions for calculating β and v are shown in Equation (12). c denotes the diagonal
distance of the minimum bounding box containing both the ground truth box and the
predicted box. K and G represent the areas of the predicted box and ground truth box,
respectively. The IoU (Intersection over Union) value ranges between 0 and 1, with higher
IoU values indicating a higher degree of overlap between the predicted box and the ground
truth box, and hence, better localization accuracy.{

β = v
1−IoU+v

v = 4
π2

(
acrtan wgt

hgt − acrtan w
h )

2 (12)

In Equation (12), w and h, as well as wgt and hgt, represent the width and height
information of the predicted box and the ground truth box, respectively. The CIoU loss
function corresponds to the bounding box localization loss L, and its expression is shown
in Equation (13).

LCIoU = 1−CIoU = 1− IoU +
ρ2(B, Bgt)

c2 + βv (13)

However, when the aspect ratios of the predicted box and the ground truth box are
very close or even identical, the penalty term of the CIoU loss function almost becomes inef-
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fective, and it fails to accurately reflect the true differences in width, height, and confidence.
By taking the derivative of v in Equation (13), the following expression is obtained:

∂v
∂w = 8

π2

(
acrtan wgt

hgt − acrtan w
h

)
h

w2+h2

∂v
∂h = − 8

π2

(
acrtan wgt

hgt − acrtan w
h

)
w

w2+h2

(14)

Based on Equation (14), we can deduce Equation (15) as follows:

∂v
∂w

= − h
w

∂v
∂h

(15)

As indicated by Equation (15), the derivatives of v with respect to the height h and
width w have opposite signs. Therefore, it can be observed that the height and width values
always change in opposite directions, which does not allow for a reasonable adjustment of
the predicted box aspect ratio.

To solve this problem, we optimize the loss function of the original YOLOv4 by using
the Effect Intersection over Union (EIoU) loss function [26] to replace the original CIoU loss
function, to further improve the accuracy of the model. The EIoU loss function uses the true
difference between the width and height, respectively, and their confidence levels instead
of the aspect ratio, reflecting the true difference by calculating the difference between the
height and width of the predicted box and the outer minimum matrix, thus achieving faster
network convergence and better localization results. The EIoU loss function consists of
three components: overlap loss, center distance loss, and width-height loss, and its loss
function is calculated as shown in Equation (16).

LEIOU = 1− IOU +
ρ2(A, Agt)

c2 +
ρ2(w, wgt)

c2
w

2 +
ρ2(h, hgt)

c2
h

2 (16)

In Equation (16), A represents the center point, Agt represents the center point position
of the ground truth box, w, wgt represent the width of the predicted box and the ground
truth box, h, hgt represent the height of the predicted box and the ground truth box, and cw
and ch are the width and height values of the two rectangular closures of the predicted box
and the ground truth box.

4. Results

This section begins by introducing the experimental configurations and datasets used
in the study. Subsequently, ablation experiments are conducted on the two datasets, show-
casing the average precision (AP) for single-class objects. Several comparative examples are
also presented to illustrate the advantages of the proposed approach. Finally, by comparing
with other algorithms, the rationality and applicability of YOLO-RS in the field of remote
sensing object detection are further demonstrated.

4.1. Experimental Environment

In the experiments, the operating system is Ubuntu 18.04, the GPU is GeForce RTX
3090 (memory size is 24 GB), and the deep learning framework version is tensorflow-gpu
2.4.0. We use the CUDA version 11.0 parallel computing framework for computation on
GPU with the Cudnn 8.0.5.39 acceleration library. The information is shown in Table 1.
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Table 1. Configuration of the experimental environment.

Configuration Parameter

Operating System ubuntu 18.04
GPU GeForce RTX 3090

Deep Learning Framework TensorFlow-gpu 2.4.0
CUDA 11.0
Cudnn 8.0.5.39

Programming Language Python 3.7

4.2. Dataset Description
4.2.1. TGRS-HRRSD

The TGRS-HRRSD dataset [27], released by the University of the Chinese Academy of
Sciences, is a dataset specifically designed for high-resolution remote sensing object detec-
tion. The dataset consists of 21,761 remote sensing images with spatial resolutions ranging
from 0.15 m to 1.2 m. It contains a total of 55,740 object instances, each accompanied by
corresponding class and location labels. The TGRS-HRRSD dataset comprises 13 categories,
including airplane, baseball diamond, basketball court, bridge, crossroad, ground track
field, harbor, parking lot, ship, storage tank, T junction, tennis court, and vehicle. The
sample distribution among different classes is relatively balanced, with approximately
4000 samples per class. Figure 7 displays the number of instances for each class in the
TGRS-HRRSD dataset. In this study, the original dataset is divided into three subsets: a
training set (5401 remote sensing images), a validation set (5417 remote sensing images),
and a test set (10,943 remote sensing images). The training and validation sets account for
50% of the total number of remote sensing images in the TGRS-HRRSD dataset, while the
test set constitutes the remaining 50%.
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4.2.2. RSOD

In 2015, Wuhan University released the RSOD dataset [28,29]. The RSOD dataset
consists of 976 remote sensing images captured under different climatic conditions and in
different regions. Each image is cropped from Google Earth and Tianditu maps and manu-
ally annotated to include a total of 6950 object instances. The RSOD dataset contains four
object categories: oiltank, overpass, playground, and airplane. The oiltank category consists
of 165 images with 1586 oiltank objects, the overpass category comprises 176 images with
180 overpass objects, the playground category includes 189 images with 191 playground
objects, and the airplane category contains 446 images with 4993 airplane objects. Figure 8
shows the distribution of training and testing images for each category in the RSOD dataset.
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4.3. Training Details

During the training process of the network model, the input image size is set to
416 × 416 × 3. The training process consists of two stages: the frozen stage and the un-
frozen stage, with a total of 100 epochs. In the frozen stage, the model is trained for
50 epochs using the Adam optimizer. The initial learning rate is set to 1 × 10−3, the batch
size is set to 32, and the weight decay parameter is set to 5 × 10−4. In the unfrozen stage,
the model is trained for an additional 50 epochs using the Adam optimizer. The initial
learning rate is set to 1 × 10−4, the batch size is set to 16, and the weight decay parameter
is set to 5 × 10−4.

4.4. Evaluation Metrics
4.4.1. Detection Accuracy

The task of object detection consists of two main components: localization and classifi-
cation. Therefore, the evaluation of detection accuracy needs to consider both the precision
of object localization and the precision of object classification. The evaluation metrics
commonly used to assess the detection accuracy of object detection models are Average
Precision (AP) and mean Average Precision (mAP). In this study, AP and mAP are used as
the accuracy evaluation metrics.

The precision (P) and recall (R) are calculated using the following formulas:

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

In Equations (17) and (18), TP refers to True Positive, which represents samples that
are truly positive and are correctly identified as positive by the model. TN refers to True
Negative, which represents samples that are truly negative and are correctly identified as
negative by the model. FP refers to False Positive, which represents samples that are truly
negative but are incorrectly identified as positive by the model. FN refers to False Negative,
which represents samples that are truly positive but are incorrectly identified as negative
by the model.

In practice, the performance of an object detection model is often evaluated by con-
structing a Precision-Recall (PR) curve, with Precision (P) on the y-axis and Recall (R) on the
x-axis. Average Precision (AP) is then calculated as the area under the PR curve. A higher
AP value indicates better detection performance for a particular class. The calculation
formula for AP is given by Equation (19).

AP =
∫ 1

0
P(R)dR (19)

where P(R) represents the precision at a given recall value R, and the integral is taken over
the range of recall values.

The mean Average Precision (mAP) is a performance metric that measures the overall
performance of an object detection model across all classes. It is calculated using the
following Equation (20):

mAP =
∑m

i=1 APi

m
(20)
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In Equation (20), m represents the number of classes in the object objects. The calcula-
tion of AP is given by Equation (19).

4.4.2. Detection Speed

Frames Per Second (FPS) is used as a measure of the model’s real-time performance.
FPS represents the number of frames processed per second, and a higher FPS indicates
better real-time performance of the model.

4.5. Ablation Study

Table 2 presents the results of ablation experiments conducted on the TGRS-HRRSD
dataset using different optimization levels of the YOLOv4 object detection algorithm. In
Table 2, Group 1 represents the experimental results of the original YOLOv4 algorithm.
Group 2 represents the experimental results of the YOLOv4 algorithm with the EIoU loss
function. Group 3 represents the experimental results of the YOLOv4 algorithm with the
ASFF structure and the EIoU loss function. Group 4 represents the experimental results
of the YOLOv4 algorithm with the Lightnet module added on top of Group 3. Group 5
represents the experimental results of the YOLOv4 algorithm with the OSPP structure
introduced, along with the EIoU loss function. Group 6 represents the experimental results
of the YOLOv4 algorithm with the ASFF structure added on top of Group 5. Group 7
represents the experimental results of the optimized model proposed in this paper, which
combines the YOLOv4 algorithm with the ASFF structure, the OSPP structure, the Lightnet
module, and the EIoU loss function.

Table 2. Ablation experiments on the TGRS-HRRSD dataset.

id PANet ASFF Darknet53 Lightnet SPP OSPP EIoU mAP (%) FPS (f/s)

1
√ √ √

85.58 38.16
2

√ √ √ √
85.79 38.16

3
√ √ √ √ √

87.81 33.75
4

√ √ √ √ √
86.58 41.78

5
√ √ √ √

85.93 39.26
6

√ √ √ √ √
88.39 35.64

7
√ √ √ √ √

87.73 43.45

Bold font indicates the optimal values of each metric.

Table 2 provides the results of ablation experiments conducted on the TGRS-HRRSD
dataset using different optimization levels of the YOLOv4 object detection algorithm.
Group 1 represents the experimental results of the original YOLOv4 algorithm on the
TGRS-HRRSD dataset, achieving an mAP of 85.58% and a detection speed of 38.16 FPS.
Group 2 shows the results of the YOLOv4 algorithm with the EIoU loss function, which
slightly improves the detection accuracy with a 0.21% increase in mAP while maintaining
the same detection speed. Group 3 introduces the ASFF structure and utilizes the EIoU
loss function, resulting in a significant improvement in mAP to 87.81%. However, the
detection speed decreases to 33.75 FPS, indicating an increased computational cost due to
the introduction of the ASFF structure. Group 4 incorporates the Lightnet module on top
of Group 3, leading to a trade-off between mAP value of 86.58% and detection speed of
41.78 FPS. Group 5 integrates the OSPP structure and the EIoU loss function into the original
YOLOv4 algorithm, resulting in a slight improvement in both detection accuracy with mAP
of 85.93% and detection speed with FPS of 39.26 f/s. The sixth group introduced the ASFF
structure after the PANet structure, resulting in a decrease in detection speed compared
to the results of the fifth group. However, the detection accuracy improved, with an mAP
value of 88.39%, a 2.46% increase compared to the results of the fifth group. However, the
real-time performance of the model was compromised, indicating that the introduction
of the ASFF structure had a positive effect on detection accuracy but a negative impact
on detection speed. In the seventh group, the Lightnet structure proposed in this study



Remote Sens. 2023, 15, 3863 15 of 21

replaced Darknet53 in the network architecture developed in the sixth group’s experiment.
The results of the seven groups showed that the model performed best in terms of real-time
detection, with detection accuracy second only to the results of the sixth group. The mAP
value was improved by 2.15%, and the detection speed was improved by 5.29 FPS, which
further verified the reasonableness and effectiveness of the optimized model.

Similar ablation experiments were conducted on the RSOD dataset, a small-scale
remote sensing image dataset. The results are presented in Table 3.

Table 3. Ablation experiments on the RSOD dataset.

id PANet ASFF Darknet53 Lightnet SPP OSPP EIoU mAP (%) FPS (f/s)

1
√ √ √

91.15 38.38
2

√ √ √ √
91.34 38.38

3
√ √ √ √ √

93.47 33.84
4

√ √ √ √ √
92.14 42.02

5
√ √ √ √

91.90 39.95
6

√ √ √ √ √
93.95 35.41

7
√ √ √ √ √

92.81 43.68

Bold font indicates the optimal values of each metric.

From Table 3, it can be observed that in the first group, the original YOLOv4 object
detection algorithm achieved an mAP value of 91.15% and a detection speed of 38.38 FPS.
The second group introduced the EIoU loss function, resulting in a slight improvement in
detection accuracy while maintaining the same detection speed. Comparing it to the second
group, the third group introduced the ASFF structure, which enhanced the feature enhance-
ment network of the original YOLOv4 algorithm. This led to a significant improvement in
detection accuracy, with an mAP value increase of 2.07%. However, the detection speed
was compromised, decreasing by 4.46 FPS. This indicates that the introduction of the ASFF
structure improves detection accuracy at the expense of detection speed. The fourth group
applied the depth-wise separable convolution operation to the feature extraction network
based on the third group’s experiment. Compared to the results of the third group, the intro-
duction of depth-wise separable convolution had a positive impact on the detection speed,
reaching 42.02 FPS, an increase of 8.18 FPS. However, the detection accuracy decreased
by 1.33% with an mAP value of 92.14%. In the fifth group, optimization was performed
on the SPP structure of the original YOLOv4 algorithm, resulting in the OSPP structure.
Additionally, the EIOU loss function replaced the original CIoU loss function. Compared
to the results of the second group, the model showed slight improvements in detection
accuracy and detection speed in the task of remote sensing image detection. The mAP value
and detection speed increased by 0.66% and 1.57 FPS, respectively. This demonstrates that
the OSPP structure enhances both detection accuracy and speed in the original YOLOv4
object detection algorithm. The sixth group introduced the ASFF structure after the PANet
structure, resulting in a decrease in detection speed compared to the results of the fifth
group. However, the detection accuracy improved, with an mAP value of 93.95%, a 2.05%
increase compared to the results of the fifth group. However, the real-time performance
of the model was compromised, indicating that the introduction of the ASFF structure
had a positive effect on detection accuracy but a negative impact on detection speed. In
the seventh group, the Lightnet structure proposed in this study replaced Darknet53 in
the network architecture developed in the sixth group’s experiment. The results of the
seven groups showed that the model performed best in terms of real-time detection, with
detection accuracy second only to the results of the sixth group. The mAP value of the
model improved by 1.66% compared to the original YOLOv4 algorithm, while the detection
speed increased by 5.30 FPS.



Remote Sens. 2023, 15, 3863 16 of 21

4.6. Single Class Precision Presentation

Figure 9 shows some detection results of YOLO-RS on the TGRS-HRRSD dataset.
Figure 10 presents the AP values for each individual class of the original YOLOv4 algorithm
and the proposed algorithm on the TGRS-HRRSD dataset. Comparing the detection results
of the original YOLOv4 algorithm with the optimized version, most of the class AP values
have been effectively improved, except for the storage tank and crossroad categories, which
show slight decreases in AP values. Significant improvements in AP values for specific
classes are observed in the basketball court, parking lot, and T junction categories, with AP
values increasing by 8.08%, 9.70%, and 9.45%, respectively.
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The partial detection results of the optimized network on the RSOD dataset are shown
in Figure 11. Figure 12 shows the AP values of various categories detected by the original
YOLOv4 object detection algorithm and the algorithm proposed in this paper on the RSOD
dataset. Compared with the original YOLOv4 object detection algorithm, YOLO-RS has
increased mAP by 1.66%. In the detection tasks of two categories, oil tank and playground,
the AP values of each single category detected by the original YOLOv4 algorithm and the
algorithm proposed in this paper are almost equal on the RSOD dataset. However, in the
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detection tasks of two categories, airplane and overpass, the optimized algorithm proposed
in this paper performs significantly better than the original YOLOv4 object detection
algorithm, and its AP values are higher than those of the latter. Therefore, this study
proposes that the optimized algorithm has a more competitive performance in detecting
airplanes and overpasses.
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4.7. Presentation Comparison

Figure 13 shows the comparison of detection results of YOLOv4 and YOLO-RS on
the TGRS-HRRSD dataset. The first group of images contains two ground track fields and
several basketball courts.

As shown in Figure 13, YOLOv4 missed all basketball court objects while YOLO-RS
could detect all basketball court objects well. In the second group of images, YOLOv4
missed some objects while YOLO-RS could recognize all objects in the image. Finally, in
the third group of images, YOLOv4 incorrectly detected a crossroad as a T-junction.

Figure 14 shows examples of the detection effect of YOLOv4 and YOLO-RS on remote
sensing images in the TGRS-HRRSD dataset.

In the first group of examples in Figure 14, the original YOLOv4 object detection
algorithm missed the detection of an airplane with a color attached to its surface. However,
the algorithm proposed in this study could identify this airplane object well in the detection
task. In the second group of images to be detected, YOLOv4 only detected one playground
object while YOLO-RS could detect all objects. Finally, in the third group of examples,
YOLOv4 did not recognize the overpass object while YOLO-RS could recognize it.
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4.8. Methodology Comparison Experiment

This subsection compares the algorithm proposed in this study, i.e., YOLO-RS, with
other mainstream classical algorithms in a comparative experiment under the TGRS-
HRRSD dataset and the RSOD dataset. The experiments are compared in terms of both
detection accuracy and speed. The main mainstream algorithms include the classical
one-stage object detection algorithm and the two-stage object detection algorithm.

Analyzing Table 4, it is evident that the Faster R-CNN network has the worst detection
speed performance among the many models under the two datasets, and, similarly, the
detection accuracy performance does not have any advantage over the other one-stage
object detection algorithms in the table. Compared to the YOLO series network, the
SSD network also poorly performs in terms of detection speed and detection accuracy.
Compared to the Faster R-CNN network and the SSD network, the YOLOv3 network
has improved detection speed in remote sensing image detection tasks, and the mAP
value of the YOLOv3 network is 75.06% under the TGRS-HRRSD dataset, which is lower
than the mAP value of 81.43% under the Faster R-CNN network. This is because the
YOLOv3 network only uses simple FPN for feature enhancement and fails to fully fuse
effective features, resulting in poor detection accuracy. YOLOv4 is the base network used
in this paper. It introduces the SPP structure and PANet structure in the process of feature
enhancement compared to the YOLOv3 network, while the CSPNet residuals are used to
reduce the complexity of the model during feature extraction. YOLOv4 shows improved
detection accuracy and speed, with mAP values of 85.58% and 91.15% and detection speeds
of 38.16 FPS and 38.38 FPS under the TGRS-HRRSD dataset and RSOD dataset, respectively.
YOLOv5 is improved from YOLOv3 by introducing the Focus structure to obtain richer
channel information. Although YOLOv5 has a slight advantage in detection speed, it is
inferior to the baseline YOLOv4, not to mention YOLO-RS, in terms of detection accuracy
in the context of this paper. The mAP of YOLO-RS under the TGRS-HRRSD dataset and the
RSOD dataset is higher than that of YOLOv5 by 2.87% and 1.90%, respectively. Therefore,
in general, considering the balance of detection speed and accuracy, the baseline selection
and method design in this paper are reasonable. The mAP values of YOLO-RS on the TGRS-
HRRSD dataset and the RSOD dataset are 87.73% and 92.81%, respectively. Compared with
the original YOLOv4 algorithm, they are improved by 2.15% and 1.66%, respectively. The
detection speeds are 43.45 FPS and 43.68 FPS, which are improved by 5.29 FPS and 5.30 FPS
compared with the original YOLOv4 algorithm. Therefore, YOLO-RS has better detection
accuracy and detection speed in remote sensing image object detection tasks and achieves
a balance.

Table 4. Algorithm comparison experiments.

Methodology
TGRS-HRRSD RSOD

mAP (%) FPS (f/s) mAP (%) FPS (f/s)

Faster R-CNN 81.43 11.67 80.39 11.83
SSD 72.98 26.89 78.28 26.73

YOLOv3 75.06 32.53 82.47 31.97
YOLOv4 85.58 38.16 91.15 38.38
YOLOv5 84.86 49.50 90.91 50.23

YOLO-RS (ours) 87.73 43.45 92.81 43.68
Bold font indicates the optimal values of each metric.

5. Discussion

In this paper, we study a series of optimization and improvement works on the
original algorithm based on the YOLOv4 object detection algorithm for the characteristics
of remote sensing images. Compared with the original object detection algorithm, the new
method, YOLO-RS, achieves an improvement in both detection accuracy and detection
speed. YOLO-RS was experimentally demonstrated under the TGRS-HRRSD dataset
and RSOD dataset, respectively, and both achieved competitive detection results and
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an effective improvement in detection accuracy and precision, while the comparative
experiments combined with mainstream object detection algorithms further verified the
applicability and robustness of the YOLO-RS algorithm. However, remote sensing images
still exhibited characteristics such as significant variations in object orientation and dense
distribution. These factors often lead to overlapping and interfering detection boxes,
making it challenging to accurately locate the target object using horizontal detection boxes
alone. Consequently, it is worth considering the utilization of rotatable prediction boxes and
anchor-free methods in future work to address these issues in object detection algorithms.
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