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Abstract: The purpose of this study is to employ a remote sensing reconnaissance survey based on
optimal segmentation parameters and an object-oriented random forest approach to the identification
of possible terrestrial impact craters from the global 30-m resolution SRTM DEM. A dataset consisting
of 94 confirmed and well-preserved terrestrial impact craters, 104 volcanic calderas, and 124 valleys
were extracted from real-world surface features. For craters with different sizes, eight optimal scale
parameters from 80 to 3000 have been identified using multi-resolution segmentation, where the scale
parameters have a positive correlation (R2 = 0.78) with the diameters of craters. The object-oriented
random forest approach classified the tested impact craters, volcanic calderas, and valleys with an
overall accuracy of 88.4% and a Kappa coefficient of 0.8. The investigated terrestrial impact craters, in
general, have relatively lower rim circularity, higher length-to-width ratio, and lower relief, slope,
and elevation than volcanic calderas. The topographic characteristics can be explained by geological
processes associated with the formation and post-deformation of impact craters. The excavation
and ejection by initial impact and rebound of excavated materials contribute to low elevation. The
post-impact deformation, including inward collapse and slump of unstable rims, weathering, erosion,
and sediment deposition, further reduces elevation and relief and modifies shapes resulting in lower
circularity and higher length-to-width ratio. Due to the resolution limitation of the source DEM
data and the number of real-world samples, the model has only been validated for craters of 0.88
to 100 km in diameter, which can be generalized to explore undiscovered terrestrial impact craters
using cloud computing with global datasets provided by platforms such as Google Earth Engine and
Microsoft Planetary Computer.

Keywords: impact craters; scale parameters; multi-resolution segmentation

1. Introduction

Impact craters are important geological features in planetary sciences formed by
comets or asteroids colliding with the planetary surface [1]. The circular or sub-circular
topographic feature represents the energy level of the meteorite impact, which can be
observed by satellites [2]. Impact craters have been one of the major scientific focuses in the
science community because they provide evidence for inference of planet of evolution and
understanding of space materials [3]. Moreover, they are a critical indicator related to space
hazards inducing secondary earthquakes and tsunamis [4]. Estimating impact crater ages
assist in quantifying impact flux in the geological time scale and relates to other geological
events in Earth’s history [5]. Therefore, geoscientists have made substantial endeavors
to detect and describe impact crater landscapes based on various sources such as remote
sensing, geophysics, and geological data.
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The number of confirmed craters is biased by the disparity in survey technology
because most confirmed craters are located in developed countries [6]. Kenkmann et al. [7]
reported 198 confirmed and 10 suspected impact craters unevenly distributed worldwide,
with 65 in North America, 54 in Europe, 31 in Australia, 23 in Asia, 21 in Africa, and 14 in
South America [7]. The regional differences indicate that the number of impact craters in
developing countries should be higher than the current reports, and more cases could be
identified in those low-finding areas.

Identification of terrestrial impact craters usually requires two major steps. The first
step is the preliminary identification of crater candidates through remote sensing, including
topographic, optical, gravity, or magnetic surveys, and the second step is a conclusive
investigation by intensive geological surveys, including well-logging, lab analysis, geo-
chemical analysis, and shock metamorphic experiments. These confirm the impact craters
with ultimate evidence (shatter cones and planar deformation features, etc.) [8–10]. Remote
sensing can provide worldwide coverage of preliminary assessment of possible crater
locations to narrow down candidates using satellite data [11,12]. In addition, geophysical
surveys play a major role in the identification of deeply eroded or buried suspected impact
structures [13,14].

The topographic features from Digital Elevation Models (DEMs) can be used to iden-
tify possible candidates based on geomorphological characteristics such as crater rims
and ring structures [9,15]. DEMs also can be used to define geomorphological parame-
ters of confirmed caters from sophisticated geological surveys [16–18]. Additionally, the
drainage networks associated with impact structures are also analyzed to trace the ex-
tent of the drainage basin [15]. The drainage network within a preserved impact crater
shows drainage patterns such as centripetal or centrifugal radial drainage and sometimes
concentric drainage where crater rims act as catchment [7,15].

Multispectral satellite data have been used to derive structure features and lithological
discontinuities that might be related to impact cratering [11,15]. Linear features extracted
from Landsat satellite data revealed the orientation of linear geological structures and
distribution of lithological units, such as ejecta of brecciated materials and shock-induced
alterations [15,19]. Radial and annular lineament patterns have been observed in several
exposed impact structures as a result of concentric depressions and rim escarpments [9].

Furthermore, automatic computer algorithms have been used to detect impact craters
based on the circular morphometric resemblance of impact structures displayed in remote
sensing data [20]. Various Crater Detection Algorithms (CDAs) have been used on extrater-
restrial impact craters such as lunar and Mars craters [21,22]. However, limited attempts
have been made for the automatic detection of terrestrial craters [23]. Masaitis et al. [24]
and Kenkmann et al. [7] highlighted that complex geological processes and size variations
of terrestrial impact craters would hinder the automatic detection of terrestrial impact
craters. Li et al. [25] also reported a challenge in distinguishing impact craters, volcanos,
and valleys in deep learning for automatic crater detection because they share similar
characteristics to the natural image.

The three types of impact crater, simple crater, complex crater, and impact crater basin,
have distinctive topographic characteristics [2]. Typical fresh, simple impact craters have
bowl-shaped depressions with a diameter of around 2 km for those formed in sedimentary
rocks and about 4 km for crystalline rocks [8,26]. Fresh, complex impact craters also occur
as circular or sub-circular topographic features with fresh central uplift peaks or concentric
peak rings and a diameter greater than about 4 km. In addition, complex craters have
a smaller depth-to-diameter ratio than simple craters [27,28]. Fresh impact crater basins
have a relatively flat floor with one or more discrete terraces and the absence of sharp
bowl-shaped topography and central uplift [28]. The impact basins have a diameter ranging
from 3 km to 10 km [7].

Previous studies on the detection of impact craters using remote sensing have been
focused on extraterrestrial impact craters, with few studies on terrestrial impact craters.
This study aims to provide a reconnaissance survey method for the identification of possible
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terrestrial impact craters from global datasets. In view of the geometric characteristics of
impact craters, DEMs can provide quantification of the geometric variables and, therefore,
are the ideal data sources for reconnaissance surveys. For model development, this study
collected 94 confirmed and well-preserved impact craters worldwide. Then, based on
object attributes, a machine learning algorithm was tested for the classification of terrestrial
impact craters from similarly shaped topography and commonly found land features
such as volcanic calderas and valleys. The most important variables for differentiating
impact craters from other terrestrial topographic features were identified using the machine
learning algorithm. We expect this approach could contribute to the discovery of new
impact craters with well-preserved topography.

2. Materials and Methods

To determine the optimal segmentation parameters for the detection of the exposed
impact craters, the study investigated 94 confirmed exposed impact craters, including
24 simple, 66 complex, and 4 impact crater basins (~45% worldwide craters). The exposed
impact craters can be defined as impact craters with a clear and easy-to-recognize circular
morphology [7]. After the derivation of optimal segmentation parameters to define impact
crater objects, object-based classification was carried out to test the detection of impact
craters. In general, the morphology of impact craters can be defined as a circular depression
bordered by an upraised rim formed by concentric normal faults and rebound of ejected
materials [29]. We selected volcanic calderas to test classification efficiency with regard to
features with similar topography. Volcanic calderas have circular depressions bordered by
concentric or ring faults formed by the subsidence of the roof of the magma chamber due
to the withdrawal of magma [30]. The ring faults of calderas exhibit geometrical properties
similar to impact craters, such as diameter, topographic depression, and circular shape [31].
Therefore, this study included 104 volcanic calderas (44 single-pit and 60 coalesced-pit
calderas) distributed over the world to test the detection efficiency of impact craters from
similar topographic features (Figure 1, Appendix A, Table A2). Single-pit calderas are
generally recognized by a single large depression, while coalesced-pit calderas are recog-
nized by multiple interconnected depressions within a broader area [32–34]. This study
also included valleys as an additional class for the classification model, which are common
features associated with mountainous areas. We included 124 valleys to test the common
features that can interfere with the detection of impact craters. The valleys have relatively
shallow and wide depressions with gentle slope landforms, where the composite of valleys
can form watersheds with various forms, such as fan or half-circle shapes [35,36].
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2.1. Data Acquisition and Preparation

This study used the global Digital Elevation Model of Shuttle Radar Topography
Mission data (SRTM DEM). DEM data with a resolution of 1 arcsec (~30 m/pixel) were
downloaded from the USA Geological Survey (USGS) [37]. We used 94 confirmed impact
craters because of the limited exposure of buried craters and the limited data coverage of
the SRTM data [7] (Appendix A, Table A1). The buried impact craters are characterized by
a lack of circular morphological expression on Earth’s surface due to post-impact geological
activities such as weathering and erosion [2]. Additionally, 104 volcanic calderas with
diameter sizes analogous to those of impact craters were selected from the Collapse Caldera
Worldwide Database to test the detection models [38] (Figure 1, Appendix A, Figure A1).
Moreover, 124 valley objects that are commonly found in mountainous areas were randomly
selected during the segmentation and used for object-oriented classification to assess the
detection efficiency of impact craters.

The original SRTM DEMs were filled to remove void pixels, and then the impact craters
and volcanic calderas were clipped to generate a mosaic image including all target impact
craters and other types of topographic features (Figure 2). The extent of the clipped area
was approximately 3 times the apparent diameter size of target impact craters or calderas.
Then, additional morphometric datasets, including slope, aspect, and hillshade layers, were
derived from the DEM mosaic for object-oriented segmentation, following the findings
from previous studies. These derivatives could enhance the circular topographic imprint of
the rims that create a topographic contrast compared to the surrounding areas [20].
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2.2. Optimum Scale Parameter Selection for Impact Crater Detection

In SRTM data, each crater consists of many 30-m pixels that define its geometries
and topography. First, each crater should be extracted as an object with a clearly defined
boundary. This study used a multi-resolution segmentation algorithm (MRS) implemented
in eCognition developer 10.1 for the segmentation of the objects [39]. MRS employs a
bottom-up region merging process of pixels. The segmentation starts by considering every
pixel as a single object and accumulatively merging homogeneous pixels into distinct objects
based on the scale parameter, shape and compactness, texture, and color. The merging
process is stopped when the increase in homogeneity pixels exceeds the predefined scale in
the eCognition software [20,40,41].
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The segmentation results are mainly controlled by the Scale Parameter (SP) and asso-
ciated shape and compactness [42], and, thus, different scale parameters would result in
different sizes of segments. To determine the best scale parameters for optimal segmenta-
tion, the segmentation was iteratively conducted with changes in scale parameters from
5000 to 60 because of the size variability of impact craters and calderas (Figure 2). In this
study, the shape of 0.4 and compactness of 0.6 were used for segmentation because they
detected the circular rims effectively based on trial and error.

The topographical identification of the circumference of an impact crater is determined
by the raised edge of the crater rim [7]. Based on this observation, we hypothesized that the
circular topographic imprint of the rim on the DEM raster would induce the formation of
homogeneous circular objects. Consequently, we employed a two-step assessment method
to evaluate segmentation results. First, the segmentation results at each SP were subject
to visual inspection to determine whether the segmentation was adequate to outline the
impact crater rims. Then, the segmentation results that passed the inspection were used to
calculate Area Fit Index (AFI). Area Fit Index (AFI) (Equation (1)) quantifies the fitness area
between the reference area of impact craters (R) calculated from the Earth Impact Crater
Database [2] and the area of impact crater object (S) derived from the segmentation.

AFI =
area(R)− area(S)

area(R)
(1)

An AFI equal to 0 is an ideal segmentation, and AFI values ≤ 0.5 are considered
a good agreement [43–46]. The number of properly segmented impact craters and AFI
have been summarized for each SP, and the SPs with the most impact crater segmentation
and the minimum AFI were selected as optimum scale parameters. The morphometric
characteristics of impact craters segmented at each SP were analyzed to determine the
relationship between SPs and morphometric parameters.

2.3. Random Forest Model for Terrestrial Impact Crater Detection

The objects segmented at optimal SPs for terrestrial impact craters were further used
for the object-oriented classification model. As a result of segmentation, 70 objects of impact
craters, 85 objects of volcanic calderas, and 124 objects of valleys were used to develop a
random forest-based detection model (RF hereafter). A total of 16 attributes were extracted
from segmented objects and used for the RF model (Table 1). Among the 16 attributes,
7 topographic attributes described the morphological variation of the landform, 3 geometric
attributes quantified the shape, and 6 texture attributes described the surface structure or
pattern based on Gray–Level Co-occurrence Matrix (GLCM) (Table 1). To avoid overfitting,
multicollinearity analysis between the 16 variables was performed. Based on the analysis,
5 variables with high intercorrelation were removed, including Angular Second Moment
(ASM), contrast, entropy, aspect, and standard deviation of elevation, and 11 variables with
low intercorrelation coefficient (<0.6) were used for the RF classification model.

RF is a nonparametric machine learning algorithm based on randomly generated
tree classifiers, and the classification is through the ensemble majority votes. In addition,
important variables that effectively define the relationship between predictors and target
features can be quantitatively derived by Mean Decrease Accuracy (MDA) and Mean
Decrease Gini (MDG) scores [47]. The RF algorithm was implemented in the R software. A
total of 30% of samples were randomly selected for validation, and Ntrees and Mtry are
500 and 3, respectively. The variable importance of impact crater detection was rated based
on Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) scores to determine
the major contributor of morphometric parameters for impact crater detection. The roles
of major contributors were discussed on how those variables could be used for terrestrial
impact crater detection.
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Table 1. The attributes derived from detected objects.

Type Parameters Brief Description References

To
po

gr
ap

hi
c

Elevation Express the height of an object below or above sea level [48]

Slope Express the steepness of the surface of an object [49]

Aspect Express the orientation of slope of an object [50]

Hillshade Illustrate the impression of the 3D surface of an object
from the point of view of the sun [50]

Standard deviation
of elevation Express the variability of elevation within the object [51]

Standard deviation
of slope Express the variability of slope within the object [51]

Terrain Relief Represent the difference between maximum and
minimum elevation within the object [52]

G
eo

m
et

ri
c

Length/Width ratio Represent the relative comparison between the length
and width of an object [48]

Elliptical fit Shape descriptor quantifies how much an area of an
object fits the shape of an ellipse with a similar area [48]

Circularity Shape descriptor that quantifies the roundness of an
object: (Perimeter2)/(4π × Area) [53]

Te
xt

ur
e

(G
LC

M
)

Homogeneity Estimate the similarity between the pairs of pixels in the
image object

[54]

Dissimilarity Estimate the difference between the pairs of pixels in
the image object

Angular Second
Moment (ASM)

Estimate the amount of homogeneity or uniformity
within the image object

Contrast Measure the local intensity variation in the image object

Correlation Measure the linear dependency between the pairs of
pixel values in the image object

Entropy Measure the unpredictability or randomness of the
relationship between the pixels in the image object

3. Results and Discussion
3.1. Selection of Optimal Scale Parameter for Impact Crater Segmentation

The visual inspection for segmentation results at each SP from 5000 to 60 revealed that
the SP and diameter of segmented impact craters have positive relationships where the
larger SPs would segment larger impact craters. Moreover, we found that SPs larger than
2000 would segment impact craters with an approximate diameter ≥70 km, and SPs lower
or equal to 2000 would segment impact craters with a diameter < 70 km.

The SPs from 2000 to 5000 segmented only one impact crater from 5 impact craters in
the 70–180 km diameter range (Table 2). The properly segmented impact crater was the Man-
icouagan impact crater (Canada), with a visible ring of ~70 km diameter. The SP 3000 best-
segmented the possible rim or ring, whereas SP 5000 and 4000 under-segmented and
2000 over-segmented the outer rims (Figure 3a). In addition, an AFI value of 0.45 for the
SP 3000 confirmed the good performance of segmentation. The rim of some craters, such as
the Vredefort crater in South Africa, have experienced erosion, causing the rim boundaries
to become less distinct. Consequently, the segmentation process was unable to detect
the evident rim boundary in such cases (Figure 3b). Large craters with diameters greater
than 70 km are rare on Earth’s surface and account for only about 5% of the samples. It
might be attributed to Earth’s atmosphere, geological activities, erosion, and plate tectonics
compared to the other planets and the Moon [2,55]. Therefore, we recommend SP 3000 as
the optimal segmentation parameter for craters larger than 70 km.
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Figure 3. DEM layers of (a) Manicouagan impact crater (Canada); and (b) Vredefort crater
(South Africa) with their respective multi scales segmentation results. Red segments represent
the objects intended to suitably outline the possible crater rim at different SPs, and blue segments
represent the various objects formed around other features.

Table 2. Attempted optimum scale parameters and number of detected features.

Segmentation Settings Impact Craters

SP Shape Compactness
Diameter

Range
(km)

Count
Segmented

(%)
AFI

Count Not
Segmented

(%)

5000–3000 0.4 0.6 70–180 1 (1.0) 0.48 2 (2.1)
2000 0.4 0.6 24–60 8 (8.5) 0.07–0.50 0
1000 0.4 0.6 8–39 12 (12.7) 0.01–0.41 0
700 0.4 0.6 6–30 6 (6.3) 0.08–0.43 2 (2.1)
400 0.4 0.6 6–17 9 (9.5) 0.04–0.43 3 (3.1)
200 0.4 0.6 1.8–12 21 (22.3) 0.08–0.49 6 (6.3)
100 0.4 0.6 1.8–6 6 (6.3) 0.12–0.44 0
80 0.4 0.6 0.88–3.4 7 (7.4) 0.12–0.35 1
60 0.4 0.6 0.024–0.64 0 0 10 (11.7)

Overall: 70/94
(74.5%) 24 (25.5%)

Similarly, the segmentation results of the other SPs (2000, 1000, 700, 400, 200, 100, 80,
60) were evaluated, and the impact craters segmented from each SP varied because they
vary in diameter and exposure level (Table 2, Figure 4). As a result, all SPs lower than 2000
except 60 have been selected as optimal scale parameters for impact crater segmentation.
The diameter of segmented impact craters and 8 SPs showed a high correlation (R2) of 0.78
(Figures 4 and 5).

The SP 200 properly segmented 21 out of 27 exposed impact craters with apparent
diameters ranging from 1.8 to 12 km. The representative impact crater segmented by
SP 200 is the Goat Paddock crater (Australia), 5 km in diameter (Figure 4). The highest
detection in this scale was simply due to the large population of impact craters in the size
range of terrestrial impact craters. Indeed, a previous study reported that almost half of
terrestrial impact craters have a diameter range from 1 km to 10 km [7]. The smallest SP
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for impact crater segmentation was SP 80, which properly segmented 7 small-sized impact
craters out of 8 with diameters in the range of 0.88–3.4 km. The scale mostly covered the
smallest and most well-preserved simple impact craters, such as Tenoumer (Mauritania),
Tswaing (South Africa), and Roter Kamm craters (Namibia). On the other hand, SP 60
over-segmented all 10 small impact craters of 0.024–0.64 km diameter. These small impact
craters provided indiscernible topographic imprints from neighboring features on satellite
data of 30 m resolution (Appendix A, Figure A2). Hence, SP 60 was not included as an
optimal SP because it gave unreliable segmentation results for impact crater detection.
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In general, there was a large overlap in segmented impact craters between the neigh-
boring SPs (Figure 5). As a result of visual inspection, 8/11 SPs (3000, 2000, 1000, 700,
400, 200, 100, 80) provided the optimum homogeneous circular objects around the rim of
70/94 (74.5%) impact craters. The circular segments formed for well-preserved craters like
Rotter Kamm (Namibia) and Vargeão Dome (Brazil) showed nearly zero AFI, about 0.06
and 0.04 (Figure 4). However, the goodness of fit for moderately eroded impact craters
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such as Charlevoix (Canada) and Ries (Germany) was relatively high, about 0.5 and 0.45,
respectively (Figure 4). On the other side, 24/94 (25.5%) impact craters were not segmented
properly due to the complete destruction of circular topographic imprints regardless of di-
ameter. The impact craters Rochechouart (23 km, France) and Kelly West (6.6 km, Australia)
belong to this group.

3.2. RF Classification of Terrestrial Impact Craters and Other Topographic Features

The terrestrial impact craters segmented from optimal SPs were compared with similar
topographic features such as volcanic calderas and commonly found topographic features
like valleys based on the RF model. Similarly, segmentation was conducted for those
topographic features, and as a result, a total of 85 properly segmented volcanic calderas
and 124 valleys were used for RF classification. The object attributes of terrestrial impact
craters and other topographic features were extracted and used for input values in RF
classification (Table 1). A total of 70% of objects (70 impact craters, 85 volcanic calderas,
and 124 valleys) were used for the calibration model, and the remaining 30% were used
for validation. The accuracy assessment showed that the classification model showed
very good performance, with an overall accuracy of 88.4% and a kappa coefficient of 0.82.
Notably, the model separated impact craters and calderas from valleys very effectively with
an accuracy close to 100% (Table 3).

Table 3. Confusion matrix of training, validation data from RF algorithm, where Production’s
Accuracy (PA) and User’s Accuracy (UA) for each class are also presented.

Training data
Classes: Crater Caldera Valley

Crater 43 0 0 Accuracy 100%
Caldera 0 59 0 Kappa Coefficient 1
Valley 0 0 82

Validation data
Classes: Crater Caldera Valley PA (%) UA (%)
Crater 20 3 1 74.1 83.3

Caldera 7 23 0 88.5 76.6
Valley 0 0 41 97.6 100

Overall accuracy
Accuracy 88.4

Kappa coefficient 0.82

However, the accuracy for the detection of impact craters and volcanic calderas was
relatively lower, with an accuracy of 74.1% and 88.5% due to the similarity in their topo-
graphic characteristics. Although the accuracy was the lowest for terrestrial impact craters,
the accuracy of 78.7% is still considered good prediction accuracy, and thus, it infers that
the remote sensing approaches to preliminary detection of undiscovered terrestrial impact
craters can be effectively used.

The important variables for the detection of terrestrial impact craters were further
derived from Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) indices
(Figure 6). Based on the slope change shown by a sharp decrease in MDA and MDG, seven
important variables were found: circularity, length-width ratio, relief, slope, elevation,
homogeneity texture, and standard deviation of slope (Figure 6). Furthermore, violin plots
visualized the distribution of the seven important variables of the three feature types based
on kernel density estimation (Figure 7).
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The plots presented a significant difference in median locations and the shape of the
violin plots between the classes. The white dot points mark the median of the data along
with the interquartile range, and the bulge in shape indicates higher probability density.
Among the three attribute groups, it was concluded that geometric attributes play the most
important role in the detection of terrestrial impact craters, followed by topographic and
surface texture attributes (Figures 6 and 7).
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Circularity, a geometric attribute, was ranked as the most effective attribute for impact
crater detection. Although both impact craters and volcanic calderas have circular shapes,
they have differences in statistical distribution. For example, 75% of impact craters have
circularity lower than 0.29, while 75% of volcanic calderas showed circularity higher than
0.22. A slight overlap was found in the range of 0.22–0.29 (Figure 7a). Meanwhile, valleys
have distinctively lower circularity (Figure 7a). The circular shape of objects was further
quantified by the length-to-width ratio. Half of the impact crater objects had a ratio higher
than 1.5, and the majority of volcanic calderas (75%) were lower than 1.6. More than 75% of
valleys showed a high ratio (>2.5) (Figure 7b).

In general, impact craters have jagged object boundaries, relatively lower circularity,
and a higher length-to-width ratio compared to calderas. Indeed, prior studies reported
that 34 impact craters have elliptical forms with a long-diameter axis to short-diameter
axis ratio above 1.05 [7]. Moreover, oblique impactors, target heterogeneity, uneven ero-
sion, and post-impact deformation have been presented as the main cause of elliptical
form and modifications of the circular form of terrestrial impact crater rims [7]. The
post-deformation processes include inward collapse and slump of rims, weathering, and
erosion. Post-deformation modifies the shape of impact craters resulting in lower circu-
larity and a high width-to-length ratio. The crater rims are composed of ejecta, melted,
and brecciated materials, and thus, they are relatively vulnerable to erosion compared to
crystalline igneous rocks. This phenomenon can also be confirmed by the ages of impact
craters, which is related to exposed time for erosion and post-impact sedimentation in
the central depression [56]. Indeed, impact crater objects with higher circularity (>0.72)
were observed for 5 preserved simple impact craters, including Rotter Kamm, Worfe Creek,
Meteor, Tenoumer, and Tswaing craters, which have ages of less than 5 Myrs [5]. In contrast,
caldera rims have relatively higher circularity regardless of age because they are mainly
formed by crystalline igneous rocks, which have higher resistance to erosion [57]. However,
the circularity of caldera rims can be affected by characteristics of eruption, vents arrange-
ment, and subsequent collapse. This study only used 104 volcanic calderas out of over
400 calderas worldwide [55,58]. Fully understanding the factors related to modification of
the rim circularity needs more worldwide cases. Conversely, the valley objects were mostly
characterized by elongated and asymmetrical shapes that could be associated with low
circularity and a high length-to-width ratio.

Topographic attributes such as relief, slope, and elevation were also effective variables
for differentiating terrestrial impact craters. The 75% of impact craters have relief less
than 245 m, whereas 75% of volcanic calderas are higher than 192 m. The relief of valleys
has a large overlap with impact craters, where 95% were lower than 192 m because they
have similar depression (Figure 7c). The relatively lower relief of impact craters can be
linked with shallow depression structures caused by ejecta and post-impact sediment
deposition [10]. Indeed, Tsikals et al. [56] reported a decrease in relief of the central uplift
ring and crater rims of 5 impact craters caused by sediment loading as a post-impact
deformation. The shallower depression of impact craters was also found for lunar craters,
which have a lower depth-to-diameter ratio [59]. On the other side, the relatively high
internal relief found for volcanic calderas could be associated with a deep central depression
formed by the collapse of the emptied magma chamber [60].

The slope attribute indicates that 75% of impact crater objects were mostly indicated
by relatively gentle slopes less than 62◦, while 50% of the volcanic caldera were mainly
characterized by very steep rims with slopes greater than 60.2◦. Valleys have distinctively
low slopes of less than 49.6◦ (Figure 7d). Furthermore, a significant proportion of impact
craters (88.5%) were found in elevations lower than 1000 m, while the majority (60%) of
volcanic calderas are distributed in higher elevation ranges (1000–5233 m) (Figure 7e).
The relatively lower elevation of impact craters can be explained by geological processes
associated with the formation and post-deformation of impact craters. Impact craters are
formed with circular rims formed by excavation and ejection, where the magnitude is
controlled by the size and speed of the impacting object, the composition of the target
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material, and the angle of impact. This process induces relatively lower elevation than
volcanoes, which create mountains. Moreover, the post-deformation of impact craters, such
as collapse, slump of rims, and erosion, further reduces the elevation over time. The higher
elevation of volcanic caldera can be explained by their topographic positioning, where
most calderas are found in volcanic mountain summits that are relatively higher than most
mountains. Volcanic calderas are mainly associated with magma eruption along tectonic
boundaries, where most high mountain chains are distributed [61].

The GLCM homogeneity and standard deviation of slope showed a significant overlap
for all three features compared to the other variables (Figure 7f,g). A substantial proportion
(75%) of impact craters and volcanic calderas showed a homogeneity of less than 0.4 and 0.63,
respectively. A relatively low homogeneity found for many impact craters could be the result
of surface roughness caused by fractured, brecciated materials and central multi-structure
rings [62]. Moreover, 75% of valleys were also characterized by homogeneity lower than
0.31 (Figure 7f). Similar patterns were also observed for the standard deviation of the slope
variable, while volcanic calderas may have relatively higher variations in slope (Figure 7g).

4. Conclusions

This study is the first attempt to establish an optimal segmentation and object-oriented
classification method based on confirmed and exposed terrestrial impact craters and DEM
data. It confirmed that using remote sensing data, such as global digital elevation models,
can effectively determine preliminary locations of undiscovered terrestrial impact craters
around the world as a reconnaissance survey. Furthermore, this study not only tried to
detect terrestrial impact craters but also detected volcanic calderas and tested the sepa-
rability of other morphological features, such as valleys, from the impact craters. One
limitation of our study is that the methods are only applicable to craters larger than 0.8 km
in diameter. If smaller craters are to be detected, high-resolution DEMs are required, such
as the TanDEM-X DEM by the German Aerospace Center. Moreover, this approach can
only narrow down possible terrestrial impact crater candidates where topographic features
are well-preserved. A more systematic geological analysis must follow up to validate the
existence of terrestrial impact craters.

We introduced optimal scale parameters for the segmentation of terrestrial impact
craters and detection of craters based on object-based attributes along with other terrestrial
topographic features. The multi-resolution segmentation algorithm depicted the circular
topographic imprints of impact craters and volcanic caldera rims from four morphometric
layers derived from SRTM DEM data, including elevation, slope, aspect, and hillshade.
Eight scale parameters ranging from 80 to 3000 were selected as the optimum scale param-
eters for terrestrial impact craters, which showed the goodness of fit area (0.01–0.5) and
high correlation (R2 = 0.78) with diameters in the range of 0.88–100 km. Given the fact that
terrestrial impact craters with wide diameters (>100 km) are rarely found (<5%) because of
high atmospheric pressure [2], SP of 3000 could be the optimal segmentation parameter for
large terrestrial impact craters. The smallest impact craters (0.024–0.64 km) are vulnerable
to surface erosion [11] and have indiscernible topographic imprints with 30 m resolution
data. Hence, the segmentation threshold for terrestrial impact craters with SRTM DEM is a
diameter of 0.88 km which could be segmented by SP of 80, which is the minimum scale
parameter suggested by our analysis.

The object-oriented classification using Random Forest successfully detected terrestrial
impact craters as well as volcanic calderas and valleys, showing an overall accuracy of 88.4%
and a Kappa coefficient of 0.8. The detection accuracy of impact craters was the lowest, with
78.7% among the three topographic features. The relatively lower accuracy was associated
with misclassification with volcanic caldera due to morphological similarity. The detection
accuracy was highest for valleys (98.8%), followed by volcanic calderas (82.6%). Although
the accuracy was lowest for terrestrial impact craters, the accuracy of 78.7% is still considered
good prediction accuracy. This infers that this remote sensing approach to the preliminary
detection of undiscovered terrestrial impact craters can be effectively used.



Remote Sens. 2023, 15, 3807 13 of 19

The important variables for the detection of terrestrial impact craters were identified
as circularity, length-to-width ratio, relief, slope, and elevation. Terrestrial impact craters,
in general, have relatively lower circularity and higher length-to-width ratios compared
to volcanic calderas and significantly higher circularity and lower length-to-width ratios
compared to valleys. Moreover, terrestrial impact craters have relatively lower relief,
slope, and elevation than volcanic calderas and significantly higher relief, slope, and
elevation than valleys. These geometric and topographic characteristics can be explained
by geological processes associated with the formation and post-deformation of impact
craters and volcanic calderas. The topography of impact craters surrounded by rims is
formed by excavation and ejection and rebound and relaxation, and those processes induce
relatively lower elevation. The post-deformation of impact craters, including inward
collapse and slump of rims, post-impact erosion, and post-sediment deposition, lower
the elevation, relief, and circularity with time. On the other hand, volcanic calderas are
mostly associated with volcanic eruptions along tectonic boundaries where high mountain
chains are distributed. Moreover, the deep central depression caused by the collapse of the
emptied magma chamber results in relatively higher relief and slope. Compared to the
impact crater rims, which are relatively unstable due to rapid excavation and the effects of
the shock wave, the crystalline walls of volcanic calderas are more resistant to erosional
processes, showing higher circularity and a lower width-to-length ratio. Moreover, the
GLCM homogeneity of elevation could be included as a useful variable.

This study used 94 exposed and confirmed terrestrial impact craters (45% of worldwide
impact craters) and incorporated similar topographic features, such as volcanic calderas,
and the most common features, such as valleys. Given the fact that we have introduced a
wide range of terrestrial impact craters from a diameter size of 0.88 to 100 km, the method
can be generalized to the detection of unidentified craters worldwide using the global DEM
models as a reconnaissance survey method. The segmentation parameters and detection
variables introduced in this study could significantly contribute to the discovery of hidden
terrestrial impact crater candidates in developing countries and remote areas.
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Appendix A

Table A1. The confirmed and exposed terrestrial impact craters used in this study were collected
from an encyclopedic atlas of terrestrial impact craters [2,7].

Impact Crater Country Latitude Longitude ID Diameter
(km) Exposure Target

Lithology Type Ages (ma)

Dhala India 25.298 78.142 I01 12 ex, pc Crystalline C 1700–2500
Sierra Madera USA 30.596 −102.912 I02 12 ex, pc Sandstone C 100
Gweni-Fada Chad 17.421 21.755 I03 14–22 ex, pc Sandstone C 355
Bigach Kazakhstan 48.568 82.036 I04 8 ex, pc Mixed C 3–5
Meteor Crater USA 35.027 −111.023 I05 1.2 ex, pc Sandstone S 0.05
Ramgarh India 25.335 76.624 I06 10.2 ex, pc Sandstone C 165
Cerro do Jarao Brazil −30.211 −56.539 I07 13 ex, smor Sandstone C 137
Connolly Basin Australia −23.538 124.761 I08 9 ex, pc Sandstone C 55–75
Tenoumer Mauritania 22.918 −10.405 I09 1.9 ex, pc Mixed S 1.52
Piccaninny Australia −17.420 128.438 I10 7 ex, smor Sandstone C 360
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Table A1. Cont.

Impact Crater Country Latitude Longitude ID Diameter
(km) Exposure Target

Lithology Type Ages (ma)

Chogye SouthKorea 35.537 128.269 I11 7 ex, pc Sandstone C 0.03–0.06
Vargeao Dome Brazil −26.805 −52.164 I12 12.4 ex Sandstone C 137
Mien Sweden 56.431 14.856 I13 9 ex, sub Crystalline C 118.7
Gow Canada 56.453 −104.482 I15 5 ex, sub Crystalline C 250
Santa Marta Brazil −10.167 −45.233 I16 10 ex, pc Sandstone C 93
Acraman Australia −32.017 135.450 I17 40–85 ex, sub Crystalline C 580
Gosses Bluff Australia −23.817 132.308 I18 22 ex, pc Sandstone C 142
Upheaval Dome USA 38.433 −109.928 I20 6 ex Sandstone C 66–100
Foelsche Australia −16.676 136.784 I21 6 ex, pc Sandstone C 541–981
Jebel Waqf as
Suwwan Jordan 31.039 36.807 I22 6.1 ex, pc Sandstone C 37

Agoudal Morocco 31.996 −5.516 I24 2.8 ex Sandstone C 0.3
Aorounga Chad 19.084 19.244 I25 12.6–16 ex Sandstone C 355
Decaturville USA 37.890 −92.720 I26 6 ex, pc Sandstone C 300
Bosumtwi Ghana 6.500 −1.408 I27 10.5 ex, sub Mixed C 1.07
Decorah USA 43.300 −91.772 I29 5.6 pc Sandstone T 460–483
Ouarkziz Algeria 29.004 −7.551 I30 3.5 ex, pc Sandstone T 66
Zhamanshin Kazakhstan 48.350 60.937 I32 14 ex, pc mixed C 0.75–1.1
Oasis Libya 24.572 24.412 I33 5.2–18 ex, pc Sandstone C 120
Serra da Cangalha Brazil −8.082 −46.857 I34 13.7 ex Crystalline C 300
La Moinerie Canada 57.440 −66.586 I35 8 ex, sub Crystalline C 400
Middlesboro USA 36.631 −83.728 I36 6 ex Sandstone C 290–300
Colonia Brazil −23.880 −46.706 I37 3.6 ex, pc Crystalline T 5–36
Vista-Alegre Brazil −25.961 −52.690 I38 9.5 ex Mixed C 111–134
B.P. structure Libya 25.318 24.310 I40 3.4 ex Sandstone C 120
Ragozinka Russia 58.706 61.797 I41 9 ex, pc mixed C 50
Goyder Australia −13.477 135.040 I43 3 ex, pc Sandstone C 150–1400
Chiyli Kazakhstan 49.177 57.834 I44 5.5 ex, pc Sandstone C 5.5
Lonar India 19.974 76.509 I46 1.88 ex, sub Crystalline S 0.57
Wetumpka USA 32.525 −86.176 I47 7 ex Crystalline C 84
Karakul Tajikistan 39.067 73.433 I48 52 ex, smor Mixed C 50–5
Pantasma Nicaragua 13.365 −85.954 I49 14 ex Crystalline C 0.8
Shunak Kazakhstan 47.207 72.761 I50 2.8 ex, pc Crystalline S 34
Deep Bay Canada 56.415 −102.983 I51 13 ex, sub Crystalline C 95–102
Crawford Australia −34.728 139.033 I53 8.5 ex Crystalline C 32–38
Talemzane Algeria 33.315 4.034 I54 1.75 ex, pc Sandstone S 0.5–3
Xiuyan China 40.364 123.460 I57 1.8 ex, pc Crystalline S 0.05
Goat Paddock Australia −18.348 126.677 I61 5 ex, pc Sandstone T 56–64
Tin Bider Algeria 27.600 5.112 I62 6 ex, pc Sandstone C 50
Clearwater West Canada 56.211 −74.500 I63 32 ex, sub Mixed C 290–300
Clearwater East Canada 56.064 −74.083 I64 24 ex, sub Mixed C 460–470
Spider Australia −16.742 126.089 I66 13 ex, smor Sandstone C 573
Roter Kamm Namibia −27.762 16.289 I67 2.5 ex, pc Sandstone S 5
Yilan China 46.391 129.311 I69 1.85 ex, pc Crystalline S 0.05
Tswaing SouthAfrica −25.411 28.083 I70 1.13 ex, sub Mixed S 0.22
Shoemaker Australia −25.881 120.883 I71 30 ex, pc Sandstone C 1630
Brent Canada 46.078 −78.482 I73 3.8 ex, pc Crystalline S 396–453
Ries Germany 48.873 10.695 I77 26 ex, pc Crystalline C 15
Wolfe creek Australia −19.170 127.795 I78 0.88 ex, pc Sandstone S 0.12
Cleanskin Australia −18.170 137.942 I79 15 ex, pc Sandstone C 540–1400
Luizi D.R. Congo −10.175 28.006 I65 17 ex Sandstone C 575
Carswell Canada 58.418 −109.517 I82 39 ex, smor Mixed C 481
Strangways Australia −15.200 133.567 I84 25–40 ex, pc Mixed C 646
Sao Miguel do Tapuio Brazil −5.617 −41.388 I87 21 ex Sandstone C 120
Amelia Creek Australia −20.858 134.883 I88 20 ex Mixed C 600–1600
Mistastin Canada 55.891 −63.311 I89 28 ex, sub Crystalline C 36.6
Charlevoix Canada 47.533 −70.350 I90 55 ex, sub Mixed C 450
Beaverhead USA 44.600 −112.967 I91 60–75 ex, pc Mixed C 600
Araguainha Brazil −16.785 −52.983 I92 40 ex Crystalline C 252–259
Lawn Hill Australia −18.693 138.652 I93 20 ex, pc Sandstone C 472
Manicouagan Canada 51.399 −68.683 I94 70–100 ex, sub Crystalline C 214
Liverpool Australia −12.393 134.047 I81 2 ex, pc Sandstone S 150
Tabun-Khara obo Mongolia 44.131 109.654 I83 1.3 ex, pc Sandstone S 145–163
Ritland Norway 59.249 6.422 I39 2.7 ex, pc mixed S 500–540
Aouelloul Mauritania 20.241 −12.675 I45 0.39 ex, pc Sandstone S 3.1
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Table A1. Cont.

Impact Crater Country Latitude Longitude ID Diameter
(km) Exposure Target

Lithology Type Ages (ma)

Dalgaranga Australia −27.633 117.289 I56 0.024 ex, pc Crystalline S 0.27
Monturaqui Chile −23.928 −68.262 I58 0.36 ex Crystalline S 0.663
Kalkkop SouthAfrica −32.709 24.432 I55 0.64 ex, pc Sandstone S 0.25
Amguid Algeria 26.088 4.395 I68 0.45 ex, pc Sandstone S 0.1
Kamil Egypt 22.018 26.088 I19 0.045 ex Sandstone S 0.003
Boxhole Australia −22.613 135.196 I14 0.17 ex Crystalline S 0.017
Whitecourt Canada 53.999 −115.596 I72 0.036 ex Sandstone S 0.001
Henbury Australia −24.571 133.148 I23 0.18 ex, pc Sandstone S 0.0042
Rio Cuarto Argentina −32.871 −64.183 I31 4.5 ex Sandstone S 0.11
Yallalie Australia −30.443 115.771 I59 12 pc Sandstone C 83.6–89.8
Presquile Canada 49.726 −74.833 I74 22 ex, sub Crystalline C 500
Macha Russia 60.085 117.652 I60 0.3 ex, pc, Sandstone C 0.0073
Rock Elm USA 44.717 −92.228 I28 6.5 ex, pc Sandstone C 410–460
Mount Toondina Australia −27.945 135.359 I52 4 ex, pc Sandstone C 66–144
Kelly west Australia −19.933 133.950 I75 14 ex, pc Sandstone C 541
Matt Wilson Australia −15.506 131.181 I42 7.5 ex Sandstone C 1400–1500
Sudbury Canada 46.600 −81.183 I76 180–200 ex, pc Crystalline C 1849
Vredefort SouthAfrica −27.009 27.500 I85 180–275 ex, pc Crystalline C 2023
Rochechouart France 45.831 0.782 I86 23 ex Crystalline C 201
Yarrabubba Australia −27.183 118.833 I80 30 ex, pc Sandstone C 2246

C: Complex, S: Simple, T: Transitional, ex: exposed, pc: partial covered, smor: subdued morphology, sub:
submerged.

Table A2. Volcanic calderas used in this study were selected from collapse caldera worldwide
database (CCDB) [38].

Volcanic Calderas Country Latitude Longitude D_max D_min Type ID

Toba Indonesia 2.580 98.830 100 30 C V103
Taal Philippines 14.010 120.998 30 25 S V10
Kawah Ijen Indonesia −8.119 114.056 20 20 S V18
Ijen_II Indonesia −8.058 114.244 18 17 S V19
Shikotsu Japan 42.751 141.317 15 13 S V49
Long Valley USA 37.717 −118.884 32 18 C V56
Solitario USA 29.451 −103.809 16 16 C V62
Rotorua NewZeland −38.080 176.250 20 16 S V73
Crater Lake USA 42.930 −122.113 10 8 S V74
Henry’s Fork Caldera USA 44.330 −111.330 37 29 C V77
Ngorongoro Tanzania −3.177 35.580 19 16 S V80
Kapenga NewZeland −38.089 176.273 ? ? C V92
Colli Albani Italy 41.754 12.700 12 10 C V97
Copahue Chile & Argentine −37.858 −71.177 10 10 S V03
Paektu Mountain China & N. Korea 42.005 128.056 14 12 S V07
Karymshina Russia 54.118 159.657 25 15 C V101
Aso Japan 32.885 131.084 25 18 C V17
Mount Longonot Kenya −1.155 36.354 12 8 C V37
Valles USA 35.870 −106.570 22 16 C V58
Braciano Italy 42.316 12.174 20 15 S V96
Akademia Nauk Russia 53.981 159.462 11 11 S V98
Uzon Russia 54.500 159.970 12 9 C V99
Ayarza Guatemala 14.420 −90.120 7 5 S V08
Mount Okmok USA 53.468 −168.175 9.3 9.3 C V09
Deriba Sudan 12.950 24.270 5 5 C V23
Toya Japan 42.598 140.856 10 9 C V48
Mount Silali Kenya 1.152 36.231 8 5 C V59
Ilopango El Salvador 13.670 −89.050 11 8 C V60
Alcedo Ecuador −0.430 −91.120 7.4 6.1 S V67
Mount Aniakchak USA 56.864 −158.151 10 10 C V79
Emi Koussi Chad 19.851 18.538 16 12 C V93
Huichapan Mexico 20.340 −99.550 10 10 C V104
Sollipulli Chile −38.970 −71.520 4 4 S V15
Gadamsa Ethiopia 8.356 39.181 7 9 C V24
Karkar New Guinea −4.650 145.967 5.5 3.2 C V25
Agua de Pau Portugal 37.770 −25.470 7 4 S V26
The Barrier Kenya 2.320 36.587 6 5 C V29



Remote Sens. 2023, 15, 3807 16 of 19

Table A2. Cont.

Volcanic Calderas Country Latitude Longitude D_max D_min Type ID

Mallahle Ethiopia 13.270 41.650 6 6 C V34
Asavyo Ethiopia 13.098 41.599 12 12 C V35
Suswa Kenya −0.915 36.457 12 8 C V36
Kone Ethiopia 8.840 39.688 6 5 C V40
San Pedro Mexico 21.263 −104.698 8 8 C V46
Gallosuelo NewZeland −5.200 151.240 ? ? S V51
Darwin Ecuador −0.180 −91.280 5 5 S V68
Cerro Azul Ecuador −0.170 −91.240 5 5 S V69
Sierra Negra Ecuador −0.830 −91.170 10 7 S V71
Worf Ecuador −0.020 −91.350 7 5 S V72
Cerro Panizos Argentina −22.187 −66.681 15 15 C V75
Gadamsa Ethiopia 8.350 39.180 10 8 C V76
Incapillo Argentina −27.902 −68.824 6 5 C V78
Olmoti Tanzania −3.016 35.652 6.5 6.5 C V82
Nemurt Turkey 38.621 42.235 8.5 7 S V91
Vico Italy 42.120 12.230 - - C V94
Montefiascone Italy 42.579 11.931 3 3 S V95
Laslajas Nicaragua 12.300 −85.730 7 7 C V04
Krasheninnikov Russia 54.593 160.273 11 9 C V102
Karthala Comores Island −11.760 43.353 4 3 S V12
Ale Bagu Ethiopia 13.508 40.632 3 2.1 C V13
Amealco Mexico 20.126 −100.169 11 11 C V16
Numazawa Japan 37.450 139.579 3 2 C V22
Sete Cidades Portugal 37.870 −25.780 5 5 S V28
Fantale Ethiopia 8.984 39.907 4 3 S V39
Mauna Loa USA 19.479 −155.603 6.2 2.5 C V41
Fernandina Ecuador −0.370 −91.550 6.5 6.5 S V70
Embagai Tanzania −2.911 35.827 4 4 S V81
Gorely Khrebet Russia 52.558 158.027 13 10 C V87
Changbaishan China & N. Korea 42.005 128.058 5 5 S V05
Mount Katmai USA 58.260 −154.975 10 10 S V11
Towada IV Japan 40.500 140.900 3.5 3 S V21
Furnas Portugal 37.770 −25.320 6 6 C V27
Kaguyak USA 58.613 −154.053 3 2.5 S V31
Mazama USA 58.613 −154.053 10 8 C V38
Villarrica Chile &Argentine −39.420 −71.950 9 6 C V53
Aoba (Ambae) Vanuatu −15.389 167.835 2.1 2.1 S V02
Izu-Oshima Japan 34.724 139.394 4.5 3.5 C V06
Ngozi Tanzania −9.010 33.554 3 3 S V30
Pinatubo Philippines 15.142 120.350 2.5 2.5 S V32
Cerro Azul Chile −35.653 −70.761 4 5 S V33
Geger Halang Indonesia −6.896 108.408 4 4 C V44
Ceboruco Mexico 21.125 −104.508 3.7 3.7 C V45
Mount Meru Tanzania −3.247 36.748 3.5 3.5 C V52
Ikeda Japan 31.237 130.561 5 4 C V57
Coate peque El Salvador 13.859 −89.553 5 5 C V61
TianChi China 42.007 128.054 5 5 S V64
Tazawa Japan 39.721 140.663 6 6 S V65
Sakurajima Japan 31.578 130.661 23 17 C V01
Conguillio Chile −38.901 −71.728 4 3 S V14
Paka Kenya 0.918 36.191 1.5 1.5 S V20
Mauna Kea USA 19.813 −155.472 4.2 2.5 C V42
Poas Costa Rica 10.200 −84.233 2.5 2.5 S V43
Kuttara Japan 42.500 141.180 3 3 S V47
Gallosuelo NewZeland −5.342 151.117 13 10.5 C V50
Logo Tromen Chile-Argentine −39.931 −72.028 5 6 C V54
Mocho chosheunco Chile-Argentine −39.500 −71.715 5 4 C V55
Lake City USA 37.955 −107.391 18 15 C V63
Groppo Ethiopia 11.715 40.232 3.8 3.8 C V66
Monduli Tanzania −2.868 35.949 2.9 2.9 S V83
Gela Tanzania −2.763 35.916 3.1 3.1 S V84
Oldeani Tanzania −3.297 35.449 3 3 S V85
Creede USA 37.748 −106.922 25 20 C V86
Mutnovsky Russia 52.451 158.166 9 9 C V88
Ksudach Russia 51.800 157.530 7 7 C V89
Opala Russia 52.543 157.339 14 12 C V90
Mary Semyachik Russia 54.058 159.442 10 10 C V100

C: Coalesced pit, S: Single pit, D_min: Minimum diameter, D_max: Maximum diameter.
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