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Abstract: In deep learning-based hyperspectral remote sensing image classification tasks, random
sampling strategies are typically used to train model parameters for testing and evaluation. However,
this approach leads to strong spatial autocorrelation between the training set samples and the sur-
rounding test set samples, and some unlabeled test set data directly participate in the training of the
network. This leaked information makes the model overly optimistic. Models trained under these
conditions tend to overfit to a single dataset, which limits the range of practical applications. This pa-
per analyzes the causes and effects of information leakage and summarizes the methods from existing
models to mitigate the effects of information leakage. Specifically, this paper states the main issues in
this area, where the issue of information leakage is addressed in detail. Second, some algorithms and
related models used to mitigate information leakage are categorized, including reducing the number
of training samples, using spatially disjoint sampling strategies, few-shot learning, and unsupervised
learning. These models and methods are classified according to the sample-related phase and the
feature extraction phase. Finally, several representative hyperspectral image classification models
experiments are conducted on the common datasets and their effectiveness in mitigating information
leakage is analyzed.

Keywords: hyperspectral image classification; spatial autocorrelation; information leakage; sampling
strategy

1. Introduction

The analysis and processing of remote sensing data is one of the common methods of
observing the Earth’s surface. With the rapid development of optical sensors, researchers
are gradually focusing on spectral information hidden beyond the visible light band. Hy-
perspectral imaging is used to image tens or even hundreds of narrow spectral bands
in a fixed area by remote sensing. Hyperspectral images (HSIs) can be viewed as 3D
images, where each pixel contains all the band information acquired at that point, pro-
viding a richer and more-refined spectral feature for the ground-based object. Therefore,
hyperspectral data processing has been widely used in numerous fields, such as precision
agriculture [1–3], marine resource exploration and mapping [4], water quality analysis [5],
military target detection [6], mineral exploration [7], and medical detection and diagno-
sis [8]. However, the same ground-based object may have different spectral properties
due to atmospheric, temperature, spatial resolution, and other effects, and the spectral
properties of different ground-based objects may be similar. This leads to salt-and-pepper
noise and over-smoothing in the recognition task, which increases the challenges of object
recognition. It is difficult to manually extract effective deep features from the large amount
of nonlinear redundant spectral information. Therefore, traditional hyperspectral image
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(HSI) classification methods may not be able to distinguish subtle gaps between different
classes of ground-based objects.

With the continuous development of machine learning, learning-based algorithms
have been introduced to the field of HSI classification with great results. Due to the
abundant spectral information of HSIs, in the early use of shallow machine learning
algorithms, researchers focused on high-dimensional spectral information and related
feature extraction models, such as Support Vector Machine (SVM) [9]. On this basis,
Li et al. [10] proposed the SVM model based on multiple cores. Liu et al. [11] proposed
the SVM model based on nonparallelism. In addition, some machine learning-related
algorithms such as random forest [12], polynomial logical regression [13,14], and random
subspace method [15–17] have also been introduced into the field of HSI classification.
However, the spatial feature extraction capabilities of traditional machine learning still
have the potential to be optimized.

In recent years, with the development of graphics processing unit (GPU) computing
performance, deep learning has emerged and been applied to various fields. It has changed
the processing methods of remote sensing data, such as object detection [18,19], super-
resolution [20], and change detection [21]. Deep learning-based HSI classification has
become a research hot spot in this field. Chen et al. [22] first introduced deep learning into
the classification task of HSI and combined it with principal component analysis (PCA).
Specifically, the first principal component of the neighborhood is first extracted to obtain
the spatial information, which is then flattened into a one-dimensional vector and fed
into a stacked autoencoder (SAE). Finally, classification is performed by logistic regression.
The results demonstrated advanced performance at the time and revealed the great potential
of deep learning models for HSI classification. Since then, refs. [23–25] retained three
principal components, borrowed from RGB image processing methods, and combined with
convolutional neural network (CNN) to further utilize spatial information.

After 2D convolutional neural networks (2D-CNN), 3D convolutional neural networks
(3D-CNN) are also widely used in HSI classification tasks [26]. Roy et al. [27] combined
residual network and attention mechanism on this basis, and achieved significantly better
classification results than 2D-CNN. While achieving better performance, limited labeled
samples of HSI data should also be considered. Refs. [28,29] used few-shot learning (FSL)
to improve classification accuracy with limited available samples. Compared to traditional
machine learning methods such as SVM, deep learning-based HSI classification algorithms
can extract deep features in an end-to-end network and overcome problems such as salt-
and-pepper noise. While deep learning has achieved some state-of-the-art results in the
field of HSI classification, it still faces two challenges:

• HSI data is high-dimensional, and labeling cost is high. Therefore, fewer training sam-
ples are commonly used in training, which will bring difficulties to feature extraction,
affect model performance, and cause the Hughes phenomenon [30];

• When HSI data is used to train the network by using random sampling strategy
and the input is patch format, some information of the test set will be leaked. This
affects the generalization ability of the model [31], making the model only learn the
distribution of one domain.

These two challenges make deep learning-based HSI classification limited in practical
applications. An ideal practical model is one that can be trained on one dataset, and then
perform satisfactorily when tested on another given dataset.

Most deep learning algorithms use random sampling to train and test on a single HSI,
ignoring the information leakage problem in the process. If the training set is selected using
a random sampling strategy, the information leakage becomes more severe as the number
of training samples increases. This leads to overly optimistic accuracy, poor generalization
ability, and limited practical applications. Molinier et al. [31] found that when more than
10% training samples of 3 × 3 patches were used, over 50% of the test pixels were directly
involved in the training stage. The increase of patch size will also increase the overlap area
of samples, which will further affect the heterogeneity of the test set and training set [32].
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Table 1 summarizes the sources, problems, and mitigation methods for information leakage.
In order to alleviate this effect, some different sampling strategies have been proposed
in addition to the random sampling mode [33,34]. From a feature extraction perspective,
some cross-domain modular learning models such as few-shot learning can also alleviate
the impact of information leakage.

Table 1. The sources, problems, and mitigation methods for information leakage of HSI classification.

Source Problem Mitigation Methods

Excessively similar
samples

Overly optimistic
classification performance

Spatially disjoint
sampling strategies

Overlap between
samples

Reduced generalization
ability

Fewer training
samples

Training samples
contain test information

Practical applications
are limited

Extraction of
general features

To the best of our knowledge, few quantitative evaluation methods have been used
to measure the impact of information leakage in the field of hyperspectral remote sensing
image classification. Qu et al. [35] divided the HSI dataset into training area, leakage area,
validation area, and test area. The training area and test area are used to evaluate the model
performance, and the leakage area is used to evaluate the degree of information leakage. It
is more common to qualitatively observe the impact of information leakage by comparing
the gap between different sampling methods [36]. In addition, the number of test set pixels
directly involved in model training can be calculated, as well as the similarity between
training set samples and nearby samples. These indicators reflect the degree of information
leakage and the strength of generalization ability to some extent.

The main work of this paper can be divided into three aspects:

1. Some of the existing problems in the field of deep learning-based HSI classification
are summarized. The information leakage problem caused by the introduction of
spatial information is introduced in detail;

2. Depending on the cause of information leakage, this paper discusses some mitigation
methods in the field of deep learning-based HSI classification. Based on this, we
explore the performance of some existing related models and algorithms on the
information leakage problem. All the mentioned methods are summarized in terms
of sample related phase and feature extraction phase;

3. This paper experimentally compares the effectiveness of some models and algorithms
for mitigating information leakage.

2. Methods
2.1. Problems and Challenges

With the development of machine learning, scholars have gradually realized the sig-
nificant advantages of deep learning-based algorithms. These methods not only offer better
classification performance, but also overcome numerous challenges faced by traditional
algorithms [37]. While various deep learning-based algorithms have been introduced for
HSI classification, several challenges have emerged. These problems can be divided into
two aspects, namely some difficulties in deep learning algorithms and challenges that arise
when HSI classification tasks are combined with deep learning models. The former includes
huge computation and time cost, vanishing gradient and “black box” characteristics, etc.,
which will not be described in this paper. The latter are caused by the characteristics of
the HSI data. This paper summarizes the challenges faced by deep learning-based HSI
classification models into two categories based on their causes. The first problem is the
limited number of training samples, and the second problem is information leakage.
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2.1.1. Limited Training Samples

The HSI classification task is a pixel-wise classification task. The label annotation
process is a pixel-by-pixel annotation of the HSI data collected in a certain region. Compared
to the process for RGB images, HSIs pose three significant challenges. First, unlike RGB
image classification tasks that use the entire image as a sample, pixel-wise training samples
of HSIs are usually difficult to obtain due to the time-consuming nature of manual labeling.
Second, the spatial resolution of HSIs is lower than that of RGB remote sensing images,
which is caused by the mutual restriction between spatial and spectral resolution of remote
sensing images. Low spatial resolution results in the loss of texture and additional details
of the ground-based object, further increasing the difficulty of HSI classification. Finally,
HSIs are affected by factors such as atmosphere, temperature, humidity, etc., at the time
of data acquisition. Spectra of various objects may vary to varying degrees, resulting
in the effect of different spectra of the same object or different objects with the same
spectrum. In addition, due to the different imaging equipment used in the data acquisition
process of different HSI datasets, the spatial resolution, spectral resolution, spectral range,
imaging time, and imaging area are also different. These hardware conditions result
in different spectral signatures for the same ground-based object. Therefore, when
performing classification tasks on HSIs from different regions, it is necessary to label and
train separately. Even unsupervised learning inevitably requires some training samples
for fine-tuning [38,39]. However, most HSI classification algorithms still aim to improve
classification performance on a single image. This is one of the triggers for subsequent
information leakage and overfitting.

In this context, deep learning models that support training with few samples need
to be considered for HSI classification tasks. Recently, many scholars have focused on
how to improve classification accuracy in the case of few samples. However, the Hughes
effect occurs when the number of training samples is insufficient, that is, the classification
accuracy first increases and then decreases as the dimensionality of the input features
increases. Some researchers have noticed this problem and have effectively mitigated the
Hughes effect by various ways of data dimensionality reduction [40–42]. In addition, in the
field of HSI classification, some deep learning-related algorithms and models have achieved
great results with few training samples, such as data augmentation [43], FSL [29], active
learning [44].

2.1.2. Information Leakage

Since the training set and test set of most deep learning-based HSI classification models
originate from the same image. Random sampling will make the training samples more
evenly distributed in each spatial location of the entire HSI map. The remaining nearby
pixels constitute the test set. This pixel-wise distance results in the test sample being able
to find nearly identical training samples in its vicinity. Constructing the input with image
patches is a common way to introduce spatial information. However, this approach not
only increases the similarity between samples, but also exposes some test samples during
network training. Therefore, there is a strong spatial correlation between the training set
and the test set under the random sampling strategy, which will threaten the assumption
of sample independence [33] and cause information leakage. The information leakage
problem mentioned in this paper belongs to the field of remote sensing classification.
Specifically, this problem refers to exposing some information of the test set to the training
process, resulting in overly optimistic model results. As shown in Figure 1, the input
samples of most deep learning models are patches of h × w × b, where h × w represents
the neighborhood range of the sample and b represents the band dimension or the number
of principal components retained after dimension reduction using PCA. The sources of
information leakage can be mainly divided into two aspects:
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(a) (b)

Figure 1. Two sources of information leakage: (a) excessive similarity between training and test
samples when adjacent; (b) test set information is directly involved in network training because the
training samples may contain test pixels.

First, the pixel values derived from HSIs consist of a finite number of spectral responses
of different ground-based objects. This results in a tight relation between similarity and
distance; namely, training samples and their nearby test samples are excessively similar.
In early studies of land cover mapping via remote sensing images, researchers generally
used the spatial location information of the image as a feature. For example, the 1-Nearest
Neighbor algorithm thus leads the model to learn correlations between samples and the
target spatial distribution, rather than between classes. This problem was first noticed by
Friedl et al. [45], who attributed this strong clustering of data to spatial autocorrelation [46].
That is, when supervised learning performs a random sampling strategy to obtain the
training set, part of the test samples will have strong spatial dependence with the training
samples. The samples used for testing can always find the training samples in their vicinity,
leading to an optimistic evaluation of accuracy. Zhen et al. [47] conducted experiments
based on object classification through two different sampling strategies to investigate the
influence of sampling on classification results. Later, the HSI classification task based on
deep learning is also faced with this problem [34]. The First Law of Geography states,
“everything is related to everything else, but near things are more related than distant
things”. Most ground-based objects in the same class of HSI data are distributed together
and have strong spatial autocorrelation. This correlation is different from previous mapping
works. HSIs have abundant spectral information that can be used for classification, but if
only spectral information is used, the situation of the same object with different spectra
will lead to severe salt-and-pepper noise. Therefore, spatial information also needs to be
considered in the algorithm. As shown in Figure 1a, the deep learning model commonly
extracts the spatial feature in the form of patch [24,26]. This form of input leads to overlap
between samples. In the case of random sampling, the neighborhood cube of a pixel in the
training set will be extremely similar to the neighborhood cube of a pixel in the nearby test
set. The similarity would also threaten the independence of the sample and obtain overly
optimistic classification performance. Correspondingly, the classification accuracy under
the spatially disjoint sampling strategy shows varying degrees of decline [48].

Second, the spectral information of the test set pixels is directly trained into the
network [49]. Figure 1b shows that when the training set is selected by random sampling,
some pixels of the test set will be included in the patches of the training samples due
to the introduction of spatial information. It is experimentally verified that as the input
patch size continues to increase, the test samples not exposed to network training become
fewer [31]. Therefore, in some studies, appropriately increasing the neighborhood size
improves the classification accuracy with random sampling strategy [43,50]. It is worth
noting that the test pixels directly involved in training are only used as neighborhood
information. This information cannot affect the labels of the training samples. In other
words, the labels of these leaked test pixels are not fed into the network and they do not
participate in backpropagation.

Both sources of information leakage mentioned above are related to spatial informa-
tion. In the field of HSI classification, if the features are only extracted from the spectral
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information to construct a classifier and the spatial context information is not explored, each
sample is a pixel of a one-dimensional vector and there is no overlap between the test set
and the training sets. While this can strictly avoid the test set participating in the network
training directly, it typically produces severe salt-and-pepper noise. After adding spatial
information, a significant improvement in classification accuracy can be observed [51].
Therefore, it is necessary to introduce spatial context information. For a training sample,
the ideal spatial information extraction should satisfy two points. First, it can explore the
clustering properties of similar ground-based objects. Second, it avoids introducing test
sample information or learning some unique distributional shape rule for a single dataset.
The former, according to The First Law of Geography, aims to learn the commonality of
the distribution of ground-based objects. The latter is a reference to The Second Law of
Geography to mitigate overfitting to a single dataset. However, due to the black-box nature
of deep learning, it is difficult to simultaneously satisfy the above two conditions when
extracting spatial information. Therefore, it is difficult to distinguish whether this optimistic
classification accuracy is caused by the effective spectral spatial features or by information
leakage [34].

From related works in remote sensing and mapping to the current research on HSI
classification techniques, a growing number of scholars have begun to focus on the study
of spatial autocorrelation, sampling strategies, sample overlap, overfitting, and other
information leakage-related directions. Figure 2 summarizes some related works and points
out the sampling strategies and feature extraction models used in these works. In addition
to the aforementioned models for dealing with information leakage, this paper analyzes the
effectiveness of some existing models and algorithms for mitigating information leakage in
terms of sample related phase and feature extraction phase. In order to clearly illustrate the
impact of information leakage, datasets with the same spatial resolution, spectral resolution,
and ground-based objects collected in similar atmospheric environments are referred to as
homogeneous datasets in this paper. Then based on this, the phenomenon of overfitting is
classified into two types, namely overfitting within a single dataset and overfitting between
datasets. The first one refers to the mapping process where the network overfits the labels
in the training set and performs poorly for the test set in the same dataset. The second
is that when using homogeneous datasets, the model performs well on a single dataset
and poorly on the other homogeneous datasets. The generalization ability of the model
should also be classified into the generalization ability of the above two cases. Data leakage
leading to overfitting and low generalization generally refers to the second case.

2.2. Overfitting between Datasets Caused by Information Leakage

When the number of samples is relatively sufficient, randomly sampled training
samples are chosen to uniformly cover the entire HSI. All spectral variations of almost
every object in the dataset are learned. However, in practical applications, there is a
considerable number of different variants of the same class of ground-based objects that
have not been learned. Therefore, during training process, a model should focus more
on general features of objects of the same class, rather than fitting specific features of a
single dataset. As shown in Figure 3, it is assumed that a given type of ground-based
object in the HSI dataset contains multiple cases of different spectrum (different color boxes
indicate different types of spectral variation areas). If the training set is chosen by random
sampling, it will be relatively easier to learn all these cases. When the trained model is
used on the homogeneous dataset, the ability to fit different spectral variability features
is reduced. To some extent, information leakage can cause the knowledge acquired by a
deep learning model to be biased towards some features of a particular dataset, which
affects the generalization ability of the model. Namely, the trained model may perform
poorly when tested on other datasets of the same class. To the best of our knowledge,
there are no such labeled publicly available homogeneous datasets that contain multiple
HSIs. However, it is a common practical application scenario that the same hyperspectral
remote sensing imaging device acquires multiple HSIs of a certain region. Improving the
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generalization performance of models for homogeneous datasets is of practical interest.
In recent years, there have also been works on using trained models to directly classify
with different types of datasets [52]. These models typically require some preprocessing of
the samples to extract generalization features across different datasets.

Figure 2. Timeline of studies related to information leakage: from the proposal of spatial autocorrela-
tion to current research advances.

Figure 3. Datasets partitioning in different spectral variation regions used spatially disjoint sampling
process and random sampling.
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Exploring the impact of information leakage on the generalization ability of HSI
classification models should be validated with multiple homogeneous datasets. Specifically,
the classification ability of this model is first obtained by training it on a single dataset.
Other homogeneous datasets are then used as test samples for classification without
retraining. Finally, the classification accuracy of the latter is compared with that of the
former. The difference values can intuitively reflect the effect of information leakage on
generalization ability. However, due to the lack of corresponding homogeneous datasets,
this process can only be approximated by spatially disjoint sampling strategies. Spatially
disjoint sampling means that the training set pixels are adjacent to each other during HSI
sampling to minimize the overlap between training and test samples. As shown in Figure 4,
this sampling method not only reduces the information of the test set directly involved
in training the network effectively, but also makes more test set samples far from the
training set samples in terms of spatial location. Moreover, from the perspective of spectral
variation, such sampling methods are more likely to learn only some spectral generalization
features and partial variation features due to mixed endmembers. Therefore, the training
set and the test set, which are spatially disjoint partitioned, can be approximated as two
homogeneous datasets with strong independence.

(a) (b) (c) (d)

Figure 4. The ground truth of spatially disjoint sampling strategy (continuous sampling strategy)
and random sampling strategy: (a) training samples with random sampling strategy; (b) test samples
with random sampling strategy; (c) training samples with disjoint sampling strategy; (d) test samples
with disjoint sampling strategy.

This approximation process can intuitively reflect the qualitative effect of information
leakage on the generalization ability of the model to a certain extent, but it cannot be used
as an accurate quantitative indicator to assess the generalization ability of the model. There
are three reasons for this:

1. It is an approximate process, not exactly equivalent to constructing a homogeneous
dataset, because spatially disjoint sampling is not completely immune to information
leakage. In the spatially disjoint sampling strategy, the samples at the edges of the
training set still contain some test pixels. These patches lose some spatial information
to some extent;

2. It was experimentally found that the difference of classification accuracy between
spatially disjoint sampling strategies and random sampling strategies was related to
the chosen datasets;

3. Some semi-supervised methods can make the model learn the test data in a spatially
disjoint sampling way by constructing pseudo-labels for unlabeled samples [53]. As a
result, the networks can achieve great classification accuracy under both sampling
methods. However, the learning paradigm still suffers from information leakage and
needs to be retrained when classifying other homogeneous datasets.
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2.3. Methods to Mitigate the Impact of Information Leakage

Some studies [36,48] visualize the impact of information leakage by comparing random
sampling strategies with spatially disjoint sampling strategies and highlight the issue of
generalization ability in current partial models. As shown in Figure 5, two aspects are
considered to mitigate information leakage. The first is to consider the sample-related
phase, that is, to reduce the leakage of information from the source by reducing the number
of samples, assuming that the classification model has been determined. Moreover, spatially
disjoint sampling strategies can be used so that the test samples do not overlap with the
training samples as much as possible. Second, considering from the feature extraction
phase, under the condition of a given number of labeled samples, the impact of information
leakage is further mitigated by using feature extraction methods such as unsupervised and
FSL. The former aims at alleviating information leakage from data sources, while the latter
can enhance the generalization ability of models between homogeneous datasets.

Figure 5. Algorithms and models to mitigate information leakage.

2.4. Sample-Related Phase

Reducing the number of samples directly reduces the test set information involved in
training. If the patch input format is used in the deep learning model, then the test pixels
in this patch are also fed into the network. As shown in Figure 6, in a given certain HSI
dataset, there are a total of N labeled pixels, the patch size is h×w, and n samples are taken
for training. Let gi denote the number of unknown background pixels in the patch of the
i′th test sample. For the random sampling strategy, each labeled pixel is split independently
into a training set with probability p = n/N and a test set with probability q = 1− p. Let li,
mi denote the l′th row and m′th column in the patch corresponding to the i′th test sample.
If the i′th test sample is not trained into the network, then all patches containing this pixel
are not in the training set. Thus, when the event Ai represents that the information of the
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i′th test sample is not directly involved in training the network, the probability of Ai is
expressed as follows:

P(Ai) =
l 6= h

2 ,m 6= l
2

∏
l=1,m=1

qi(l,m)
= (1− n

N
)

w×h−1−gi
, 1 ≤ l ≤ h, 1 ≤ m ≤ w (1)

Moreover, the expectation of the number of test set samples X, which are not directly
involved in the training of the network, is expressed as follows:

E(X) =
N−n

∑
i=1

P(Ai)× 1 =
N−n

∑
i=1

(1− n
N
)

w×h−1−gi
, 1 ≤ l ≤ h, 1 ≤ m ≤ w (2)

From the above equation, increasing E(X) can be achieved by reducing the size of the
input patch and the number of training sample, thus reducing the information leakage.
Experiments in [31] show that even if the sample neighborhood size is set to 3× 3, when
more than 10% of the samples are used for training, the number of unleaked test pixels will
drop below 50%. In the case of the patch size being 9× 9, nearly all test pixels are exposed
to the network training stage.

Figure 6. Unexposed test samples and the conditions of exposure.

2.4.1. Data Augmentation Strategies

While training a network with a limited number of samples reduces information leak-
age to some extent, it also significantly decreases accuracy. Therefore, several preprocessing
strategies such as data augmentation have been introduced into the field of HSI image
classification. Common data augmentation methods include flipping, radiation noise,
and mixture noise. Flipping means that each training sample is flipped independently in
horizontal and vertical directions with a certain probability.

The radiation noise can be described by the formula:

x′i = αrnxi + βrnnnoise (3)

where xi and x′i represent the i′th original training sample and the new sample, respectively.
αrn represents a controlled random coefficient of the degree to which the information of the
original sample is preserved, and its range is commonly controlled from 0.9 to 1.1. nnoise
is the noise signal that follows the standard normal distribution, and βrn is a constant to
control the noise intensity.

The mixture noise is the sum of two samples of the same class according to a cer-
tain weight, followed by the addition of a noise signal. This process can be formulated
as follows:

x′i =
αmn1xi + αmn2xj

amn1 + amn2
+ βmnnnoise (4)



Remote Sens. 2023, 15, 3793 11 of 34

where amn1 and amn2 are the weights of the two original samples in the new sample, and βmn
represents the coefficient that controls the noise intensity.

Zhang et al. [43] considered the cloud occlusion in the original image data. The data
augmentation strategy of block random erasure is added to simulate cloud occlusion
conditions. In order to alleviate the overfitting problem caused by limited samples,
Zhang et al. [54] used three angles of rotation and two directions of flipping in the pro-
posed dual-channel convolutional network. The data augmentation method increased
the training samples by six times. Zhang et al. [55] performed data augmentation in two
steps. First, the original image block samples are flipped and then Gaussian noise is added
to generate additional training samples. Li et al. [56] compared the commonly used data
augmentation methods and proposed a novel method using pixel-block pairs (PBP) of
deep CNN to increase the number of samples. This data augmentation method needs to
correspond to its proposed PBP-CNN model. Specifically, pixel-blocks for training are first
constructed and then each pixel-block is paired with all other pixel-blocks to form new
samples. If the labels of the two pixel-blocks are consistent, the new sample is given the
same label. If the labels of two pixel-blocks do not coincide, the label will be zero. This
data augmentation method significantly increases the number of training samples for its
proposed model. Chen et al. [57] noticed the difference between the test samples and the
new training samples through the data augmentation, which hinders the classification
performance. A similarity score obtained by Siamese network is proposed to reduce this dif-
ference. Some studies have considered the class imbalance problem in HSIs and performed
different degrees of data augmentation for different classes [58,59].

With the rise of Generative Adversarial Networks (GANs) [60], related data augmen-
tation methods have also been introduced into HSI classification tasks. GANs consists of a
generator and a discriminator. The former is used to capture the data distribution and gen-
erate samples. The later estimates the probability of sample authenticity, and the generator
and discriminator compete with each other to train the network. The HSI samples generated
by the generator learn the spatial context information in the original HSI. The discriminator
controls the difference between the generated samples and the real samples. Therefore
advanced, these additional samples can be used as training samples to participate in the
training of the classification model. Neagoe et al. [61] designed a Generative Adversarial
Network (GAN) under a deep CNN framework in order to generate additional training
samples. The accuracy is significantly improved compared to the deep CNN model without
GAN, which demonstrates the effectiveness of GAN for data augmentation. Dam et al. [62]
considered the problem of class imbalance resulting in the inability to generate samples of
partial classes, and proposed a three-player spectral GAN to generate effective samples
even for classes with a few samples. However, GAN-based data augmentation also faces
some challenges, such as the mode collapse and inefficient description of HSIs spectral
spatial features. Mode collapse means that the generator produces only a part of the modes
in the data distribution and fails to cover all the modes. On this basis, Liang et al. [63]
proposed a semi-supervised deep learning model based on GAN and attention mecha-
nism, which alleviated the above two problems by using mean minimization loss and
constructing a spectral–spatial attention module. Wang et al. [64] noticed that most existing
GAN-based classification methods pre-assume that HSI data are mapped according to basic
distributions such as Gaussian distribution when generating samples. However, due to the
complexity of HSI data, the underlying structure of the samples generated by GAN has
not been sufficiently characterized. Therefore, a novel model named Graph Adversarial
Learning is proposed to combine GAN and graph learning to explore the internal structure
of HSI data more comprehensively.

2.4.2. Spatially Disjoint Sampling Strategies

In addition to reducing the number of training samples, the impact of information
leakage can also be mitigated by using some spatially disjoint sampling strategies. These
strategies increase the Euclidean distance between training samples and testing samples,
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and effectively reduce the spatial dependence between them. In the following, some of the
existing spatial disjoint sampling strategies are enumerated:

• Controlled Random Sampling Strategy: Liang et al. [45], inspired by the region-
growing algorithm, performed controlled random sampling through the following
three steps. First, disconnected partitions are selected for each class. Second, training
samples are generated in each partition by expanding the region with seed pixels.
Finally, after all classes have been processed, the samples in the labeled growing region
are used as the training set and the remaining samples are used as the test set. At the
same time, a paradox of sampling methods is presented in this work. Not only should
the overlap between the test set and the training set be avoided as much as possible,
but also the training samples should contain sufficiently different classes of spectral
data variants. The former tends to select training samples centrally, while the latter
requires training samples to be distributed in more different regions;

• Continuous Sampling Strategy: In order to reduce the influence of random sampling
on classification accuracy, Zhou et al. [34] adopted the sampling method of sampling
continuously from local regions for each class. This method selects different local
regions, which do not completely avoid data leakage. However, the training samples
contain more spectral variations;

• Cluster Sampling Strategy: Hansch et al. [65] proposed a cluster sampling method to
minimize the correlation between the training set and the test set. For each class, it is
clustered into two clusters according to its spatial coordinates. The training samples
are randomly selected from a cluster, and the remaining classes are used as the test set;

• Density-Based Clustering Algorithm Sampling Strategy: Lange et al. [66] detect sub-
groups in a set by recursively evaluating the density threshold of neighbor points
around the sample with parameter ε as the search radius. Therefore, independent
regions can be determined by clustering the coordinates of pixels of a particular class.

In addition, several scholars have combined the HSI classification problem with the
segmentation problem and proposed different strategies for partitioning datasets. These
partitioning strategies are based on segmentation models, which effectively alleviate the
information leakage problem. Nalepa et al. [32] proposed a datasets partition method based
on random patches, which effectively avoided the test set information participating in the
training of the network, and realized the segmentation task of HSI through 1D convolution.
However, some classes with no training samples may exist. Zou et al. [49] split the HSI
dataset into regions of the same size. Regions containing only pixels of the same type
form part of the test set, and the remaining regions containing pixels of multiple types
are divided into training set, validation set and test set for cross validation. In this work,
the authors propose a spectral spatial 3D fully convolutional network classifier to classify
all pixels in each patch sample. The model performs the segmentation task under the
assumption that the overlap between test and training samples is avoided. Li et al. [67]
combined PCA, attention mechanism and U-net [68] to propose a deep learning model
suitable for HSI image segmentation tasks. When constructing samples, a non-overlapping
sliding window strategy combined with a judgment mechanism is introduced to split
the HSI into training, test, and validation sets. The proposed method effectively avoids
information leakage and the absence of partial classes in the training set.

These spatially disjoint sampling strategies result in more objective model classifi-
cation results. Therefore, the difference between the classification accuracy obtained by
random sampling and spatially disjoint sampling above is frequently used to evaluate the
influence of the model on information leakage [48,53]. However, in Figure 7, the amount
of information leakage, the classification accuracy of the model under different sampling
strategies, and the generalization ability of the models between homogeneous datasets
should be evaluated in different ways. The difference in classification accuracy between
random sampling strategies and disjoint sampling strategies is affected by numerous as-
pects such as datasets, and various hyperparameters. This also suggests from another
perspective that the difference in classification accuracy between these sampling methods
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cannot be directly used as an accurate criterion for the generalization ability. However,
the comparison reflects the impact of information leakage to some extent.

Figure 7. Evaluation methods of information leakage, impact of different sampling methods, and gen-
eralization ability between homogeneous datasets.

2.5. Feature Extraction Phase

This section introduces several learning paradigms and networks that mitigate the
information leakage problem from a feature extraction perspective, including unsupervised
learning, few-shot learning (FSL), and graph neural networks (GCNs).

2.5.1. Unsupervised Learning and Semi-Supervised Learning

Beyond data augmentation and dimensionality reduction, unsupervised learning and
semi-supervised learning are suitable for classification tasks with a limited number of
samples. SAE is one of the commonly used unsupervised feature extraction models, which
consists of multiple AE modules. Figure 8a is the basic structure of the AE. Where x is the
input feature, h is the hidden layer feature, and y is the output feature. The training process
is represented by the following formulas:

h = f (whx + bh) (5)

y = f
(
wyx + by

)
(6)

where wh and bh are the weights and biases from the input layer to the hidden layer and
wy and by are the weights and biases from the hidden layer to the output layer. f (·) is the
activation function. The loss function is then constructed using the Euclidean distance
between x and y (minimize ||x− y||2). During training process, x is approximated by
mapping h to y. Therefore, h can be used as a feature for x.

Unsupervised learning is suitable not only for tasks with limited labeled samples,
but also does not require the use of labels in the feature extraction phase. From this
perspective, unsupervised learning has the potential to alleviate information leakage.
Generally, in HSI classification models, unsupervised learning is used for feature extraction,
followed by fine-tuning with a classifier such as SVM or softmax in a supervised way to
perform the final classification [38,39]. Inspired by contrastive learning and transformer
model [69], Hu et al. [70] introduced an advanced contrastive learning framework in the
HSI classification field, namely bootstrap your own latent (BYOL). A two-layer transformer
mode is used as the feature extractor without using any convolutional or recurrent units.
After unsupervised training, the SVM classifier and a limited number of labeled samples are
used for the final classification. On this basis, Li et al. [71] proposed a BYOL model based on
random occlusion and studied the influence of different occlusion strategies. Liu et al. [72]
proposed an adversarial adaptation network in the HSI unsupervised classification task.
The model generates domain-invariant features through adversarial learning. Domain-
invariant features are those that remain consistent or similar across different domains.
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Sun et al. [52] proposed an unsupervised spectral motion feature learning framework
based on optical flow estimation, which is commonly used to obtain motion information
of dynamic objects. The proposed framework treats spectral changes as motion changes
during feature extraction. After pre-training on sufficient unlabeled samples, the model
has the ability to directly test on different datasets. Gao et al. [73] considered that existing
HSI classification methods based on meta learning would require a large number of labeled
samples to construct source domain datasets. Therefore, an unsupervised meta-learning
method with multiview constraints is proposed. The multiview features consist of different
bands of the same sample.

(a) (b)

Figure 8. Basic principles and structure of SAE: (a) basic structure of AE; (b) a framework for HSI
classification model based on SAE.

Semi-supervised learning also requires a limited number of samples. However, semi-
supervised methods generally use these samples to assign pseudo-labels to some test
samples to obtain additional samples used for training. Fang et al. [74] used multiscale
spatial information to train a CNN-based classifier through self-learning, and retained
pseudo-label samples with high confidence during prediction for the next iteration training.
Zhao et al. [75] noticed the problem that random sampling threatens the independence
of samples, and proposed a deep mutual-teaching model. The model uses controlled
random sampling method to select training samples. Specifically, the edge and texture
information of the original HSI is extracted by extended morphological profiles and edge-
preserving filter, and then trained by two CNN models with the same structure but different
parameters. After training, partial test samples are predicted separately, and each CNN
model assigns samples with high confidence pseudo-labels and merges them with the
training set of another CNN model before retraining, repeating the above procedure several
times. During training of the model, the training samples are obtained through spatially
disjoint partitioning. However, the pseudo-labeled samples are not sampled by the disjoint
strategy. The spatial correlation between the pseudo-labeled samples and the test samples
is not reduced. This is one of the important reasons why semi-supervised learning based
HSI classification methods still achieve high accuracy under spatially disjoint sampling
patterns. However, the models are contrary to the original intention of using spatially
disjoint sampling strategies. The spatial autocorrelation between the samples participating
in the network training and the test samples is non-negligible. The pseudo-labeled samples
are all from the same dataset. Training the network with these samples essentially trains
the network’s ability to fit this dataset, resulting in overly optimistic classification accuracy.
On the other hand, considering practical applications, this approach still needs to be
retrained when testing on different homogeneous datasets. Since a single training stage
needs to be repeated, the computational cost is relatively high. In addition, this situation
also reflects the difference in classification accuracy obtained by different sampling methods,
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which cannot be used as a general criterion to evaluate the extent of information leakage
impact or generalization ability of the model.

Moreover, related deep learning methods using graphs are introduced into the field of
HSI classification. Graph structure is a general non-Euclidean structure. In HSI classification
tasks, pixels are often considered as nodes of a graph, and the adjacency matrix A is formed
as a function of the distance between different nodes. Usually, the information of this graph
is added to the adjacency matrix. The final form described by the following formula:

Ã = A + I (7)

where I is the identity matrix, and then normalized by the degree matrix D. Forward
propagation is carried out as follows:

H(l+1) = h
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l) + b(l)

)
(8)

where h(·) is the activation function, b are the biases, W are the learnable weights, and l is
the current number of layers.

Since the graph consists of training samples in some models, the involvement of test
set information in the training stage is strictly avoided. Hong et al. [76] randomly divided
the dataset into subregions, and the training samples of each subregion formed a graph for
the input network. The minibatch algorithm is introduced to implement graph convolu-
tional neural networks in supervised learning. The proposed model combined with a 3D
CNN achieves good performance and avoids information leakage to some extent. In the
field of HSI classification, graph-structured algorithms are more commonly used for semi-
supervised classification. Sha et al. [77] proposed a semi-supervised classification model
based on graph attention network, which used spectral spatially distance information to
encode features. Furthermore, the model introduces the spectral spatial similarity of neigh-
boring pixels as different attention weights into the convolution operation at each node,
which is finally classified by the graph convolutional network. However, using unlabeled
samples may degrade classification performance. He et al. [78] proposed a semi-supervised
model based on constraint graph. In this work the raw HSI data is preprocessed by image
fusion and recursive filtering feature algorithm, and then the graph-to-sample correlation
is enhanced by computing the affinity matrix. The affinity matrix is an essential statistical
technique for measuring the mutual similarity between a set of data points. Finally, a parti-
cle competition and cooperation mechanism is introduced to dynamically label and correct
pseudo-labeled samples. Xi et al. [79] proposed a semi-supervised graph prototypical
network. This model constructs an adjacency matrix using the entire dataset as a graph,
and extracts spectral spatial features through a graph convolution network. On this basis,
a prototypical layer was added to the model, and a Cross-Entropy loss function containing
distance information was designed. Cai et al. [80] proposed a hypergraph structured au-
toencoder, in which each pixel of the HSI serves as a vertex of the hypergraph, and uses
the closest K neighbors of the vertex to construct hyperedges. This work incorporates the
hypergraph into the autoencoder model to train the network through unsupervised or
semi-supervised learning paradigms.

2.5.2. Few-Shot Learning

FSL is a type of meta-learning, which is an emerging deep learning model in recent
years to address the problem of limited labeled samples. Different from other HSI classi-
fication models based on deep learning, FSL aims to make the model learn the similarity
between samples of the same class, rather than make the model “recognize” the target
samples. As shown in Figure 9, The procedure is generally divided into three steps. First,
in each forward propagation, the features of a pair of samples are extracted and mapped
to the feature space. Second, the distance or similarity between different samples in the
feature space is judged by a specific transformation. Finally, the test sample is compared
with the support set to determine if it belongs to the same class. This approach does not use
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target domain samples during training, or by using a limited number of samples to adapt
the model to different domains. Therefore, the FSL model effectively mitigates information
leakage and improves the independence between training and test sets. Similar to transfer
learning models, FSL models can be tested on different datasets in the target domain after
being trained in the source domain at low computational cost. At the same time, because the
features extracted are used to judge the similarity between samples rather than identify
samples, the FSL models achieve superior classification performance in the case of limited
samples (support set), which is relatively suitable for HSI classification tasks.

Figure 9. Basic principles and structure of FSL.

Considering that small support sets easily lead to model overfitting, Pal et al. [28]
combined dropout and dropblock in FSL, and minimized the Bayesian approximation of
model uncertainty through Monte Carlo approximation. Monte Carlo approximation is a
method used to estimate complex mathematical quantities using random sampling. The
work improves the objective function and adds the true class prediction variance to further
enhance the generalization confidence of the model. Bai et al. [29] proposed an FSL model
combining a 3D local channel attention mechanism and residual learning. In contrast to
traditional similarity classification using the mean of the embedded features, this model
uses a classifier that adaptively increases the margin between different class subspaces
and shows superior performance. Tang et al. [81] used multiscale input to obtain semantic
information of different scales, and proposed a spatial–spectral prototypical representation
suitable for multiscale HSIs based on the feature extraction algorithm theory of ladder
structure. Sun et al. [82] proposed a novel FSL classification method, which introduced the
Earth mover’s distance (EMD) as a measure to judge the similarity of embedded features.
EMD is designed to measure the distance between the weighted distributions of two
domains and is used to generate similarity scores between samples from the query set
and the support set. In order to further reduce the domain shift caused by cross-domain
and strengthen the adaptability of the model to the data distribution of the target domain,
Li et al. [83] proposed a novel deep cross-domain few-shot learning (DCFSL) method.
In this model, samples from the source and target domains are trained simultaneously.
The network can learn transferable knowledge in the source classes and discriminative
embedding model for the target classes. Gao et al. [84] were inspired by the relational
network and combined it with FSL. The proposed model further utilizes spectral spatial
information to learn the similarity between different samples. Moreover, the model uses
multiple datasets to form the source domain, which improves the generalization ability of
the model.
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3. Results
3.1. Datasets

The University of Pavia (UP) dataset was captured in 2001 by RPSIS sensors including
the University of Pavia in Italy and its surrounding urban areas. Its pixels are divided
into nine classes and backgrounds. The dataset consists of 610× 340 pixels with a spa-
tial resolution of 1.3 m. Its spectrum ranges from 0.43 to 0.86 µm and is divided into
115 spectral bands. Considering the noise pollution, 13 bands are removed, then the final
size is 610× 340× 103. However, only 42,776 pixels were labeled with the class and the
remaining pixels were identified as backgrounds.

The Indian Pines (IP) dataset was collected by AVIRIS sensor at the Indian Pine Test
Site in northwest Indiana in 1992. The dataset consists of 16 crops and backgrounds.
The distribution of the target ground-based objects mostly presents a regular shape, cover-
ing 145× 145 pixels areas, with a spatial resolution of 20 m. The spectrum ranges from 0.4 to
2.5 µm and is divided into 244 spectral segments. Moreover, the effect of noise is considered
and some bands are removed. The size of the final corrected dataset is 145× 145× 200,
in which about half of these pixels are used to label objects, and the remaining pixels are
used to mark the background.

The Salinas Valley (SV) dataset is collected over several farmland in Salinas Valley,
California. It is composed of 512× 217 pixels. As with the IP dataset, both were collected
by the AVIR sensor and some water absorption bands were removed to account for noise
effects. The size of the corrected dataset is 512× 217× 204. Among them, 54,129 pixels can
be used for classification, which are divided into 16 classes, and the remaining 56,975 pixels
are regarded as the backgrounds. Unlike the IP dataset, the SV dataset has a better spatial
resolution of up to 3.7 m.

The GRSS-DFC-2013-Houston (HS) dataset was collected by the National Center for
Airborne Laser Mapping at the University of Houston in June 2012, and was distributed
for the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) Image Analysis and Data
Fusion (IADF) Contest [85,86]. The HSI consists of 144 spectral bands in the 0.38 µm to
1.05 µm region. In terms of spatial scale, the size of the dataset is 349× 1905 with a spatial
resolution of 2.5 m, and consists of 15 categories and backgrounds.

The false color map, ground truth (GT) map, number and proportion of various
samples of each dataset are shown in Table 2. The proportion reflects the imbalance
between the classes in each dataset. The problem causes the deep learning model to shift
more attention to the classes with more samples. Therefore, the accuracy of the classes
with less samples decreases. To tackle this problem, some works [57,62] considered the
imbalance between classes and alleviated the problem through data augmentation.
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Table 2. Indian Pines dataset, Salinas Valley dataset, University of Pavia dataset.

Indian Pines Salinas Valley Houston

University of Pavia

3.2. Experimental Setups

All experiments in this paper describe the effect of information leakage through two
different sampling strategies, one with random sampling and the other with continuous
sampling (spatially disjoint sampling). As shown in Table 3, in order to explore the
effectiveness of different information leakage mitigation methods more comprehensively,
the following three experiments are designed in this paper. As shown in Table 4, except for
the number and sampling method of training samples, the remaining hyperparameters
related to the model (such as learning rate, epoch, patch size) refer to the settings in
the relevant works as much as possible. Each training was repeated independently five
times and the corresponding test results were averaged to reduce errors. Experiment 1 and
Experiments 2 use the overall accuracy (OA) under different sampling strategies to evaluate
the degree of information leakage. OA, average accuracy (AA), and kappa coefficient are
used to evaluate the model performance in experiment 3.

Table 3. Experimental setup.

Experiments Models Datasets The Number of
Samples

Convolutions
in different
dimensions

LR-1D-CNN D-1D-CNN UP
SA
HS

0.3%, 0.5%, 0.75%, 1%, 3%
5%, 7%, 10%, 15%, 20%RSSAN R-2D-CNN

SS-3D-CNN D-3D-CNN

Data augmentation
with disjoint

sampling

LR-1D-CNN
SS-3D-CNN R-2D-CNN UP

HS
3, 5, 7, 9, 11, 13

(per class)

Cross-domain
learning with

disjoint sampling

DCFSL
SMF-UL

RN-FSC
UM2L

IP
UP

3, 5, 7, 9, 11, 13
(per class)
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Table 4. Some hyperparameters related to these models.

Models Learning Rate Epoch Patch Size Batch Size Optimizer

LR-1D-CNN 0.01 300 1 100 SGD
D-1D-CNN 0.01 100 1 100 SGD

RSSAN 0.001 100 9 128 SGD
R-2D-CNN 0.001 100 9 128 SGD
SS-3D-CNN 0.001 100 5 100 SGD
D-3D-CNN 0.001 100 5 100 SGD

SMF-UL 0.0001 1000 - 4 Adam

Models Learning rate Episode Patch size Way Optimizer

DCFSL 0.001 20,000 9 9 Adam
RN-FSC 0.001 10,000 9 9 Adam
UM2L 0.001 40,000 9 9 Adam

3.2.1. Experiment 1: Convolutions in Different Dimensions

This experiment aims to compare the classification accuracy of the supervised learning
1D-CNN, 2D-CNN, and 3D-CNN models. Different sampling methods, number of training
samples and datasets were used to reflect the impact on information leakage. For this
experiment, UP, IP, and HS datasets were used and six models were selected. The 1D-
CNN model uses a one-dimensional CNN with L2 regularization and logistic regression
(LR-1D-CNN) proposed by Chen et al. [87] and a deep convolutional neural network (D-1D-
CNN) used by Hu et al. [88]. The 2D-CNN model selected is the residual spectral-spatial
attention network proposed by Zhu et al. [89] (RSSAN) and recurrent 2D convolutional
CNN (R-2D-CNN) proposed by Yang et al. [90]. The 3D-CNN model selected is a spectral-
spatial 3D-CNN (SS-3D-CNN) used by Li et al. [26] and a deep 3D convolutional neural
network (D-3D-CNN) proposed by Hamida et al. [91]. The number of training samples in
this experiment is divided into two levels. Furthermore, we specify that less than 3% of
the samples are limited samples, and design five different numbers of samples at small
intervals, namely 0.3%, 0.5%, 0.75%, 1%, and 3%. In the experiment, we specify that more
than 3% of the samples are sufficient samples, so the intervals are increased, namely 5%,
7%, 10%, 15%, 20%.

3.2.2. Experiment 2: Data Augmentation with Disjoint Sampling

This experiment explores the impact of few training samples and data augmentation
on information leakage. Specifically, LR-1D-CNN, R-2D-CNN, and SS-3D-CNN used
in Experiment 1 are selected as models. we choose UP and HS datasets and select 3, 5,
7, 9, 11, 13 samples for each class. In addition, radiation noise and mixed noise data
augmentation are used separately on the 1D-CNN model. The data augmentation methods
of flipping and random radiations are used on 2D-CNN and 3D-CNN models. Finally,
the differences in classification accuracy between the two sampling methods are compared
to explore the effectiveness of few training samples and data augmentation in mitigating
information leakage.

3.2.3. Experiment 3: Cross-Domain Learning with Disjoint Sampling

The experiment integrates both factors of the sample-related phase and the feature
extraction phase. In this experiment, some FSL models and unsupervised learning-based
models are used with few samples. For the FSL models, we select DCFSL proposed by
Li et al. [83] and a few-shot classification model based on relation network (RN-FSC)
proposed by Gao et al. [84]. For the unsupervised learning-based models, we chose
the unsupervised spectrum motion feature learning framework (SMF-UL) proposed by
Sun et al. [52] and an unsupervised meta-learning method with multiview constraints
(UM2L) proposed by Gao et al. [73]. In this experiment, the IP dataset is used as the source
domain dataset and the UP dataset is used as the target domain dataset, and 3, 5, 7, 9, 11,
13 samples are selected for each target class. Finally, the classification accuracy of different
sampling methods is used to compare the effectiveness of such models in mitigating the
impact of information leakage.
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3.3. Experimental Results and Discussion
3.3.1. Analysis of Convolutions in Different Dimensions

The experimental results are listed in Tables 5 and A1. For the UP dataset in Figure 10,
the 2D-CNN and 3D-CNN models with spatial information show more pronounced in-
formation leakage. When the number of training samples of these models is less than 5%,
the difference in accuracy between the two sampling strategies increases significantly as
the number of training samples increases, and is relatively stable after about 5%. The exper-
imental results are consistent with Equation (2). Using fewer samples effectively mitigates
the information leakage phenomenon. This is because during the network training stage,
fewer training samples mean the fewer pixels about the test set participating in the network
training. At the same time, as shown in Figure 3, more test samples have sufficient spatial
distance from the training samples, thus alleviating the excessive similarity between the
training set and the test set.

Table 5. OA and difference of different CNN models using random sampling strategy and spatially
disjoint sampling strategy on the UP dataset.

LR-1D-CNN D-1D-CNN RSSAN

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

0.30% 72.018 54.831 17.187 53.672 53.608 0.064 66.950 47.302 19.648
0.50% 72.610 62.114 10.496 64.269 54.242 10.027 71.589 50.286 21.303
0.75% 73.324 61.825 11.499 66.435 56.101 10.334 72.011 48.159 23.852

1% 74.352 58.380 15.972 67.381 58.088 9.293 75.802 48.434 27.368
3% 76.298 54.142 22.156 71.557 61.360 10.197 82.451 42.944 39.507
5% 77.264 51.633 25.631 72.993 61.330 11.663 83.544 45.613 37.931
7% 82.012 55.878 26.134 74.409 67.668 6.741 89.169 47.909 41.260

10% 82.886 55.138 27.748 75.955 63.458 12.497 89.946 50.287 39.659
15% 87.850 55.837 32.013 72.770 65.050 7.720 91.976 48.388 43.588
20% 87.110 56.090 31.020 75.824 58.627 17.197 93.691 51.139 42.552

R-2D-CNN D-3D-CNN SS-3D-CNN

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

0.30% 71.774 53.473 18.301 58.490 53.810 4.680 74.434 55.303 19.131
0.50% 75.693 50.800 24.893 66.759 53.901 12.858 80.119 56.382 23.737
0.75% 76.997 51.031 25.966 70.197 62.126 8.071 84.368 61.407 22.961

1% 77.710 53.535 24.175 73.937 63.759 10.178 85.460 65.725 19.735
3% 81.160 49.416 31.744 77.996 56.386 21.610 91.599 50.610 40.989
5% 84.227 56.621 27.606 86.267 54.129 32.138 94.692 51.865 42.827
7% 87.673 60.574 27.099 89.138 57.670 31.468 95.297 55.338 39.959

10% 92.244 58.857 33.387 88.253 58.314 29.939 96.016 54.868 41.148
15% 93.097 57.964 35.133 89.989 58.661 31.328 96.267 57.514 38.753
20% 93.715 55.133 38.582 95.417 55.148 40.269 96.690 56.781 39.909

As shown in Figure 10, for the SV dataset and 1D-CNN models, OA of the two
sampling methods show an increasing gap after the number of training samples exceeds
about 5%. This phenomenon further indicates that reducing the number of training samples
effectively mitigates information leakage. However, the difference in OA is relatively stable
in 2D-CNN and 3D-CNN models. This is probably because objects of the same class in the
SV dataset are concentrated and widely distributed. Therefore, the spatial information of
objects of the same class is similar. It is difficult to ensure sufficient independence between
training and test sets by using spatially disjoint sampling strategies. On the contrary,
as shown in Table A2, for the HS dataset with scattered objects, this increasing trend of
difference in OA is more pronounced in the 2D-CNN and 3D-CNN models.

In the case of random sampling, the classification accuracy tends to increase with
the number of training samples. However, the experiments show that for the UP dataset,
the classification accuracy curve does not rise linearly with the number of training samples
when spatially disjoint sampling is used. The maxima in the experiments frequently occur
with fewer training samples. As shown in Figure 10, ACC and Num. denote overall accu-
racy, and number of training samples, respectively. When LR-1D-CNN and D-1D-CNN are
conducted on the UP dataset using the spatially disjoint sampling strategy, the classification
accuracy is not the highest with the largest number of training samples. The accuracy of
LR-1D-CNN on 0.5% of the training samples is about 6% higher than the accuracy on 20%
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of the training samples, and shows a continuous downward trend after the classification
accuracy reaches its maximum. When the D-1D-CNN model is used, the position of the
maximum is shifted. The OA also shows a decreasing trend with the number of training
samples after more than 7% of the training samples. Similar phenomena were observed in
subsequent experiments with 2D convolution and 3D convolution. RSSAN, D-3D-CNN,
and SS-3D-CNN all achieve the maximum OA with a small number of training samples
when partitioning the UP dataset by spatially disjoint sampling strategy. In R-2D-CNN,
the classification accuracy also decreases when the number of training samples exceeds 7%.

 Diff-SV

LR-1D-CNN

(a)

 Diff-SV

D-1D-CNN

(b)

 Diff-SV

RSSAN

(c)

 Diff-SV

R-2D-CNN

(d)

 Diff-SV

SS-3D-CNN

(e)

 Diff-SV

D-3D-CNN

(f)

Figure 10. OA and difference for each CNN model under different datasets (UP and IP) and different
sampling strategies (random sampling and disjoint sampling): (a) LR-1D-CNN; (b) D-1D-CNN;
(c) RSSAN; (d) R-2D-CNN; (e) SS-3D-CNN; (f) D-3D-CNN.

The best OA appears in the case of a small number of training samples, which may
be due to the fact that spatially disjoint sampling methods are more difficult to solve the
problem of different spectra for the same object and different objects in the same spectrum.
The resolution of HSIs is lower than that of natural images. As a result, the spectra of the
same object are very different between regions. If the training samples are selected from the
same region, the more training samples, the more likely it is to overfit. This problem results
in the trend of the decline of the accuracy with the increase of training samples. Moreover,
the location of the maximum OA varies experimentally with different models, suggesting
that this phenomenon is related to the feature extraction and generalization capabilities of
the models.

Figure 11 statistics the OA difference for these CNN models with random sampling
and disjoint sampling on the UP dataset. The gap in classification accuracy between LR-1D-
CNN and D-1D-CNN with different sampling methods is significantly smaller than that of
2D-CNN. From the perspective of patch size, the 1 × 1 size input of 1D convolution has a
better ability to mitigate information leakage than the large neighborhood input of 2D or
3D convolution. However, the differences between 3D-CNN and 2D-CNN under different
sampling strategies are similar. This phenomenon can be attributed to the introduction of
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spatial information. Specifically, as shown in Figure 1a, when only spectral information is
used for classification, there is only one source of information leakage, which leads to the
excessive similarity of the training samples. correspondingly, as shown in Figure 1b, when
using spatial spectral information for classification, there is another source of information
leakage, namely, some spatial spectral information of the test set is directly exposed to
the network training stage. Although the labels of the test samples are not involved
in the training of the network, this aggravates the spatial autocorrelation between the
samples. In the case of random sampling strategy, the impact of information leakage is
further exacerbated.

 SS-3D-CNN

UP Difference Curve

0.30% 5.00% 7.00% 10.00% 15.00% 20.00%

Figure 11. OA difference of the CNN models on the UP dataset.

The difference between the two sampling methods is significantly higher for the UP
dataset than for the SV dataset. Therefore, the difference in classification accuracy between
spatially disjoint sampling and random sampling is affected by the dataset. A similar
situation occurs in [36]. When comparing the classification accuracy of the two different
sampling methods, there is a large difference in the choice of different datasets. It is
further suggested that this difference qualitatively describes the information leakage and
its effects, while it is difficult to assess the generalization ability of the model accurately
and comprehensively.

3.3.2. The Effect of Different Data Augmentation Methods

The experimental results are listed in Table 6. It is difficult for LR-1D-CNN, R-2D-
CNN and SS-3D-CNN to achieve a stable increase in classification accuracy utilizing data
augmentation with few training samples. R-2D-CNN and SS-3D-CNN achieve 0.435–4.09%
and 0.064–3.707% improvement in accuracy under random sampling strategy and data
augmentation with flipping, respectively. Moreover, when R-2D-CNN uses continuous
sampling, the accuracy is improved by using radiation noise with three samples per class.
Under the data augmentation method with radiation noise, SS-3D-CNN achieves significant
improvement with 3 samples per class and 13 samples per class when using random
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sampling. When continuous sampling is used, the model improves accuracy significantly
only with three training samples per class. In more cases, utilizing data augmentation
with few training samples results in a significant decrease in classification accuracy. LR-
1D-CNN is the most representative of this phenomenon. Both data augmentation methods
deteriorate the classification accuracy at all different sample amounts when continuous
sampling is used. Even for the random sampling strategy, the classification accuracy is
lower after data augmentation with radiation noise than before. When continuous sampling
is used, R-2D-CNN reduces by 7.051% and 10.143% at three samples per class and nine
samples per class after data augmentation via flipping. In other cases, the effect of data
augmentation on the OA is not obvious.

Table 6. OA and difference of CNN models with data augmentation on the UP dataset.

LR-1D-CNN

Without Data Augmentation Radiation Noise Mixture Noise

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

3 48.180 46.148 2.032 42.626 43.430 −0.804 45.559 47.548 −1.989
5 52.528 50.864 1.664 46.101 50.680 −4.579 46.148 47.469 −1.321
7 52.645 50.258 2.387 50.246 47.984 2.262 46.148 47.127 −0.979
9 56.697 53.209 3.488 52.173 49.348 2.825 47.270 45.528 1.742

11 56.560 51.751 4.809 49.888 50.230 −0.342 46.654 47.064 −0.410
13 56.697 50.546 6.151 52.810 48.561 4.249 43.942 43.094 0.848

R-2D-CNN

Without data augmentation Flip Radiation noise

Numb. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

3 48.236 43.935 4.301 48.671 36.884 11.787 59.261 49.820 9.441
5 56.292 45.705 10.587 60.382 42.076 18.306 54.005 44.908 9.097
7 58.139 40.869 17.270 60.972 38.757 22.215 57.610 38.373 19.237
9 54.428 38.128 16.300 55.644 35.417 20.227 54.994 36.178 18.816

11 58.423 44.233 14.190 59.100 34.090 25.010 56.507 40.724 15.783
13 60.195 40.527 19.668 61.083 37.829 23.254 62.309 37.676 24.633

SS-3D-CNN

Without data augmentation Flip Radiation noise

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

3 44.512 34.739 9.773 48.219 35.093 13.126 50.860 51.910 −1.050
5 62.390 60.511 1.879 63.667 56.491 7.176 59.890 59.830 0.050
7 66.714 60.239 6.475 66.778 56.587 10.191 61.020 58.010 3.010
9 66.715 61.533 5.182 67.637 59.172 8.465 67.400 61.140 6.260

11 68.285 63.176 5.109 71.109 57.858 13.251 64.160 64.390 −0.230
13 67.475 64.060 3.415 67.579 54.887 12.692 71.660 64.600 7.060

The results are shown in Table A3 for the HS dataset. Mixture noise and radiation
noise do not perform well in the results. However, data augmentation with flipping under
both sampling methods steadily increases the classification accuracy. This may be due to
the relatively dispersed distribution of the HS dataset, where the marginal parts of the
same object are more likely to appear in the dataset at different angles.

The experiments demonstrate that although certain data augmentation methods yield
extra samples, the features of the original samples are relatively fixed under continuous
sampling and utilizing few samples. Techniques like mixture noise and radiation noise
do not simulate the actual spectral variation process. However, they may preserve the
variation characteristics of the original samples in the additional training samples, thereby
diminishing the model’s ability to generalize. As a result, data augmentation does not
necessarily improve the classification accuracy stably when few samples are spatially
disjoint sampled, and may even have a negative impact.

As shown in Figure 12, DA, RA, MA denote data augmentation, radiated noise
data augmentation, and mixed noise data augmentation, respectively. Compared to the
results of Experiment 1, the difference in classification accuracy between the two sampling
methods is further reduced in the case of few samples. The experiment of LR-1D-CNN
verifies that the impact of information leakage is exacerbated after inputting neighborhood
blocks compared to the other models. This effect is most severe when R-2D-CNN is used.
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SS-3D-CNN and LR-1D-CNN perform similarly. Combined with Experiment 1, the 3D
convolution model exhibits better classification performance than other convolution models.
In this experiment, the SS-3D-CNN model with few samples can effectively alleviate the
information leakage and perform the best classification accuracy with continuous sampling
strategy. This may be due to the fact that the 2D-CNN models drastically compress the
spectral information during convolution. Specifically, during the convolution computation,
the number of convolution kernels in the first layer determines how many channels to
compress the spectral dimension of the input. The 3D-CNN models can learn the weights
of the spectral and spatial information to some extent.

 Diff w/ MA
 w/ RA-Disjointed

LR-1D-CNN

(a)

 Diff w/ RA
 w/ FA-Disjointed

R-2D-CNN

(b)

 Diff w/ RA
 w/ FA-Disjointed

SS-3D-CNN

(c)

 w/ MA

LR-1D-CNN Difference Curve

(d)

 w/ RA

R-2D-CNN Difference Curve

(e)

 w/ RA

SS-3D-CNN Difference Curve

(f)

Figure 12. OA and difference curves of CNN models with few samples and data augmentation:
(a) LR-1D-CNN with different sampling strategies; (b) R-2D-CNN with different sampling strategies;
(c) SS-3D-CNN with different sampling strategies; (d) the difference curve of LR-1D-CNN; (e) the
difference curve of R-2D-CNN; (f) the difference curve of SS-3D-CNN.

3.3.3. The Ability of Cross-Domain Learning to Mitigate Information Leakage

The experimental results are listed in Table A4. With the same number of training
samples as in Experiment 2, the four models achieved significantly better classification
accuracy than the models in Experiment 2 under the random sampling strategy. SMF-UL
achieves the best classification OA among the four models with 9, 11, and 13 samples per
class. RN-FSC achieves the best AA of 82.824% in this experiment with 13 samples per class.
DCFSL achieves the best Kappa of 74.054% with the same number of samples. From this
standpoint, cross-domain learning methods have the potential to enhance the classification
accuracy of models.

With the continuous sampling strategy, DCFSL achieves the highest OA with selected
samples. DCFSL and RN-FSC also achieved higher classification accuracy than each
model in Experiment 2 with continuous sampling. Therefore, FSL models exhibit excellent
classification performance in some tasks with few samples. Although SMF-UL and UM2L
demonstrate excellent classification accuracy using the random sampling strategy, their
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performance does not significantly surpass that of Experiment 2 using the continuous
sampling strategy. Experimental results show that the SS-3D-CNN model in Experiment
2 is the least affected by information leakage when few samples are available, and its
differences can be stabilized within 10%. However, even with random sampling, the OA of
the model is only around 65%. In contrast, DCFSL and RN-FSC achieve better accuracy
with spatially disjoint sampling methods, and maintain moderate differences between the
two sampling strategies. While both unsupervised algorithms achieve better classification
accuracy under the random sampling strategy, the OA does not improve significantly when
spatially disjoint sampling strategies are used. As shown in Figure 13e, Comparing the
difference of these models, FSL models show the excellently effective ability to mitigate
information leakage.

 Kappa

DCFSL

(a)

 Kappa

RN-FSC

(b)

 Kappa

SMF-UL

(c)

 Kappa

UM2L

(d)

 UM2L

Difference Curve

(e)

Figure 13. Difference curves of FSL and unsupervised learning models with few samples: (a) DCFSL;
(b) RN-FSC; (c) SMF-UL; (d) UM2L; (e) the OA difference curve of the models.

In addition to evaluating the effectiveness of information leakage using the trends
of the OA difference under different sampling strategies, AA and kappa are also used for
evaluation in Table A4. As shown in Figure 13, the three evaluation indicators have the
same overall trend and can be used to qualitatively describe the degree of information
leakage. Kappa shows a highly similar trend to OA in different models, while AA shows
a more gradual trend. This phenomenon may be caused by the class imbalance of the
datasets. Specifically, for some class cases with a small number of samples, which have
less spectral variation and a more concentrated distribution, spatially disjoint sampling
can also contain most of the variation features. As a result, the accuracy of this class is
less affected by changes in the number of training samples. Moreover, the accuracy of
the class with a smaller number of samples receives better attention when calculating AA.
Correspondingly, for classes with a large number of samples, the fraction of classification
performance in computing AA decreases. In terms of evaluating the impact of information
leakage, the contribution of each sample to the result should not be affected by the number
of samples in the class of that sample. For example, the effect of information leakage due to
random sampling is more pronounced for classes with a large number of samples. In the
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calculation of AA, the weights of all classes are the same, which weakens the performance
of this effect and leads to a relatively gradual AA difference curve. This effect needs to be
better reflected in the evaluation results. Considering this aspect, in this paper, we prefer to
use OA as the metric to evaluate information leakage.

The four models used in this experiment all use cross-domain learning methods,
and perform fine-tuning or feature extraction on the target domain during the cross-domain
process. As shown in Figure 14, we compared the classification maps of the models from
Experiment 2 and Experiment 3 under the conditions of using the UP dataset and spatially
disjoint sampling strategy with 5 and 7 samples per class. The FSL models showed good
classification performance for classes that are difficult for other models to recognize, such
as bare soil and asphalt. FSL models, including DCFSL and RN-FSC, not only mitigate the
issue of limited labeled samples and the subsequent low accuracy but also minimize the
exposure of test set information during the training stage. Therefore, the models effectively
mitigate information leakage under conditions that satisfy high classification accuracy.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 14. Classification maps of the models under the conditions of using the UP dataset and
spatially disjoint sampling strategy with 5 and 7 samples per class: (a,b) LR-1D–CNN; (c,d) R-2D-
CNN; (e,f) SS-3D-CNN; (g,h) SMF-UL; (i,j) UM2L; (k,l) DCFSL; (m,n) RN-FSC; (o) GT.
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4. Future Lines

While many deep learning-based HSI classification models have been proposed to
achieve excellent classification accuracy under the random sampling strategy, there are
still a few research works that use spatially disjoint sampling to evaluate the models.
The high annotation cost and the lack of widely used homogeneous datasets are some of
the objective reasons. As a result, most deep learning-based HSI classification models are
trained and tested on a single HSI. Therefore, objective evaluation and practical application
of deep learning models is an urgent direction for improvement in this field. Currently,
the information leakage problem of HSI classification tasks can be intuitively reflected
by spatially disjoint partitioning methods. However, relatively few models have been
proposed specifically for such sampling methods and related problems. Most of the work
in this paper is devoted to analyzing partial effective models for information leakage from
existing models. Based on this, related future work can be considered in the following
directions:

• As most current data augmentation methods obtain additional samples by processing
labeled samples, the newly generated samples inevitably contain features of the
original samples. For HSI data, spectra of the same ground-based object in different
regions may have large variability. When a random sampling strategy is used, multiple
spectral variants of the same class can be augmented to obtain an improvement in
classification accuracy. However, the classification accuracy may be negatively affected
under spatially disjoint sampling strategies. Samples of the same type selected in
these strategies may have only a limited or even a single spectral variant type, which
will cause the model to overfit the variants in these training samples. Therefore, it is
possible to consider fusing some unlabeled samples with labeled samples. Methods
such as hyperspectral unmixing and image edge segmentation are used to find objects
of same classes at long spatial distances. These pixels can be fused with each other
or added noise to obtain additional samples, allowing the model to learn different
spectral variations;

• Recently, transformer networks have shown great potential in image processing. Sev-
eral scholars have introduced vision transformer models into the field of hyperspectral
classification and achieved advanced classification performance [92]. In HSI classifica-
tion tasks, objects of the same class tend to be more concentrated in spatial locations.
The self-attention mechanism used in transformers allows the network to focus more
on the impact of each neighborhood pixel on the classification performance. More-
over, vision transformer models have better global feature extraction capabilities than
CNN models. This ability to consider both neighbor and global information requires
transformer models to introduce positional information at the input stage. From the
information leakage perspective, most transformer models in classification tasks are
identical to models, which do not remove test pixel information during training.
Positional embedding may further exacerbate model overfitting to a single dataset.
The combination of transformer models and graph structures can be considered as a
future research direction. Specifically, some graph sample construction methods can
strictly avoid the test information involved in training. The adjacency matrix in GCNs
can be used to extract positional information;

• In practical applications, especially real-time remote sensing HSI classification, HSIs
acquired by the same hyperspectral imaging platform usually share some features of
homogeneous datasets. Examples are identical spatial resolution, spectral resolution or
certain environmental conditions. The spectral response of objects in each pixel region
will be more accurate with HSI spatial super-resolution or hyperspectral unmixing
techniques, which mitigates the effect of object mixing on the spectrum. When the
spectral variation is reduced, the samples obtained by the spatial disjoint sampling
strategy have better generalization characteristics. To some extent, the problem of
overfitting between datasets caused by information leakage is mitigated. Based on
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this, hyperspectral super-resolution technology and the construction of more accurate
standard spectral libraries can be considered as future research directions;

• The current data augmentation methods struggle to achieve better performance of the
model under spatial disjoint sampling strategies. Therefore they cannot steadily
improve accuracy while reducing information leakage. The reason is that these
data augmentation methods struggle to simulate the real spectral variation process.
The task of super-resolution reconstruction based on deep learning is to simulate
the degradation process of remote sensing images, and then use the original image
as a supervision signal to construct a super-resolution model [93]. Inspired by this
reconstruction technique, the variability process of spectra in HSI data can also be
viewed as a degradation process. First, some bands in the original HSI that are likely
to produce variation are identified based on prior knowledge, and then the degree
of variation in that band is amplified as input to the model. The supervised signal
is also the original HSI. The processed HSI is made closer to the original HSI data
to construct the corresponding degradation model of the spectral variation process.
Different from the HSI super-resolution, the process of amplifying spectral variation
in this degradation model is more difficult to simulate real processes. The required
prior knowledge may be affected by imaging platforms and environmental conditions
in different regions;

• Most current deep learning-based HSI classification models need to be retrained when
predicting different datasets. Based on this, several cross-domain learning methods
have emerged. However, few models have been trained to directly classify various
specifications of HSI without fine-tuning. The classification accuracy of these models
also has room for improvement. This is a practical future research direction;

• In addition, the issue of information leakage in this field still requires the design of
spatial autocorrelation evaluation indicators for hyperspectral occurrences. For ex-
ample, mutual information can be used to obtain the degree of correlation between
different samples. The reconstruction error of sparse representation can also be used
to analyze the strength of correlations between samples. These methods can mea-
sure the independence of the test and training sets. In addition to spatially disjoint
sampling strategies in HSI classification tasks, constructing perturbed samples can
be an alternative approach to approximate homogeneous datasets. Based on this, it
may be possible to add adversarial attacks to analyze the effectiveness of the model to
mitigate information leakage.

5. Conclusions

This paper summarizes the existing problems in the field of deep learning-based
HSI classification and provides a detailed analysis of the information leakage caused by
the spatial autocorrelation and test information involved in training. In order to further
illustrate the impact of this problem, the overfitting problem of HSI classification is divided
into overfitting and overfitting between datasets. Based on the information leakage proba-
bility and expectation, the sample-related phase is divided into two aspects: reducing the
number of training samples and using disjoint sampling strategies. In the feature extrac-
tion phase, some related models and learning paradigms are summarized, including FSL,
unsupervised learning, GCNs. In particular, the reason why spatially disjoint sampling
strategies are more objective is explained. The practical utility of such sampling is analyzed
from the perspective of its approximation process for homogeneous datasets. Moreover,
we experimentally demonstrate the impact of information leakage and the effectiveness
of some related models and algorithms. Finally, several future research directions are
suggested in this paper.
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Appendix A

Table A1. OA and difference of different CNN models using random sampling strategy and spatially
disjoint sampling strategy on the SV dataset.

LR-1D-CNN D-1D-CNN RSSAN

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

0.30% 59.045 59.594 −0.549 20.822 21.470 −0.648 60.837 42.276 18.561
0.50% 60.202 59.999 0.203 20.823 20.841 −0.018 69.590 45.765 23.825
0.75% 63.131 64.457 −1.326 20.823 20.838 −0.015 74.593 49.205 25.388

1% 64.885 65.827 −0.942 20.822 20.860 −0.038 76.990 49.475 27.515
3% 78.754 73.525 5.229 29.864 29.869 −0.005 72.759 64.716 8.043
5% 79.448 74.366 5.082 50.213 48.883 1.330 81.496 59.244 22.252
7% 82.872 75.944 6.928 59.895 58.688 1.207 85.848 75.773 10.075

10% 82.525 71.369 11.156 63.810 64.739 −0.929 89.772 77.211 12.561
15% 83.273 76.599 6.674 71.429 68.269 3.160 90.383 80.578 9.805
20% 85.915 76.794 9.121 76.399 70.411 5.988 91.262 80.698 10.564

R-2D-CNN D-3D-CNN SS-3D-CNN

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

0.30% 60.746 46.042 14.704 40.217 38.741 1.476 78.021 55.864 22.157
0.50% 66.633 48.268 18.365 49.674 40.294 9.380 76.395 49.038 27.357
0.75% 74.186 48.875 25.311 58.243 40.701 17.542 82.355 60.223 22.132

1% 77.285 48.921 28.364 64.949 47.949 17.000 85.665 61.888 23.777
3% 79.293 59.427 19.866 79.970 68.980 10.990 90.993 77.263 13.730
5% 87.177 66.082 21.095 81.491 76.974 4.517 91.552 76.096 15.456
7% 89.453 73.717 15.736 85.997 77.350 8.647 90.748 77.055 13.693

10% 93.360 75.662 17.698 87.962 77.091 10.871 92.885 77.770 15.115
15% 92.441 81.527 10.914 89.799 71.377 18.422 92.200 79.256 12.944
20% 94.352 81.709 12.643 90.076 78.968 11.108 92.787 80.230 12.557

Table A2. OA and difference of different CNN models using random sampling strategy and spatially
disjoint sampling strategy on the HS dataset.

LR-1D-CNN D-1D-CNN RSSAN

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

0.30% 40.459 33.102 7.357 27.348 20.657 6.691 29.312 27.007 2.305
0.50% 44.724 39.331 5.393 29.114 21.896 7.218 38.723 28.878 9.845
0.75% 46.225 39.902 6.323 33.228 23.519 9.709 39.342 31.394 7.948

1% 48.187 45.303 2.884 38.849 27.902 10.947 49.735 40.347 9.388
3% 60.900 50.107 10.793 43.781 33.281 10.500 59.281 53.129 6.152
5% 66.673 54.397 12.276 48.127 39.039 9.088 69.209 57.634 11.575
7% 67.634 55.718 11.916 50.720 45.236 5.484 73.864 58.574 15.290

10% 71.862 58.914 12.948 58.873 50.078 8.795 77.405 61.921 15.484
15% 74.650 58.953 15.697 61.717 52.339 9.378 76.626 60.939 15.687
20% 76.129 64.280 11.849 63.929 54.809 9.120 85.659 64.296 21.363

R-2D-CNN D-3D-CNN SS-3D-CNN

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

0.30% 37.967 29.766 8.201 32.468 27.007 5.461 49.058 44.558 4.500
0.50% 52.331 37.783 14.548 32.981 28.878 4.103 54.984 54.308 0.676
0.75% 55.131 42.301 12.830 37.691 31.394 6.297 68.236 55.025 13.211

1% 58.000 41.473 16.527 40.386 40.347 0.039 64.008 55.262 8.746
3% 69.392 54.760 14.632 59.855 53.129 6.726 83.150 55.998 27.152
5% 75.312 59.424 15.888 66.309 57.634 8.675 83.723 58.439 25.284
7% 77.856 60.401 17.455 74.935 58.574 16.361 86.964 62.352 24.612

10% 84.594 62.552 22.042 79.005 61.921 17.084 90.212 64.124 26.088
15% 86.650 65.301 21.349 80.949 60.939 20.010 91.205 63.927 27.278
20% 90.755 70.545 20.210 85.446 64.296 21.150 93.069 66.728 26.341
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Table A3. OA and difference of CNN models with data augmentation on the HS dataset.

LR-1D-CNN

Without Data Augmentation Radiation Noise Mixture Noise

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

3 35.079 34.387 0.692 32.585 34.198 −1.613 36.105 33.936 2.169
5 39.809 39.172 0.637 36.450 36.501 −0.051 35.807 35.693 0.114
7 41.772 40.834 0.938 40.098 36.827 3.271 37.653 36.458 1.195
9 48.060 42.070 5.990 49.809 41.151 8.658 44.639 41.999 2.640

11 51.812 45.231 6.581 51.071 48.178 2.893 49.970 42.079 7.891
13 53.597 49.658 3.939 53.377 50.101 3.276 52.074 48.265 3.809

R-2D-CNN

Without data augmentation Flip Radiation noise

Numb. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

3 41.164 30.125 11.039 42.268 34.347 7.921 38.975 33.163 5.812
5 50.619 38.754 11.865 55.953 40.528 15.425 49.153 40.786 8.367
7 51.819 40.748 11.071 57.364 42.435 14.929 53.596 40.608 12.988
9 52.464 41.654 10.810 53.610 44.216 9.394 53.240 41.850 11.390

11 53.687 43.711 9.976 56.262 44.945 11.317 53.798 42.539 11.259
13 58.543 44.665 13.878 61.774 45.229 16.545 61.568 43.843 17.725

SS-3D-CNN

Without data augmentation Flip Radiation noise

Num. Random Disjointed Diff Random Disjointed Diff Random Disjointed Diff

3 53.615 41.719 11.896 54.684 45.162 9.522 50.219 43.413 6.806
5 60.772 50.761 10.011 65.326 57.330 7.996 64.201 54.068 10.133
7 65.456 53.659 11.797 67.781 54.637 13.144 68.098 55.190 12.908
9 63.079 55.178 7.901 64.388 55.358 9.030 65.013 51.732 13.281

11 68.087 55.824 12.263 69.054 58.029 11.025 71.250 52.045 19.205
13 71.939 57.570 14.369 75.224 60.140 15.084 74.513 57.200 17.313

Appendix B

Table A4. OA, AA, and Kappa of unsupervised learning and FSL models on the UP dataset.

DCFSL

Random Disjoint diff

Numb. OA AA Kappa OA AA Kappa OA AA Kappa

3 72.018 78.238 64.275 60.373 63.782 48.795 11.645 14.456 15.480
5 72.610 76.996 66.118 66.086 66.910 55.759 6.524 10.086 10.360
7 73.324 75.347 67.760 66.844 64.656 56.845 6.480 10.691 10.915
9 74.352 74.258 69.968 67.251 64.353 57.201 7.101 9.905 12.767
11 76.298 76.193 72.459 67.798 65.710 58.094 8.500 10.483 14.365
13 77.264 74.054 74.054 65.196 61.374 55.154 12.068 11.800 18.900

RN-FSC

Random Disjoint diff

Numb. OA AA Kappa OA AA Kappa OA AA Kappa

3 68.393 73.739 60.268 59.711 48.507 47.242 8.682 25.232 13.026
5 66.369 76.341 58.956 61.125 50.786 49.278 5.244 25.554 9.678
7 73.593 80.638 67.230 61.820 51.794 50.428 11.773 28.843 16.802
9 73.777 78.026 66.634 62.248 52.471 51.133 11.530 25.556 15.501
11 73.212 78.913 66.050 63.568 54.293 52.922 9.643 24.620 13.128
13 77.789 82.824 71.781 64.707 57.353 54.228 13.082 25.471 17.553

SMF-UL

Random Disjoint diff

Num. OA AA Kappa OA AA Kappa OA AA Kappa

3 65.520 65.307 56.905 43.957 59.494 34.955 21.563 5.813 21.950
5 70.847 70.155 63.909 54.598 60.261 46.116 16.249 9.894 17.793
7 74.135 72.126 67.645 50.075 62.307 40.720 24.060 9.819 26.924
9 75.417 74.154 69.040 47.092 60.123 37.612 28.325 14.031 31.428
11 78.097 76.302 72.131 44.107 60.189 37.291 33.990 16.113 34.840
13 78.055 75.984 72.097 57.764 62.336 49.562 20.291 13.648 22.535

UM2L

Random Disjoint diff

Num. OA AA Kappa OA AA Kappa OA AA Kappa

3 63.919 65.257 54.565 43.244 57.403 32.690 21.874 7.854 21.874
5 73.554 76.502 67.698 45.173 60.474 34.560 33.138 16.028 33.138
7 74.535 77.131 69.656 44.810 60.660 34.184 35.472 16.471 35.472
9 74.363 74.208 70.509 46.458 62.127 36.102 34.407 12.081 34.407
11 75.049 75.634 71.023 44.770 62.365 34.806 36.217 13.270 36.217
13 76.006 75.603 72.338 43.485 61.792 33.484 38.854 13.811 38.854
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