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Abstract: PM2.5 refers to the total mass concentration of tiny particulates in the atmosphere near the
surface, obtained by means of in situ observations and satellite remote sensing. Given the highly
limited number of ground observation stations of inhomogeneous distribution and an ill-posed
remote sensing approach, increasing efforts have been devoted to the application of machine-learning
(ML) models to both ground and satellite data. A key satellite-derived parameter, aerosol optical
thickness (AOD), has been most commonly used as a proxy of PM2.5, although their correlation is
fraught with large uncertainties. A critical question that has been overlooked concerns how much
AOD helps to improve the retrieval of PM2.5 relative to its uncertainty incurred concurrently. The
question is addressed here by taking advantage of high-density PM2.5 stations in eastern China to
evaluate the contributions of AOD, determined as the difference in the accuracy of PM2.5 retrievals
with and without AOD for varying densities of PM2.5 stations, using four popular ML models (i.e.,
Random Forest, Extra-trees, XGBoost, and LightGBM). Our results reveal that as the density of
monitoring stations decreases, both the feature importance and permutation importance of satellite
AOD demonstrate a consistent upward trend (p < 0.05). Furthermore, the ML models without AOD
exhibit faster declines in overall accuracy and predictive ability compared with the models with
AOD assessed using the sample-based and station-based (spatial) independent cross-validation
approaches. Overall, a 10% reduction in the number of stations results in an increase of 0.7–1.2% and
0.6–1.2% in uncertainty in estimated and predicted accuracies, respectively. These findings attest
to the indispensable role of satellite AOD in the PM2.5 retrieval process through ML because it can
significantly mitigate the negative impact of the sparse distribution of monitoring sites. This role
becomes more important as the number of PM2.5 stations decreases.

Keywords: machine learning; AOD; PM2.5 retrieval; station density; importance assessment

1. Introduction

PM2.5 refers to the concentration of airborne particulate matter (PM) with an aero-
dynamic diameter of less than 2.5 microns. Although small, these particles are abundant
and active, and attach easily to toxic and harmful substances. PM2.5 can be suspended in
the atmosphere for extended periods, ranging from months to even years, which has an
important impact on air quality and visibility and also affects human health [1–3]. While
PM2.5 has been monitored in many parts of the world, observations are still highly limited
and very inhomogeneous, with many regions not covered [4–6]. However, satellite remote
sensing provides continuous spatial coverage and has been widely used in the estimation
of surface PM2.5 concentrations [7–9].

Previous studies have made great efforts to infer PM2.5 from satellite retrievals of
aerosol optical depth (AOD) by virtue of their positive correlation because AOD is much
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more monitored from both space and the ground. Many factors can influence their re-
lationship, including aerosol vertical distribution, relative humidity, mixed-layer height,
and topography, among others [10–12]. The relationship also varies with both location
and time scale. Wang and Christopher (2003) [13] used the AOD product retrieved by the
Moderate Resolution Imaging Spectroradiometer (MODIS) and in situ measurements of
PM2.5 at seven ground observation stations in Alabama, USA, finding a sound correlation
between them on a monthly time scale. Natunen et al. (2010) [14] explored the relationship
at four stations in Helsinki, Finland, on seasonal and monthly time scales and found that
time averaging increased the correlation. Likewise, the correlation also varies with spatial
resolution [15], indicating that different geographical locations, study area sizes, and spatial
resolutions of MODIS AOD products can change the correlation between AOD and PM2.5.
In general, the relationship varies considerably with location and season [16,17]. Su et al.
(2018) [18] studied the relationship extensively across China, one of the most polluted
regions of the world, finding that the relationship differs considerably in different parts of
China (better in northern than in southern China) and among the four seasons (better in
winter than in summer). The relationship can be significantly improved by normalizing
against the height of the planetary boundary layer.

Due to the complex relationships between AOD and PM2.5, many statistical regression
methods have been proposed for estimating PM2.5 using satellite AOD retrievals [7,19–21],
such as the multiple linear regression model [22], the geographically weighted regression
model [23,24], the geographical spatiotemporal weighting regression model [25], and the
linear mixed effects model [26]. To a certain extent, these models are capable of estimating
surface PM2.5 concentrations using satellite AOD data. However, they face challenges when
it comes to studying the influences of various factors on PM2.5, such as meteorological
factors (boundary layer height, relative humidity, etc.) and surface factors (underlying
surface types, etc.) [27,28]. Fortunately, machine-learning (ML) models have a strong
data-mining capability and can establish robust nonlinear relationships. They allow for
the extraction of pertinent information from very large numbers of auxiliary factors to
improve the accuracy of PM2.5 retrievals. Therefore, various types of ML models have been
adopted in PM2.5 inversion studies in recent years, e.g., the Random Forest model [29,30],
the Extra-trees model [31,32], the XGBoost model [33], and the LightGBM model [34].

AOD has been regarded as an essential input variable in inferring PM2.5 from satel-
lites [7,19,27,35]. However, a handful of studies have presented contrasting results [36–39].
Chen et al. (2021) [38], for example, developed a Random Forest model for areas with and
without AOD data, finding that the model or areas without AOD can result in better PM2.5
retrievals. Yu et al. (2022) [39] developed a deep ensemble ML framework to estimate
daily PM2.5 concentrations in Italy from 2015 to 2019 and found similar accuracies (cross-
validated R2 = 0.853 and 0.857) in comparison with ground observations when including
or not including satellite AOD in the model. These conflicting findings pose such critical
questions as whether satellite-retrieved AOD plays any significant role in estimating surface
PM2.5 and what factor, if any, dictates its role in the ML application for estimating PM2.5.
We attempt to address these questions by taking advantage of rich satellite AOD data and
in situ PM2.5 measurements in eastern China, together with a large array of other ancillary
data, introduced next.

2. Data and Methods
2.1. Study Area

The study area (approximately 1,830,000 km2) covers 14 provinces in China, includ-
ing the North China Plain, the Yangtze River Delta, the Pearl River Delta, and parts of
central China (Figure 1). As the most populated and advanced in economic development
in China, these regions have experienced serious air pollution problems, thus garnering
significant public attention. To monitor air pollution, relatively dense PM2.5 ground obser-
vation stations have been uniformly distributed, enabling us to investigate the effects of
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satellite AOD on estimating PM2.5 concentrations at different levels of ground observation
station density.
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2.2. Data Sources

The datasets used in this study consist of observed PM2.5 concentrations, 1-km-
resolution MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD
products, and many auxiliary datasets related to PM2.5, such as meteorological and land-
and population-related information. The study period spans from 2018 to 2020, ensuring
an adequate volume of data for conducting sensitivity analyses.

2.2.1. PM2.5 Ground Measurements

The PM2.5 observation station data used in this study are real-time ground-measured
air quality data (including PM2.5) in China from the China National Environment Moni-
toring Center. In this study, a total of 775 ground observation stations were chosen from
the eastern region of China (Figure 1). Daily measurements recorded at each station were
subsequently calculated and subjected to rigorous data quality control following Wei et al.
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(2019) [30]. These validated ground measurements were then utilized as ground truth for
ML-modeling purposes.

2.2.2. MODIS AOD Products

The MODIS AOD product serves as the primary predictor for estimating surface PM2.5
in this study. Specifically, Terra and Aqua MCD19A2 AOD products at a spatial resolution
of 1 km are employed. This product is retrieved using the MAIAC inversion algorithm
over land and incorporates various quality assurance (QA) measures [40,41]. For this study,
to ensure the quality of the data, we only employed those MAIAC AOD retrievals pass-
ing the recommended QA measures, including cloud screening (QACloudMask = Clear)
and adjacency (QAAdjacencyMask = Clear), following the methodology outlined in our
previous study [30].

2.2.3. Auxiliary Data

Meteorological reanalysis data used in this paper are collected from the fifth-generation
European Reanalysis Interim dataset (ERA5) released by the European Centre for Medium-
Range Weather Forecasts. The global hourly dataset has characterized the states of the
atmosphere, oceans, and surface since 1979 [42]. Specifically, seven meteorological parame-
ters were employed: boundary layer height (BLH; unit: m), evaporation (ET; unit: mm),
relative humidity (RH; unit: %), surface pressure (SP; unit: hPa), 2 m air temperature (TEM;
unit: K), and 10 m U and V wind components (unit: m s−1). Copernicus Atmospheric
Monitoring Service (CAMS) emission inventories, including the four main precursors of
PM2.5, i.e., ammonia, nitrogen oxides, sulfur dioxide, and volatile organic compounds,
were also considered [43,44]. In addition, parameters related to surface conditions and
human activities, including the normalized vegetation index, a digital elevation model,
and population density, were involved. In total, 15 predictor variables, including AOD, are
utilized for PM2.5 modeling through ML.

2.3. Methodology
2.3.1. Machine-Learning (ML) Models

ML applies complex statistical theories and algorithms to computer simulations in
a somewhat human-learning behavior to acquire new knowledge. It can take advantage
of any existing knowledge structure and ample information content to infer a piece of
new knowledge. ML has been applied in various fields, including the remote sensing of
PM2.5 [45–47]. This study compares and analyzes four popular widely used ML algorithms,
i.e., Random Forest, Extra-trees, XGBoost, and LightGBM models.

The Random Forest model constructs an ensemble of multiple decision trees, where
each tree is generated by bootstrap sampling from the training dataset [48–50]. The Ex-
tremely Randomized Trees (Extra-trees) model is also a tree-based ensemble learning
method, similar to Random Forest but introduces additional randomness in selecting fea-
tures and splitting the points from all data samples in the tree-building process [31,32,51].
Both the Random Forest and Extra-trees models are ensemble-learning algorithms based on
the bagging technique. In the bagging training process, the base classifiers (decision trees)
are trained independently, and there is no strong dependence or correlation between them.
This characteristic allows for parallel training of the base classifiers, which can significantly
speed up the training process. By training the base classifiers in parallel, these integrated
algorithms harness the power of parallel computing, making them efficient and scalable
for large datasets.

In contrast, the XGBoost and LightGBM models are based on a boosting ensemble
algorithm (Figure 2), where base classifiers are trained sequentially, and each classifier
depends on the others. The main goal of boosting is to stack these classifiers on top of each
other, with each layer assigning higher weights to samples that were incorrectly classified
by the previous layers. However, these two models differ in several ways. XGBoost utilizes
a pre-classification algorithm, meaning that all features of a sample are pre-sorted before
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iterated and repeated operations take place [33,52]. This sorting step significantly reduces
the number of calculations required. LightGBM employs a histogram algorithm, which
offers advantages such as reduced memory usage and a faster runtime [34,53]. In terms of
growth strategy, XGBoost follows a level-wise approach. In this strategy, the child nodes of
the same layer are split simultaneously. Conversely, LightGBM adopts a leaf-wise growth
strategy, where each layer’s child node only needs to find the node with the largest gain
(typically the one with the largest data volume) to perform the split.
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2.3.2. Importance Assessment Method

(1) Feature importance
The feature importance (FI) score is a common indicator reflecting the importance

of input variables that comes with the tree-based ML models. The FI score is calculated
via the Gini index based on the mean decrease impurity (MDI) and used to evaluate the
importance of each feature by measuring its contribution to splitting in the decision tree [54].
Taking one decision tree as an example, VIM represents variable importance measures, and
GI represents the Gini index. Assuming that there are m feature variables, the GI score
of a feature (represented by Xi) is calculated (represented by VIMGini

i ), i.e., the average
change in the node-splitting impurity of the ith feature in the tree model. The Gini index is
calculated as

GIm =
|K|

∑
k=1

∑
k′ 6=k

pmk pmk′ = 1−
|K|

∑
k=1

p2
mk (1)

where K represents the total number of categories of a feature, and pmk represents the
proportion of a category k in node m. The importance of feature Xi in node m, i.e., the GI
change before and after the node branch is expressed as

VIM(Gini)
im = GIm −GIl −GIr (2)

where GIl and GIr represent the Gini indices of the two new nodes after the branch. The
node where feature Xi appears in the jth decision tree is set M. The importance of Xi in the
jth tree then is

VIM(Gini)
ij = ∑

m∈M
VIM(Gini)

im (3)

(2) Permutation importance
Although the FI can reflect the characteristic importance of variables, it is more favor-

able when there are more variable categories. For characteristic variables with multiple
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correlations, FI may have a bias in describing correlation features, and its assessment could
also be overfitted [55]. Therefore, the permutation importance (PI), another method for
evaluating the contribution of each feature, is employed. The PI is a model-independent
method applicable to almost all types of models, including deep-learning models. Its
basic idea is to evaluate the importance of features on a test set by randomly shuffling a
feature and then measuring the change in model performance to measure the importance of
features. The PI of a feature is calculated as follows (Figure 3). First, the dataset is divided
into a training set and a validation set. Second, a baseline metric, defined by scoring, is then
evaluated on a (potentially different) dataset defined by the training set. Third, a feature
column from the validation set is permutated randomly, and the metric is evaluated again.
The PI can be obtained by calculating the difference between the baseline metric and the
metric from permutating the feature column.
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2.3.3. Model Validation Methods

In this study, two methods are used to evaluate the performance of ML models:
sample-based and station-based ten-fold cross-validation (10-CV) [32,56]. In sample-based
10-CV, the sample dataset is randomly divided into ten groups. One group, comprising
10% of the samples, is set aside as the independent validation set, while the remaining
nine groups (90%) form the training set. This process is repeated ten times, with each
group serving as the validation set once, ensuring that all samples have been tested. The
final accuracy is calculated as the average of the results obtained from the ten runs. This
approach is commonly used to represent the overall accuracy of ML models in estimating
PM2.5 levels at locations where ground measurements are available.

The station-based 10-CV is another evaluation method used to assess the predictive
ability of ML models in estimating PM2.5 concentrations at locations where ground mea-
surements are not available [57]. This method serves as a spatially independent validation
technique. Similarly to the sample-based 10-CV, the station-based 10-CV involves dividing
the ground observation stations in the study area into ten groups. One group, consisting
of 10% of all stations, is designated as the validation set, while the dataset corresponding
to the remaining nine groups of stations (90% of all stations) is used as the training set.
This approach creates training and validation samples from different locations. This helps
isolate spatial autocorrelations among the data samples, making it an effective spatially
independent verification method.
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2.3.4. Sensitivity Analysis Methods

This study starts by considering the study area as a whole, with 775 ground observation
stations. The total number of stations in the study area is then randomly reduced by 10%.
The remaining number of stations is again reduced by 10%. This process continues until
the number of stations in a group is 31% of the original total number of stations. The end
result is 12 groups of stations, each reflecting a certain station density in the study area. The
smaller the proportion of remaining stations in a group, the smaller the density of stations
in that group. This set of 12 groups of stations and their associated observations is used
next to explore the influence of AOD on inversions of PM2.5 from different ML models.
To assess the importance and contribution of satellite AOD retrievals to ML modeling
and quantitatively evaluate its impact on the performance of an ML model, this study
incorporates an uncertainty analysis from three key aspects:

(1) The importance scores of satellite AOD were first calculated employing two techniques
(FI and PI) for four typical tree-based ML models as the density of ground-based
stations in the study area gradually decreased. This analysis offers valuable insights
into the role of satellite AOD in the modeling process. It allows for an understanding
of the significance of satellite AOD under different station-density conditions.

(2) The accuracies and differences in the estimation of PM2.5, with and without satellite
AOD as the primary predictor, were calculated using the sample-based 10-CV method.
Four typical tree-based ML models were employed, each taking into consideration the
decreasing density of ground-based stations in the study area. This analysis allows
us to evaluate the importance of satellite AOD in enhancing the overall accuracy of
PM2.5 estimates for varying station densities.

(3) Similarly, the accuracies and differences in the prediction of PM2.5 in regions lacking
PM2.5 observations, with and without satellite AOD as the main predictor, were
calculated using the station-based 10-CV method. Again, four typical tree-based
ML models were employed, each taking into consideration the decreasing density
of ground-based stations in the study area. This analysis enables us to assess the
significance of satellite AOD in improving the predictive ability of PM2.5 predictions
for varying station densities.

3. Results
3.1. Variations of Satellite AOD Contributions

Figure 4 presents the FI and PI of satellite AOD retrievals in estimating PM2.5 obtained
by four ML models with the decrease in the density of ground-based monitoring stations.
Also shown are the best-fit lines from linear regression and confidence intervals (CIs). CI
is a statistical measure used to quantify the uncertainty of an estimate. Here, we used a
95% confidence level (pink-shaded areas in the figure). This indicates that there is a 95%
probability that the true value will fall within the specified range, leaving a 5% probability
of it falling outside this range. Figure 4a–c show that as the density of the monitoring station
decreases, the FI score significantly increases, with regressed correlation of determination
(R2) values of 0.84, 0.81, 0.77, and 0.43 for the Random Forest, Extra-trees, XGBoost, and
LightGBM models, respectively. All pass the 99% or 95% confidence (p < 0.01 or 0.05) test.
The spread of FI in the LightGBM case (Figure 4d) indicates a higher variance compared
with other methods, which may be attributed to the use of the specific node-splitting
method of the leaf-wise growth strategy. Similar conclusions can be made from the PI
score analysis, i.e., the contribution of satellite AOD significantly increases as the density of
monitoring stations decreases, with much higher regressed R2 values (R2 = 0.94–0.96) for
the four ML models (Figure 4e–h). All regressed trends reach the 99% confidence (p < 0.01)
level. Note that the values of FI and PI are different among the ML methods because these
models employ distinct frameworks and operation methods, including sampling, feature
selection, and node-splitting techniques. Additionally, the methods of computing FI and PI
are also different, e.g., FI relies on the Gini index, which involves calculating the MDI, while
PI assesses the change in model performance by randomly shuffling a feature. Results
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obtained by the two importance verification methods are consistent, suggesting that the
two methods can complement and verify each other. These findings reveal that satellite
AOD is crucial for PM2.5 modeling using ML because it plays a dominant predictive role
with the highest importance scores, particularly in regions with a small density of PM2.5
ground observation stations.
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3.2. Impacts of Satellite AOD on Overall Accuracy

Figure 5 shows the overall accuracies measured by the CV R2 (CV-R2) of the daily
estimates of PM2.5 with and without AOD as model input as a function of decreasing station
density using four ML models. Regarding model results where AOD was included as an
input variable (Figure 5, red dots), it is clearly seen that as the station density decreases,
the overall accuracy of the PM2.5 estimates gradually decreases, showing an average
significantly decreasing trend (i.e., change in sample-based CV-R2 per 1% of discarded
stations) of −0.16% (p < 0.01), −0.15% (p < 0.01), −0.19% (p < 0.01), and −0.11% (p < 0.01)
for the Random Forest, Extra-trees, XGBoost, and LightGBM models, respectively. For
model results where AOD was not included as an input variable (Figure 5, blue dots),
when the station proportion is 100%, the CV-R2 is 0.83 with AOD and 0.82 without AOD, a
small difference of about 1.48%. However, as the station density decreases, the difference in
accuracy between the models with and without AOD gradually increases (black diamonds
in the figure). When the station density is 31%, the accuracy of the model with AOD is
0.72, while the accuracy of the model without AOD is 0.65. The relative difference in model
accuracy with or without AOD significantly increases to 10.35%. Similarly, Figure 5b–d
present comparable results: At 100% station density, the overall accuracies of the Extra-
trees, XGBoost, and LightGBM models with AOD are 0.86, 0.84, and 0.85, respectively.
Without AOD, the accuracies of these models are 0.86, 0.83, and 0.81, respectively, and
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the relative differences in model accuracy with or without AOD are 0.10%, 0.58%, and
4.80%, respectively. When the station density drops to 31%, the accuracies of the models
with AOD become 0.76, 0.70, and 0.76, respectively, while the accuracies of the models
without AOD are 0.71, 0.64, and 0.69, respectively. Consequently, the relative differences
in overall accuracy between these three models with and without AOD increase to 6.48%,
9.41%, and 10.44%, respectively. In particular, when the number of monitoring stations
decreases, the slopes of the decreased overall accuracy are much steeper for the Random
Forest (−0.24%, p < 0.01), Extra-trees (−0.22%, p < 0.01), XGBoost (−0.27%, p < 0.01), and
LightGBM (−0.16%, p < 0.01) models without using AOD compared to these models
using AOD. This is because with the decrease in station density, the sample data volume
gradually decreases, as do the accuracies of the models. In general, for every 10% reduction
in station proportion, the four ML models without AOD experience a 1.2% (p < 0.01), 0.9%
(p < 0.01), 1.1% (p < 0.01), and 0.7% (p < 0.01) increase in the uncertainty of the estimated
results, respectively, compared with these models using AOD. These findings highlight the
indispensable role of satellite AOD in improving the accuracy of estimating PM2.5 through
ML models, particularly in regions with limited observation stations.
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Figure 5. Variation in the overall accuracy (sample-based CV-R2, left ordinate) and relative difference
(%, right ordinate) of daily PM2.5 estimates as a function of decreasing station density for four ML
models: (a) Random Forest, (b) Extra-trees, (c) XGBoost, and (d) LightGBM, with (red dots) and
without (blue dots) including satellite AOD as an input predictor. Slopes of the best-fit lines from
linear regression for each set of results are given, where ** denotes the 99% confidence (p < 0.01) level.
Black dashed lines represent the regressed fits of the relative difference between each set of results.

3.3. Impacts of Satellite AOD on Predictive Ability

Here, the model performance in predicting the PM2.5 level in areas without surface
observations is examined based on results from the station-based 10-CV method. Figure 6
shows the predictive ability of four ML models in retrieving daily PM2.5 with (red dots)
and without (blue dots) AOD as inputs under different station density conditions. Overall,
the trend observed in station-based 10-CV results aligns with those of sample-based 10-CV:
When AOD is included as an input variable, with the decreasing number of monitoring
stations, the predictive accuracies of the Random Forest, Extra-trees, XGBoost, and Light-
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GBM models all show significantly decreasing trends (i.e., change in station-based CV-R2

per 1% of discarded stations) of −0.14% (p < 0.01), −0.13% (p < 0.01), −0.18% (p < 0.01),
and −0.10% (p < 0.01), respectively. However, the model’s predictive ability experiences a
much faster decline, with larger slopes of −0.21%, −0.18%, −0.26%, and −0.13% for the
four models without including satellite AOD, respectively. Specifically, when data from all
PM2.5 stations are used (100%), the Random Forest, Extra-trees, XGBoost, and LightGBM
models that include AOD produce slightly better results, with higher station-based CV-R2

values (0.81, 0.83, 0.80, and 0.79) than those without considering AOD (CV-R2 = 0.77, 0.81,
0.76, and 0.71, respectively). However, when the proportion of monitoring stations drops
to 31%, the predictive accuracies for the same four models decrease to 0.72, 0.75, 0.69,
0.73 (including AOD) and 0.64, 0.69, 0.61, 0.64 (not including AOD), respectively. More
importantly, the average relative differences become 2.48, 2.68, 2.19, and 1.33 times larger
than the results when all stations are considered. This is because station-based 10-CV
uses known stations (regions) to predict unknown stations (regions), reflecting the spatial
prediction ability of the model. However, it is difficult for an ML model to make predictions
for regions without training samples, inevitably leading to lower prediction accuracies,
consistent with existing cognitive rules of an ML model. In general, for every 10% reduc-
tion in the station density, the four ML models without and with AOD experience 1.0%
(p < 0.01), 0.7% (p < 0.01), 1.2% (p < 0.01), and 0.6% (p < 0.01) increases in the uncertainty of
the predicted results, respectively. These findings confirm the indispensable role of satellite
AOD in predicting PM2.5 concentration in areas without observations using ML models,
particularly in low-station density situations.
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Figure 6. Variation in the predictive ability (station-based CV-R2, left ordinate) and relative difference
(%, right ordinate) of daily PM2.5 estimates as a function of decreasing station density for (a) Random
Forest, (b) Extra-trees, (c) XGBoost, and (d) LightGBM, with (red dots) and without (blue dots)
including satellite AOD as an input predictor. Slopes of the best-fit lines from linear regression for
each set of results are given, where ** denotes the 99% confidence (p < 0.01) level. Black dashed lines
represent the regressed fits of the relative difference between each set of results.
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The contrasting results with comparable superior accuracy in PM2.5 estimation without
incorporating AOD input can be attributed to the high density of ground observation
stations in the specific study area. In areas with a sufficiently dense network of monitoring
sites, excluding AOD can still lead to relatively accurate PM2.5 estimations, which largely
benefit from the presence of spatial autocorrelation in air pollution, e.g., PM2.5 levels and
auxiliary factors such as meteorological fields are highly similar in neighboring locations.
As a result, PM2.5 concentrations in nearby sites can be reasonably estimated based on
the established relationships between PM2.5 and non-AOD factors from nearby stations.
Nevertheless, as the station density decreases, the spatial autocorrelation weakens, and
the disparity between natural and human-influenced conditions grows, and consequently,
the prediction error rapidly increases. This highlights the critical role of AOD in areas
with limited ground monitoring because it significantly enhances the accuracy of PM2.5
predictions by providing crucial background pollution information, compensating for the
lack of ground observation data.

4. Conclusions

Machine learning (ML) has been used widely to infer ground-level PM2.5 using
satellite-retrieved aerosol optical depth (AOD) to fill large gaps between PM2.5 stations
without quantification of its contribution, which is the objective of this study. We rig-
orously and quantitatively assess the contribution of AOD to the ML-based estimation
of PM2.5 by applying four common ML models (the Random Forest model, the Extra-
trees model, the XGBoost model, and the LightGBM model) to ample measurements from
China’s high-density PM2.5 observation network, the MODIS Multi-Angle Implementation
of Atmospheric Correction satellite AOD retrieval product, and many other ancillary mete-
orological and environmental data from the eastern half of China. Two assessment methods
are used, i.e., feature importance (FI) and permutation importance (PI). The contribution
of AOD is also assessed by comparing the retrieval results obtained by including and not
including AOD. All assessment tests are made for varying numbers of PM2.5 stations whose
data are sampled by station-based and sample-based 10-CV.

The major findings are summarized as follows: (1) As the station density decreases,
the FI and PI of AOD in the four ML models have clear upward trends. This trend indicates
the importance and contribution of AOD to improving the accuracy of estimating PM2.5,
becoming more pronounced in areas with sparse observation stations. (2) As the density of
observation stations decreases, the ML models without AOD exhibit a more pronounced
decline in overall accuracy compared to the models that incorporate AOD. Additionally, for
every 10% reduction in the number of stations, the uncertainty in the estimated accuracy
increases by approximately 0.7–1.2%. (3) As the station density decreases, the ML models
without AOD exhibit a faster decline in predictive ability compared with these models with
AOD. On average, for every 10% reduction in the number of stations, the uncertainty in the
predicted accuracy increases by approximately 0.6–1.2%. These findings demonstrate the
indispensable role of AOD in any ML model to effectively counteract the negative impact
of no or sparse PM2.5 stations, resulting in improved accuracy for both estimating and
predicting PM2.5 levels.

AOD represents the degree of light attenuation caused by the scattering and absorption
of atmospheric aerosols in the vertical direction and has served as a crucial indicator in
deriving surface particulate matter concentrations. The importance of AOD was confirmed
through a sensitivity analysis showing that satellite AOD has the highest FI and PI values
in PM2.5 modeling using various ML models. As the number of ground stations decreases,
the AOD contribution is more apparent, as is the faster drop in ML model performance
without AOD. This further underlines how using satellite AOD is essential, providing key
background pollution information in areas without ground stations, thereby improving the
prediction capability of ground-based PM2.5. On the contrary, in this case, relying solely on
auxiliary factors such as meteorological fields is far from adequate.
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Even though the chosen area in eastern China benefits from a dense and reasonably
evenly distributed network of ground observation stations for PM2.5, enhancing its rep-
resentativeness, there still exists the question of the uniformity of the spatial distribution
of stations. Further analysis incorporating spatial-block cross-validation is needed to ef-
fectively reduce the impact of this issue. This will be undertaken in our future study.
Additionally, this approach could be applied to PM10, considering its high similarities with
PM2.5, i.e., AOD retains its significance as a crucial input variable in PM10 predictions [58].
However, additional sensitivity analyses are warranted to confirm this hypothesis. Re-
garding other pollutants, since they possess entirely different key input variables, further
investigations are needed to accurately understand their behaviors [e.g., the importance of
satellite tropospheric NO2 in surface NO2 modelling [59]].
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