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Abstract: Three-dimensional (3D) reconstruction is an essential technique to visualize and monitor
the growth of agricultural and forestry plants. However, inspecting tall plants (trees) remains a
challenging task for single-camera systems. A combination of low-altitude remote sensing (an
unmanned aerial vehicle) and a terrestrial capture platform (a mobile robot) is suggested to obtain
the overall structural features of trees including the trunk and crown. To address the registration
problem of the point clouds from different sensors, a registration method based on a fast point
feature histogram (FPFH) is proposed to align the tree point clouds captured by terrestrial and
airborne sensors. Normal vectors are extracted to define a Darboux coordinate frame whereby
FPFH is calculated. The initial correspondences of point cloud pairs are calculated according to
the Bhattacharyya distance. Reliable matching point pairs are then selected via random sample
consensus. Finally, the 3D transformation is solved by singular value decomposition. For verification,
experiments are conducted with real-world data. In the registration experiment on noisy and
partial data, the root-mean-square error of the proposed method is 0.35% and 1.18% of SAC-IA
and SAC-IA + ICP, respectively. The proposed method is useful for the extraction, monitoring, and
analysis of plant phenotypes.

Keywords: point cloud registration; fast point feature histogram; Bhattacharyya distance; 3D reconstruction

1. Introduction

Plant phenotype features, such as plant height, canopy size, and diameter at breast
height, can provide substantial information on plant growth status, whereby breeding
programs and conservation strategies are aimed at improving crop yield and quality. Given
its high resolution, light detection and ranging technology (LiDAR) is being widely used
to obtain various plant phenotypes, such as the leaf structure of maize [1], the height of
peanut seedlings [2], and the biomass of sugarcane [3]. However, color information is
unavailable. To monitor plant phenotype visually, computer vision has emerged as an
alternative sensing strategy to monitor plant growth status [4].

Vision-based 3D reconstruction technology has been widely used in the fields of
mechanical, agricultural, industrial, and urban planning applications [5–7]. Specifically,
the 3D modelling of a plant’s image reconstruction algorithm holds great significance for
the visual monitoring of plants and their phenotype measurements. However, vision-
based plant phenotype monitoring is still noted with specific limitations for different
camera systems. Three-dimensional (3D) cameras, such as the time-of-flight camera and the
binocular camera, are used to collect plant phenotype features [8,9], and have been proven
effective in indoor scenes. The single RGB (color components of red, green, and blue)
camera is one of the most popular sensors due to its low cost and low weight [10] and has
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been utilized to estimate the height and canopy coverage of wheat, rice, and maize [11–13].
A point cloud describes the geometric structure and morphological traits of the object. This
information is suitable to extract plant phenotype parameters. Compared to traditional
manual measurement, 3D point cloud visualization offers advantages such as it not being
labor intensive, and it is non-destructive and objective. Compared with RGB images, point
cloud also has more comprehensive 3D information [14,15].

Studies on 3D reconstruction have been conducted for short plants. For example,
a multi-view stereo (MVS)-based 3D reconstruction was developed to acquire 3D point
clouds of corns by collecting image sequences of branches and leaves [16]. This method
can reconstruct the morphological structure of plants, but it requires placing the plants on
a specific platform. Li et al. [17] took images of six short plants within the local range of a
binocular camera and reconstructed the plant models with a cost measure that combines
the absolute differences and the census transform. Additionally, 3D models of wheat
and rice were established using RGB images [18]. We observed that most of the existing
measurement/sensing techniques are suitable for small plants, and there are relatively few
studies that use a single device for complete reconstructed point clouds of large plants.
However, for tall plants, such as agricultural and forestry trees, in practical scenarios, it is
still a challenging task from a single device [19]. A terrestrial device can capture more trunk
information and texture, but the canopy information is not enough. To address this issue,
an unmanned aerial vehicle (UAV) can be applied with its flexibility in the air and can
acquire the information of the canopy top. However, due to limitations in camera rotation
angle and collision safety range, the trunk images captured by UAVs are often occluded
and incomplete. As a result, to obtain a set of more complete point clouds, the point clouds
captured by these two methods shall be aligned—namely, point cloud registration. The
goal of point cloud registration is to find a transformation that aligns the source point cloud
with the target point cloud.

Most of the traditional methods achieve point cloud registration by coarse matching
first and then fine matching. One of the most common strategies is the combination of
sample consensus initial alignment (SAC-IA) and iterative closest point (ICP) [20]. SAC-IA
firstly samples multiple points from the source point cloud, then identifies a subset of
similar points in the target point cloud, and finally selects a point from the subset of similar
points as corresponding points. This selection is repeated to optimize the transformation
with the least error. However, it is difficult to obtain the global optimum for point cloud
registration with a low overlap rate due to the larger number of outlier points. This
limitation can be overcome by feature extraction and matching. ICP iteratively associates
the point pair with minimum Euclidean distance, and the overall distance is minimized
with the least squares method, where the transformation matrix is estimated. However,
a proper initialization is needed, and local optimum is another potential concern. How
to ignore the influence of data initialization on point pair matching becomes a research
topic. In addition, many registration methods based on deep learning have been proposed
recently. They have advantages in some respects, such as the accuracy achieved by specific
experimental scenarios. PointNet [21] and PointNet++ [22] are widely used as end-to-end
point cloud learning frameworks. 3Dmatch [23] establishes correlation between 3D data by
learning descriptors. An unsupervised point cloud registration method [24] can leverage
differentiable alignment and rendering to learn point cloud registration from RGB-D videos.
However, compared with traditional methods, deep learning requires a more expensive
computing platform and a large amount of training data. In practice, there is still a
considerable gap in this approach to meet the needs of real-time online monitoring.

The registration performance of tree point clouds captured by airborne and terrestrial
platforms depends on the amount of partial overlap. However, the areas where these two
point clouds overlap tend to be small. For the data with insufficient overlap, it is difficult for
the typical SAC-IA to obtain a good solution consistent with the data due to the relatively
few inliers in the matching pair [25]. This problem will affect the point cloud registration
results, particularly in complex and large-scale scenes. Furthermore, if coarse registration
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fails to provide a good initial pose, the subsequent fine matching also tends to give a
limited performance. To mitigate the limitations imposed by initial pose requirements,
especially for the registration under the low overlap, this paper presents an improved
registration method based on a fast point feature histogram (FPFH). Specifically, an FPFH
is constructed to describe the local point cloud features according to the estimated normal
vector and spatial relationship within the neighborhood point’s subset. Its translation
and rotation invariant properties make the description more consistent. As a common
similarity metric, the Bhattacharyya distance is applied to define a correlation metric
and select matching pairs of points between two point clouds. In addition, a hybrid
selection strategy that combines the scoring rules and random sample consensus algorithm
(RANSAC) is proposed to select more reliable matches. Finally, a transformation matrix is
solved by singular value decomposition (SVD). The highlights of this work are summarized
as follows:

(1) An association description and assessment method, based on an FPFH and the Bhat-
tacharyya distance, is proposed. This method is rotationally invariant to point clouds
and is more accurate for point clouds with noise and low overlap.

(2) A matching pair pruning strategy with RANSAC is developed. By evaluating the cor-
relation between matching pairs, the erroneous matches are removed more effectively,
leading to an increased proportion of correct matching pairs.

(3) A series of registration experiments on real-world tree point clouds and synthesized
point clouds with Gaussian noise demonstrate the effectiveness of the proposed
method.

The rest of this paper is organized as follows. The framework of the plant phenotype
monitoring system is introduced in Section 2. The method proposed and its mathematical
model are given in Section 3. In Section 4, experimental results on real-world point clouds
of agricultural and forestry trees are presented and discussed. Finally, the conclusion of
this paper is given in Section 5.

2. Phenotypic Structure Monitoring System for Tall Plants

The hybrid phenotypic structure monitoring system of trees encompassing a UAV
and a terrestrial acquisition platform is shown in Figure 1. For agricultural and forestry
trees, canopy data are acquired by a low-altitude remote sensing platform (UAV, DJI
MAVIC 2) [26]. However, due to the limited flight range and blind zone of the camera, it
is not a trivial task to capture complete images of the tree trunk. The terrestrial acquisi-
tion platform (RGB camera) is capable of capturing more detail of the tree trunk texture.
Therefore, the image capture capabilities of these two platforms are combined to obtain
a comprehensive image of the trees. Finally, the 3D reconstruction based on the image
sequence is conducted to construct the point cloud model of the canopy and trunk. Those
two point clouds are converted into the world coordinate for registration and result in the
generation of a 3D model encompassing the entire tree.

As can be observed in Figure 1, the reconstructed point cloud of the canopy lacks tree
trunk information. This is due to partial occlusion of the tree trunk by the canopy, making
it challenging to reconstruct. However, this issue can be addressed by incorporating the
terrestrial imaging platform because it mainly captures the image of the branches. By
examining the point cloud of the tree trunk, more details in the trunk part are obtained.
It shall also be noted that there is quite a considerable overlap between the aerial and
terrestrial point clouds, which is regarded as the key feature to combining those two
datasets. Specifically, by extracting similar geometric features, point cloud alignment is
feasible, which allows the reconstruction of the 3D model of the whole tree. This provides
an important path for the extraction of the plant phenotype.
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Figure 1. The phenotypic structure monitoring system of trees combined with the UAV and terrestrial
capture platform.

3. Improved Point Cloud Registration Method Based on FPFH

After reconstructing the point clouds of the canopy and trunk using different visual
platforms, feature extraction and registration are performed to reconstruct the complete
plant model. This process is shown in Figure 2. The key steps are: (1) The point cloud
data are preprocessed to eliminate the outliers caused by background and noise. This
step not only suppresses the disturbance but also reduces the data size, which improves
both accuracy and efficiency of subsequent point cloud processing. (2) The 3D feature
descriptor (FPFH) of the point cloud is calculated to characterize the local geometric
features of the spatial points. (3) The correlation between the canopy and trunk points
is evaluated via the Bhattacharyya distance, and the matching point pairs are identified
according to the configured correlation rules. (4) The point cloud data are sampled based
on the correlation level and the distance distribution. Subsequently, a set of matching point
pairs is generated. The mismatching point pairs are removed based on RANSAC. (5) The
estimated transformation (rotation matrix R and translation vector t) between point clouds
is solved based on multi-view geometry. Point cloud stitching is then implemented based
on the transformation.
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3.1. Point Cloud Data Preprocessing

Point cloud preprocessing includes background removal, denoising, and downsam-
pling. Firstly, the target tree is manually cropped from the original point cloud. Owing
to the noises produced by sensors and 3D reconstruction errors, outliers are generally
generated and sparsely distributed in the reconstructed point clouds, which may cause
mismatching of partial point clouds and result in the failure of registration. To address
this problem, a statistical filtering method is used to delete the outliers. First, the average
distance of each point in the point cloud to its k-neighborhood points is calculated. Then,
the mean µ and standard deviation σ of all average distances are calculated. Based on the
Gaussian distribution, most data points are expected to be distributed within a certain
range around the mean value, and those data points that significantly deviate from the
mean value can be considered as outliers. To identify the outliers, a commonly used method
is to assess the average distance of each point to its k-neighborhood neighbors using a
global threshold. The threshold dmax in statistical filtering method is defined as:

dmax = µ + gσ, (1)

where g is a proportionality coefficient. If a point’s average distance of k-neighborhood
neighbors is larger than dmax, the point is labeled as an outlier and discarded. The g value
can be determined by the distribution of noise points and the complexity of point cloud,
and its empirical value is in the range of (1.0, 3.0). The higher the value, the fewer points
will be removed, and more noise will be retained.

In addition, referencing the reported work [27], voxel filtering is adopted to downsam-
ple point clouds and decrease the computations. A 3D voxel grid with a given size is first
applied to the point cloud. The centroid of all points in each grid is then calculated, and
they are used to represent all points in the grid. Thus, the data size of the point cloud is
reduced while preserving the initial geometric structure characteristics.

3.2. 3D Point Cloud Feature Descriptor Extraction

The good description of 3D point cloud features is conducive to registration. In
recent years, a variety of methods have been proposed to improve the accuracy and
efficiency of point cloud registration [28]. Specifically, 3D shape context (3DSC) [29] counts
and normalizes the points in angular and radial bins of spherical regions around each
point, which forms a feature vector that captures the shape and structure of point clouds.
However, 3DSC is sensitive to noise [30]. The signature of histograms of orientations
(SHOT) [31] descriptor is a variant of 3D shape context which uses histograms to encode
the orientation of the normals of the points in each spherical bin. It also integrates multiple
cues such as color and texture within a single feature vector, called a signature. SHOT
is computationally expensive and requires a large number of bins [32]. A point feature
histogram (PFH) [33] uses normal vectors to calculate the relationship between query
points and their neighborhood points where the properties of the neighborhood points
are represented by histograms. An FPFH [20] is an improved feature description of a
PFH. Compared with a PFH, the computational complexity of an FPFH is reduced. In
addition, an FPFH can achieve a better balance between descriptiveness and computational
efficiency and better distinguish geometric features [34,35]. As depicted in Figure 3, an
FPFH shows significant differences in geometric objects such as plane, edge, and vertex,
which is conducive for feature matching.

Before extracting FPFH features, it is necessary to compute the normal vector of each
point. As shown in Figure 4, pi (i = 1, 2, . . . , n) are the neighborhood points of x, n is the
number of neighborhood points, pc is the centroid of pi, and np is the normal vector of the
point x on the fitting plane L.
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falling in each bin.

Remote Sens. 2023, 15, 3775 6 of 19 
 

 

points and their neighborhood points where the properties of the neighborhood points 

are represented by histograms. An FPFH [20] is an improved feature description of a PFH. 

Compared with a PFH, the computational complexity of an FPFH is reduced. In addition, 

an FPFH can achieve a better balance between descriptiveness and computational 

efficiency and better distinguish geometric features [34,35]. As depicted in Figure 3, an 

FPFH shows significant differences in geometric objects such as plane, edge, and vertex, 

which is conducive for feature matching. 

 

Figure 3. FPFH shows significant differences in different geometric features: (a) a point cloud of a 

cube, and the FPFHs of its plane, edge, and vertex; (b) a point cloud of a cylinder, and the FPFHs of 

its edge and surface; (c) a point cloud of a sphere, and the FPFH of its surface. The abscissa of the 

histogram represents the number of points, and the ordinate represents the percentage of points 

falling in each bin. 

Before extracting FPFH features, it is necessary to compute the normal vector of each 

point. As shown in Figure 4, 𝒑𝑖 (𝑖 = 1,2, … , 𝑛) are the neighborhood points of 𝒙, 𝑛 is the 

number of neighborhood points, 𝒑𝑐 is the centroid of 𝒑𝑖 , and 𝒏𝑝 is the normal vector of 

the point 𝒙 on the fitting plane L. 

 

Figure 4. Schematic diagram the normal vector of a point 𝒙. 

Firstly, the centroid 𝒑𝑐 of a point in the neighborhood of 𝒙 is calculated as follows: 

𝒑𝑐 =
1

𝑛
∑ 𝒑𝑖
𝑛
𝑖=1 , (2) 

where the distance 𝑑𝑖  from a neighborhood point 𝒑𝑖  to the plane L is equal to the 

projection of (𝒑𝑖 − 𝒑𝑐) on the normal vector 𝒏𝑝, denoted as: 

𝑑𝑖 = (𝒑𝑖 − 𝒑𝑐) ∙ 𝒏𝑝. (3) 

The covariance matrix is constructed according to the neighborhood point 𝒑𝑖 and 

the centroid 𝒑𝑐, which is expressed as: 

𝑪 = ∑ (𝒑𝑖 − 𝒑𝑐)(𝒑𝑖 − 𝒑𝑐)
𝑇𝑛

𝑖=1 . (4) 

The eigenvalues of the covariance matrix are denoted as 𝜆𝑒  (assuming 0 ≤ 𝜆0 ≤

𝜆1 ≤ 𝜆2) and their corresponding eigenvector 𝒗𝑒, 𝑒 ∈ {0,1,2}. 

According to the theory of principal component analysis and the geometric 

interpretation of eigenvectors, 𝒗2 and 𝒗1  carry the majority of the information of the 

Figure 4. Schematic diagram the normal vector of a point x.

Firstly, the centroid pc of a point in the neighborhood of x is calculated as follows:

pc =
1
n∑n

i=1 pi, (2)

where the distance di from a neighborhood point pi to the plane L is equal to the projection
of (pi − pc) on the normal vector np, denoted as:

di = (pi − pc)·np. (3)

The covariance matrix is constructed according to the neighborhood point pi and the
centroid pc, which is expressed as:

C = ∑n
i=1 (pi − pc)(pi − pc)

T . (4)

The eigenvalues of the covariance matrix are denoted as λe (assuming 0 ≤ λ0 ≤ λ1 ≤ λ2)
and their corresponding eigenvector ve, e ∈ {0, 1, 2}.

According to the theory of principal component analysis and the geometric interpreta-
tion of eigenvectors, v2 and v1 carry the majority of the information of the neighborhood
data. For planar local point clouds, v2 and v1 span the local plane [36]. Since the eigenvector
is an orthogonal basis set, the eigenvector v0 with the smallest eigenvalue is approximately
parallel to the surface normal np or −np. By setting a viewpoint Vp as the judgment basis
to solve the ambiguity in the normal vector, the specific discriminant is:

np·
(
Vp − pi

)
> 0. (5)

The FPFH can be obtained after the normal of each point is computed. As shown
in Figure 5, the initial neighborhood (first-order neighborhood) of point pq is set as a
sphere of radius r f . In order to efficiently extract the neighborhood information, the space
with radius r f of all points in the first-order neighborhood is set as the second-order
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neighborhood. Then, the angular and positional relationships between all points in the
first-order neighborhood and their neighbors are used to calculate FPFH.
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In order to characterize the spatial relationship of the point pairs, a Darboux coordinate
system u-v-w corresponding to the point pairs is established. As shown in Figure 6, ps
and pt are the source point and target point, respectively, and ns and nt are the estimated
normal vectors of ps and pt, respectively. The u axis is consistent with the direction of the
normal ns, the direction of the v axis is the direction of the vector obtained by the cross
product (pt − ps)× u, and the w axis is perpendicular to the u-v plane and conforms to the
Cartesian coordinate system criterion. It is worth noting that the features based on the local
reference frame have translation and rotation invariance.

Remote Sens. 2023, 15, 3775 7 of 19 
 

 

neighborhood data. For planar local point clouds, 𝒗2 and 𝒗1 span the local plane [36]. 

Since the eigenvector is an orthogonal basis set, the eigenvector 𝒗0  with the smallest 

eigenvalue is approximately parallel to the surface normal 𝒏𝑝  or −𝒏𝑝 . By setting a 

viewpoint 𝑽𝑝  as the judgment basis to solve the ambiguity in the normal vector, the 

specific discriminant is: 

𝒏𝑝 ∙ (𝑽𝑝 − 𝒑𝑖) > 0. (5) 

The FPFH can be obtained after the normal of each point is computed. As shown in 

Figure 5, the initial neighborhood (first-order neighborhood) of point 𝑝𝑞 is set as a sphere 

of radius 𝑟𝑓. In order to efficiently extract the neighborhood information, the space with 

radius 𝑟𝑓  of all points in the first-order neighborhood is set as the second-order 

neighborhood. Then, the angular and positional relationships between all points in the 

first-order neighborhood and their neighbors are used to calculate FPFH. 

 

Figure 5. The spatial neighborhood of point 𝑝𝑞 for the calculation of its FPFH features. The dots in 

different colors are the centers of the corresponding spherical spaces. 

In order to characterize the spatial relationship of the point pairs, a Darboux 

coordinate system u-v-w corresponding to the point pairs is established. As shown in 

Figure 6, 𝑝𝑠 and 𝑝𝑡 are the source point and target point, respectively, and 𝒏𝑠 and 𝒏𝑡 

are the estimated normal vectors of 𝑝𝑠 and 𝑝𝑡, respectively. The 𝑢 axis is consistent with 

the direction of the normal 𝒏𝑠, the direction of the 𝑣 axis is the direction of the vector 

obtained by the cross product (𝑝𝑡 − 𝑝𝑠) × 𝑢, and the 𝑤 axis is perpendicular to the u-v 

plane and conforms to the Cartesian coordinate system criterion. It is worth noting that 

the features based on the local reference frame have translation and rotation invariance. 

 

Figure 6. The Darboux coordinate system of two points. 

The Darboux coordinate system shown in Figure 6 is defined as: 

Figure 6. The Darboux coordinate system of two points.

The Darboux coordinate system shown in Figure 6 is defined as:
u = ns

v = pt−ps
‖pt−ps‖ × u

w = u× v.

(6)

Then, four values are used to describe the relationship between the two points pt and
ps, denoted as: 

α = v · nt

φ = u · pt−ps
d

θ = arctan(w · nt, u · nt)

d = ‖ pt − ps ‖,

(7)
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where α is the dot product of the normal vector of nt and the v axis, φ is the dot product of
the normal vector of ps and pt − ps, θ is the angle between the projection of nt on the u-v
plane and the u axis, and d is the Euclidean distance from ps to pt.

The point cloud density is influenced by the sensor range. Therefore, to mitigate
the interference of this factor, the calculation of d is not considered. α reflects the normal
relationship between the two points, and φ is the relative position between two points.
Equation (7) shows that θ is similar to the azimuth of the spherical coordinate system.
Furthermore, θ can be used to describe the orientation relationship between two points.
The three variables (α, φ, θ) in the FPFH are distributed over as much as possible of the
available histogram range without exhibiting bias for specific regions [37].

The calculation of the FPFH for the query point pq is summarized in the following
steps. (1) Calculate α, φ, θ of the query point pq and its k-neighborhood points and denote
them as SPFH(pq); (2) calculate α, φ, θ between pq’s neighborhood points pqi and their
respective neighborhood points, denoted as SPFH(pqi); (3) the three variables α, φ, θ are
distributed in the histogram. Finally, the SPFH of the query point and the SPFH of the
weighted neighbor points are applied in the histogram to obtain the final FPFH via:

FPFH
(

pq
)
= SPFH

(
pq
)
+

1
k ∑k

i=1
1

ωi
SPFH

(
pqi
)
, (8)

where k is the number of points in the neighborhood of pq and ωi is the weight value, which
is inversely proportional to the Euclidean distance between pq and pqi. This means that
points pqi farther from the query point pq have less influence on FPFH(pq).

The dimension of each feature in the FPFH is set to an odd number to prevent ambi-
guity caused by noise interference when the angle is 90◦. The three eigenvalues α, φ, θ are
calculated based on the estimated normal vector. In the noise-free case, the normal vector
directions of the non-edge points on the plane should be consistent and perpendicular
to the plane. However, in most cases, point cloud data contain noisy points. Hence, the
normal vector on the plane point cloud is not strictly perpendicular. Then, α and φ will have
a slight deviation from 90 degrees. If the dimension is even, then two similar points may
be divided into two adjacent dimensions separated by 90 degrees due to noise interference,
even if their features are sufficiently similar. By setting the dimension to an odd number,
this ambiguity can be avoided.

3.3. Correspondence Estimation of Point Clouds

After the features are extracted, two point clouds can be associated. In statistics, the
distance between different probability distribution functions or histograms is also known as
a correlation measure. For two discrete probability distributions g and h in the same domain
X, the distance measure is widely used as the evaluation index of similarity. Among them,
the Bhattacharyya distance, chi-square test, and Kullback–Leibler (KL) divergence are three
commonly used distance measurement parameters. However, the chi-square test and KL
divergence are both asymmetric, while the Bhattacharyya distance is not only symmetric
but also nonnegative and satisfies the triangle inequality. In addition, the Bhattacharyya
distance is defined for all possible values of g and h, without making any assumptions about
the distribution itself. According to the composition characteristics of FPFH features, the
correlation metric of an FPFH based on the Bhattacharyya distance is applied to evaluate
the difference between the two histograms. The equation of the Bhattacharyya distance is:

DB(g, h) = −ln
(
∑x∈X

√
g(x)h(x)

)
, (9)

where g(x) and h(x) are the values of g and h in the interval x. The FPFH is essentially
composed of three 11-dimensional histograms that reflect the features of α, φ, and θ,
respectively. To calculate the correlation of the FPFH, the Bhattacharyya distances of the
three histograms are calculated and summated and used as the score of the correlation of
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the two FPFHs. According to Equation (9), the correlation between points p1 and p2 can be
expressed as follows:

CFPFH(p1, p2) = DB−α(p1, p2) + DB−φ(p1, p2) + DB−θ(p1, p2), (10)

where DB−α(p1, p2), DB−φ(p1, p2), and DB−θ(p1, p2) represent the Bhattacharyya distances
of α, φ, and θ, respectively. CFPFH(p1, p2) is non-negative according to the definition of the
Bhattacharyya distance. A smaller CFPFH(p1, p2) suggests a higher similarity between the
two histograms, which also means a higher correlation between the two points. Within the
target point cloud, each point in the source point cloud is searching for the point with the
least Bhattacharyya distance, and those two points build a matching point pair. The initial
set of matching point pairs is composed of these matching point pairs. However, due to the
influence of noise and non-overlapping regions, the initial set of matching pairs contains a
large number of false matches.

In order to obtain a more correct set of matching pairs, an effective matching pair pruning
strategy is needed to remove the false matching. The workflow is shown in Algorithm 1.

Algorithm 1: Iterative selection of correct matching pairs

Input: S0: the initial matching pair set; N: the number of matching pairs to be selected; te: the
Euclidean distance threshold;
Output: Sacc: the accurate matching pair set;
1: Initialization: Sacc ← φ ; n = 1;
2: for i = 1 : size(S0) do
3: if the point pti in the target point cloud is selected multiple times,
4: then point pti reversely selects its most similar point as the
5: matching pair; delete other duplicate matching pair(s) of point
6: pti;
7: end if
8: end for
9: Sort the matching pairs in S0;
10: Put the first matching pair p1 into S1;
11: Put the source point of the first matching pair to ptc;
12: for j = 1 : size(S0) do
13: if DEuclidean

(
ptc, ptj

)
> te then

14: S1 = S1 ∪ pj;
15: ptc = ptj;
16: end if
17: if n = N then
18: break;
19: end if
20: end for
21: Apply RANSAC to S1, get the inlier set Sacc.

Due to the large data size and small point distance, it is possible that multiple points
will be matched to the same point, which is obviously unreasonable. To solve this problem,
points that are selected multiple times are allowed to match their most similar points and
build new matching pairs. Then, the correlation is scored according to CFPFH(p1, p2), and
the matching pairs are sorted. By setting a distance threshold, the matching pairs with
the highest ranking are selected. The point pairs are distributed wide enough to avoid
finding the optimal transformation of the local point cloud. In addition, random sample
consensus (RANSAC) is used to reduce mismatched pairs in the set, which removes outliers
via repeated model prediction and verification from experimental data. The set of point
pairs obtained is then the set of matching pairs with high reliability.
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3.4. Estimation of Spatial Transformations

The rigid transformation of the two point clouds can be represented by a rotation
matrix R and a translation vector t. Accurate R and t can make the registration perform
well. Singular value decomposition is used to solve the optimal R and t based on the
set of matched pairs obtained in the previous section. First, the set of matching pairs is
represented as two ordered sets of points:

P = {p1, . . . , pm}, P′ =
{

p′1, . . . , p′m
}

. (11)

The error ek of the k-th point is defined as:

ek = pk −
(
Rp′k + t

)
, (12)

where pk and p′k represent the point coordinates of the k-th matching pair. According to the
error ek, the least squares problem is constructed for the set of matching pairs, which can
be expressed as:

min
R,t

∑m
k=1 ‖

(
pk −

(
Rp′k + t

))
‖2, (13)

where m is the number of matching pairs in the set. Equation (13) can be simplified to the
following two equations:

min
R,t

∑m
k=1 ‖ qk −Rq′k ‖

2, (14)

t = p−Rp′, (15)

where p and p′ are the centroids of the two point sets P and P′, respectively, and qk and q′k
are the de-centroid coordinates, which are expressed as:

qk = pk − p, q′k = p′k − p′. (16)

Next, the optimal rotation matrix R is solved by SVD. The covariance matrix is con-
structed as follows:

Cov
(
P, P′

)
=

m

∑
k=1

qkq′k
T
=

m

∑
k=1

(pk − p)
(
p′k − p′

)T . (17)

Apply SVD on the covariance matrix:

Cov
(
P, P′

)
= UΣVT, (18)

where Σ is a diagonal matrix composed of singular values. U and V are the matrices of the
left and right singular vectors, respectively, and they are both diagonal matrices. When
Cov

(
P, P′

)
is full rank, the rotation matrix R can be solved by the following equation:

R = UVT . (19)

After obtaining the rotation matrix R, the translation vector t can be obtained by (15).

4. Experiment

Experiments were conducted to verify the effectiveness and accuracy of the proposed
method on plant point cloud registration. The computing platform is an Intel Core i5-10500
CPU which is made by the Intel Corporation of Santa Clara, CA, USA. Point clouds are
generated by COLMAP [38] using sequences of images and the registration programs are
developed based on the open-source library PCL.
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Figures 7a and 8a are the actual scene photos of two plants (tree-1 and tree-2). Ac-
cording to the characteristics of the point cloud captured by UAV and a terrestrial capture
platform, the point cloud of each tree is extracted into two parts. Figures 7b and 8b show
the point cloud from the perspective of the terrestrial capture platform, which is called the
target point cloud. Figures 7c and 8c are the point clouds captured by the UAV above trees,
which are called source point clouds. Five sets of experiments with different overlap ratios
were performed for each tree. The task of registration is to find the transformation between
the source point cloud and the target point cloud. The overlap percentage between each set
of point clouds to be registered is between 30% and 75%, which refers to the percentage of
points in the overlap area to the total number of points. The similarity of the experimental
data is reduced by randomly removing 20% of the points. In addition, voxel filtering also
changes the coordinates of some points.

In order to verify the effectiveness, the proposed method is compared against
SAC-IA and SAC-IA + ICP [20]. The registration results of the two plants are shown
in Figures 7d–f and 8d–f, respectively. It can be seen from Figures 7d and 8d that when
the overlap rate between point clouds is low, SAC-IA often gives results with large errors,
and its registration success rate is low. As can be seen from #1 and #2 in Figure 7e, ICP
fails when the coarse registration does not provide an approximately accurate initial pose.
Similar results appear in #6 and #8 to #10 in Figure 8e. Compared with SAC-IA and ICP,
our method performs better without obvious deviation, as shown in Figures 7f and 8f. In
the case of a low overlap rate, our method can provide a more accurate transformation.

To quantitatively evaluate the effectiveness of point cloud registration, the root-mean-
square error (RMSE) is used to measure the spatial distance error between the estimated
transformed point cloud and the ground truth, which is defined as:

RMSE =

√
∑M

l=1 ‖ Rpl + t− ql ‖
2

M
. (20)

where R and t represent the true values of the rotation matrix and translation vector,
respectively, pl and ql represent points on the point cloud before and after the registration,
and M represents the number of points.

The RMSEs of the point cloud registration shown in Figures 7d–f and 8d–f are listed in
Table 1. It can be seen that the errors of SAC-IA and ICP in experiments #1, #2, #6, and #8 to
#10 are large, which is consistent with Figures 7 and 8. When the RMSE of a registration is
greater than 10 cm, the registration is a failure, and it is meaningless to measure its accuracy.
Ignoring errors larger than 10 cm, the mean values of the RMSEs of SAC-IA, SAC-IA + ICP,
and the proposed method are, respectively, 0.38 cm, 0.012 cm, and 0.0027 cm. The mean
RMSE of our method is only 0.71% and 22.5% of SAC-IA and SAC-IA + ICP, respectively.
The proposed method, with higher rates of success and accuracy, outperforms the other
two methods.

In practical applications, due to the influence of the surrounding environment, the
constructed point cloud contains noise that directly affects the point cloud registration
accuracy. To further verify the noise resistance of the proposed method, we added Gaussian
noise with zero mean and standard deviation three times the resolution (RS) to all point
clouds, and the results are shown in Figure 9. The definition of resolution RS is as follows:

RS =
1
n

n

∑
i=1
‖ pi − pin ‖, (21)

where n is the number of nearest neighbors of pi, and pin is one of the nearest neighbors
of pi.
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Figure 7. The inputs and the registration results of tree-1: (a) the actual scene photo of tree-1; (b) point
cloud obtained by terrestrial capture platform; (c) point cloud obtained by UAV; (d–f) registration
results of SAC-IA, SAC-IA + ICP, and the proposed method, respectively. Experiments are numbered
from #1 to #5.
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Figure 8. The inputs and the registration results of tree-2: (a) the actual scene photo of tree-1; (b) point
cloud obtained by terrestrial capture platform; (c) point cloud obtained by UAV; (d–f) registration
results of SAC-IA, SAC-IA + ICP, and the proposed method, respectively. Experiments are numbered
from #6 to #10.
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Table 1. The RMSEs of the point cloud registration shown in Figures 7d–f and 8d–f.

Point Cloud Umber SAC-IA (cm) SAC-IA + ICP (cm) Proposed (cm)

#1 210.9800 197.4900 0.0037
#2 92.6800 93.3900 0.0064
#3 0.8700 0.0036 0.0000
#4 0.2500 0.0080 0.0002
#5 0.3100 0.0370 0.0069
#6 65.2200 64.3700 0.0022
#7 0.0870 0.0007 0.0007
#8 53.5400 57.6000 0.0052
#9 56.0100 61.3400 0.0009

#10 48.1900 50.8000 0.0007

Mean# 0.3793 0.0123 0.0027

Mean#: The mean of the RMSE values that are less than 10 cm.
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Figure 9. The raw point cloud and the point cloud with Gaussian noise.

Ten comparison experiments were carried out with the point clouds with Gaussian
noise, which were processed with SAC-IA, SAC-IA + ICP, and the proposed method. The
noisy point clouds were registered, and the results are shown in Figures 10 and 11. With
noise interference, registration is more difficult. SAC-IA and ICP become more prone
to registration failure, as shown in Figure 10a,b. However, the proposed method still
maintains good registration performance and is able to align the source and target point
clouds, as shown in Figures 10c and 11c.

The RMSE is also used as the precision measurement of the anti-noise registration
effect, and the results are shown in Table 2. The RMSEs of the proposed method are smaller
than those of SAC-IA + ICP while maintaining a high success rate. Ignoring the experiments
with RMSE greater than 10 cm, the mean values of the RMSEs of SAC-IA, SAC-IA + ICP,
and the proposed method are 1.12 cm, 0.33 cm, and 0.0039 cm, respectively. The mean
RMSE of our method is only 0.35% and 1.18% of SAC-IA and SAC-IA + ICP, respectively.
The results show that when registering noisy point clouds, the proposed method aligns
more tightly than other methods. The proposed method not only has a higher success rate
and accuracy but also is more robust.
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The mean RMSE of our method is only 0.35% and 1.18% of SAC-IA and SAC-IA + ICP, 
respectively. The results show that when registering noisy point clouds, the proposed 
method aligns more tightly than other methods. The proposed method not only has a 
higher success rate and accuracy but also is more robust. 

Table 2. The RMSEs of the point cloud registration shown in Figures 10 and 11. 

Point Cloud Umber SAC-IA (cm) SAC-IA + ICP (cm) Proposed (cm)
#1 126.5200 118.6100 0.0084
#2 3.6700 0.8800 0.0037
#3 0.1500 0.0720 0.0033
#4 0.2500 0.1500 0.0067
#5 0.4000 0.2200 0.0014
#6 43.8200 47.7500 0.0009
#7 41.1500 50.2100 0.0020
#8 60.1600 61.0900 0.0022
#9 47.4700 56.1400 0.0008
#10 45.5200 54.8500 0.0097

Mean# 1.1175 0.3305 0.0039
Mean#: The mean of the RMSE values that are less than 10 cm. 

Figure 11. The registration results of tree-2 with added noise: (a–c) the registration results obtained
from SAC-IA, SAC-IA + ICP, and the proposed method, respectively. Experiments are numbered
from #6 to #10, corresponding to those shown in Figure 8.
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Table 2. The RMSEs of the point cloud registration shown in Figures 10 and 11.

Point Cloud Umber SAC-IA (cm) SAC-IA + ICP (cm) Proposed (cm)

#1 126.5200 118.6100 0.0084
#2 3.6700 0.8800 0.0037
#3 0.1500 0.0720 0.0033
#4 0.2500 0.1500 0.0067
#5 0.4000 0.2200 0.0014
#6 43.8200 47.7500 0.0009
#7 41.1500 50.2100 0.0020
#8 60.1600 61.0900 0.0022
#9 47.4700 56.1400 0.0008

#10 45.5200 54.8500 0.0097

Mean# 1.1175 0.3305 0.0039

Mean#: The mean of the RMSE values that are less than 10 cm.

5. Conclusions

In order to obtain a more complete point cloud set of tall plants, a low overlap rate
plant point cloud registration method has been developed in this work. After acquiring the
partial point cloud from the vision sensor, the geometric features in the plant point cloud
are described by FPFH. This local reference frame-based feature allows registration not
to be limited by the initial pose. The Bhattacharyya distance, which has good properties,
is used as a similarity measure to score the correlation between features. By selecting
a reliable matching pair set, the least squares problem is constructed to solve the rigid
transformation between point clouds.

The method proposed is suitable for general scenarios without initial pose guessing,
and is also suitable for point clouds with low overlap rates. Our method is resource efficient,
and its registration is completed in one run instead of iterations. It also does not require
training the model like deep learning methods. After experimental verification, the method
can better complete the registration of plant point clouds with a low overlap rate. It also
outperforms SAC-IA and SAC-IA + ICP, with a higher success rate and accuracy.

The proposed method is helpful to improve the efficiency and accuracy of plant
phenotype monitoring. The extracted phenotypes, including height, diameter at breast
height and canopy size, are important indicators to measure plant growth. Thus, it has
great value for practical applications in agriculture and forestry fields.

Future work will be focused on automatically adjusting the parameters of statistical
filtering used in different scenarios. Multi-sensor data fusion also will be considered
to combine visual features and LiDAR information to further improve the stability and
reliability of large-scale point cloud registration for accurate 3D reconstruction of plants.
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